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ABSTRACT
In this paper we propose a very simple FIR pre-filter based
method for near optimal least-squares linear approximation
of discrete time signals. A digital pre-processing filter, which
we demonstrate to be near-optimal, is applied to the signal
before performing the usual linear interpolation. This leads
to a non interpolating reconstruction of the signal, with good
reconstruction quality and very limited computational cost.
The basic formalism adopted to design the pre-filter has been
derived from the framework introduced by Blu et Unser in
[1]. To demonstrate the usability and the effectiveness of
the approach, the proposed method has been applied to the
problem of natural image resampling, which is typically ap-
plied when the image undergoes successive rotations. The
performance obtained are very interesting, and the required
computational effort is extremely low.

1. INTRODUCTION

Linear interpolation is one of the simplest methods for digi-
tal to analog conversion, and it is still applied in applications
where the conversion computational cost must be kept under
control. Nevertheless, linear interpolation introduces some
artifacts, e.g., blurring in image processing, and it is often
necessary to use higher degree polynomials to achieve an ac-
ceptable level of approximation.

An interesting point is to establish if a signal needs to
be actually interpolated or whether a non interpolating least-
square approximation could be preferable.
In literature the choice seems to have been interpolation, even
when it does not represent a requirement and it clearly gen-
erates analog reconstructed signals with a much higher mean
square error. A significant example is represented by the
problem of image resampling when the new pixels are uni-
formly distributed with respect to the old ones, as in the case
of image rotations by angles which are not multiples ofπ/2.

The concept of least-squares reconstruction of signals has
been well studied in modern sampling theory (e.g., see [2]),
and the solution is known to be given by an analog pre-
filtering of the signal before sampling. The optimal filter
inpulse response depends on the generating function used in
the reconstruction step (and is calleddual of the generating
function itself).

In this paper we propose the introduction of a very simple
digital filter to be applied to the signal before performing the
classical linear interpolation, as an equivalent of the analog
analysis filter which is missing in our implementation. The
approach is a direct extension of the results described by Blu
and Unser in [1]. We show here that a very simple FIR filter
leads to almost the same performance with respect to an op-
timal analog analysis pre-filter under the hypothesis that the

signal has been sampled according to Shannon’s sampling
theorem. In this paper we will use a normalized frequency
representation, so that this hypothesis is equivalent to con-
sider the signal to be bandlimited to frequencies| f |< 1/2.

The rest of the paper is organized as follows. Section 2
describes some known results of interpolation and sampling
theory, whereas the proposed digital pre-filter is introduced
and discussed in Section 3. Experimental results showing
the effectiveness of the proposed approach are reported in
Section 4. Finally, concluding remarks are drawn in Section
5.

2. INTERPOLATION AND SAMPLING THEORY

Given a set of valuess(k), corresponding to samples of a
signals at integer points, a linear interpolation constructs a
piecewise linear approximation ˜s given, for k ∈ N andδ ∈
[0,1[, by

s̃(k+δ ) = s(k)(1−δ )+s(k+1)δ

This is known to be equivalent, fort ∈ R, to

s̃(t) = ∑
k∈Z

s(k)Λ(t−k) (1)

whereΛ(t) is the unity triangular pulse defined byΛ(t) =
max(0,1−|t|).

Equation (1) is a special case of a general model used
in modern sampling theory: given a reconstruction function
ϕ a signal approximation can be obtained using the linear
expansion

s̃(t) = ∑
k∈Z

ck ϕ(t−k) (2)

where the coefficientsck have to be set depending onϕ, s,
and the desired characteristics of the approximation result.
A very useful choice is to construct ananalysisfunction ϕ̃,
dependent onϕ, and consider coefficientsck of the form

ck = 〈s, ϕ̃k〉

whereϕ̃k(t) = ϕ̃(t −k). This assumption corresponds to fil-
tering s with a filter with impulse responseh(t) = ϕ̃(−t),
followed by an ideal sampler to obtain the sequenceck.

With this formalism in mind, given a certain reconstruc-
tion functionϕ, the approximation ˜s is simply determined by
the choice ofϕ̃. If we want to obtain the least-square ap-
proximation solution (in the form of eq. (2)), the analysis
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function is given by (see [2])1

ˆ̃ϕ =
ϕ̂( f )
âϕ( f )

whereaϕ(t) is the sampled autocorrelation of the functionϕ,
and thus satisfies

âϕ( f ) = ∑
k∈Z

|ϕ̂( f −k)|2

In this caseϕ̃ is calleddualof ϕ and will be denoted with
◦
ϕ.

If we are interested to linear approximation, the expres-

sion of
◦
ϕ ( f ) can be easily derived, given thatϕ(t) = Λ(t)

andϕ̂( f ) = sinc2( f ). In this case one has

âΛ( f ) =
2
3

+
1
3

cos(2π f ) (3)

and, thus,
◦̂
Λ =

3sinc( f )2

2+cos(2π f )

Consider that this function is even and real valued, then

Λ(t) must be even as well. Thus we haveh(t) =
◦
Λ (−t) =

◦
Λ

(t), and we will refer to the dual function
◦
Λ as the analysis

filter.

3. THE PROPOSED DIGITAL PRE-FILTER

Once we have the expression of the analog analysis filter for
the least-squares approximation this should be applied to the
signal before sampling, in view of a future piecewise lin-
ear reconstruction (which is optimal according to the least
squares criterion).
Obviously, this cannot be implemented in practice as the sig-
nal is normally available already in a digital form. So, the
overall processing must be implemented in an equivalent way
in the digital domain. Assuming that the sampling rate satis-
fies Shannon’s sampling theorem, a near equivalent FIR pre-
filter can be derived and applied to the digital signal provid-
ing nearly the same performance as its optimal analog coun-
terpart.
In this way, it will be possible to reconstruct a piecewise lin-
ear least-square approximation of the original signal in a very
efficient manner.

3.1 Filter

We choose to limit the number of taps of the near equiva-
lent FIR filter to 5. This could be considered a completely
arbitrary choice, but it will be shown that the quality of the
approximation is practically unaffected by such limitation.
In addition, this allows to maintain a very low computational
cost. Longer filters have been considered without obtaining
a substantial reduction in the mean square error.

As previously mentioned, the FIR digital filter should be-

have similarly to its Analog counterpart
◦
Λ. The design ap-

proach basically equates the first terms of the Taylor series

1ϕ̂ represents the Fourier transform of the functionϕ. All functions with
the superscript ˆ will in what follows always identify the Fourier transform
of its argument, unless it is explicitely stated differently in the text
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Figure 1: Equivalent reconstruction function of the FIR pre-
filtering method

expansion of both frequency representation of the two filters

aroundf = 0. Given the symmetries of
◦
Λ, h[n] has to be even

shaped and satisfy a unity gain atf = 0. Thus its generic ex-
pression in the Z transform domain is given by

h(z) = 1−a−b+
a
2
(z1 +z−1)+

b
2
(z2 +z−2)

The associated Discrete Time Fourier Transform is thus

ĥ( f ) = 1−a−b+acos(2π f )+bcos(4π f )

Using now its Taylor series expansion and limiting it to the
fourth order approximation, one can rewrite

ĥ( f ) = 1+(2a−8b)π2 f 2 +
32b−2a

3
π

4 f 4 +o( f 5)

Similarly the Taylor Series representation of the dual func-
tion is given by

◦̂
Λ( f ) = 1+

1
3

π
2 f 2 +

2
45

π
4 f 4 +o( f 5)

Equating the coefficients off 2 and f 4 we obtain a linear
system with two unknown, the solution of which leads to
a =−11/45 andb = 7/360. Thus the filter transfer function
is given by

h(z) =
49
40

− 11
90

(z1 +z−1)+
7

720
(z2 +z−2)

The joint concatenation of this digital filter with a linear
interpolator can also be viewed as an approximation process
in the form of equation (2). The coefficientsck correspond to
the sampless(k), and the reconstruction functionϕ is given
by a linear combination ofΛ(t), Λ(t±1) andΛ(t±2) leading
to the impulse response shown in fig 1.



3.2 Approximation error

Equipped with the analytical expression of our filter, it is im-
portant to compare its performance with that obtained by the
optimal solution. In [3] and [1], the authors gave extremely
useful mathematical tools for the study of the mean square
error behavior in approximation techniques. In particular it
is shown that, ifT is the sampling rate, a very good estima-
tion of the mean square approximation error is given by

ηs(T) =
(∫ ∞

−∞
|ŝ( f )|2Eϕ̃,ϕ( f T)d f

)1/2

where theEϕ̃,ϕ( f ) is called theerror kernelfunction and is
given by

Eϕ̃,ϕ( f ) = |1− ˆ̃ϕ( f )∗ϕ̂( f )|2 + | ˆ̃ϕ( f )|2 ∑
n6=0

|ϕ̂( f +n)|2 (4)

or equivalently

Eϕ̃,ϕ( f ) = 1− |ϕ̂( f )|2

âϕ( f )
+ âϕ( f )| ˆ̃ϕ( f )−

◦̂
ϕ( f )|2 (5)

For our purpose we setT to 1, as we are using a normal-
ized frequency representation. We have therefore to com-
pare the error kernel for the least square approximation us-
ing piecewise linear functions, the classic linear interpola-
tion, and our near optimal solution.

For the first case, we have thatϕ̃ =
◦
Λ and, calling

Emin = E◦
Λ,Λ

, from (5) and (3),

Emin( f ) = 1− 3sinc( f )4

2+cos(2π f )

For the classic linear interpolation, instead,ϕ̃(t) = δ (t) and
thus, from (4),

Eδ ,Λ( f ) =
5
3

+
1
3

cos(2π f )−2sinc2( f )

Finally, for the proposed FIR prefilter,̃ϕ = h and, from (4),
we obtain

Eh,Λ( f ) = 1+h2( f )
(

2
3

+
1
3

cos(2π f )
)
−2h( f )sinc2( f )

Comparing the power series expansion of these three
functions, one may verify thatEδ ,Λ( f )−Emin( f ) = O( f 4)
while Eh,Λ( f )−Emin( f ) = O( f 12) which means that for low
frequencies the FIR pre-filter leads to much smaller errors
with respect to the classical interpolation. In Fig. 2 the
normalized error kernelsE( f )/Emin( f ) are plotted for both
methods. It clearly indicates that the proposed FIR pre-
filtering method is practically identical to that of the least
square solution up to the Nyquist frequencyf = 1/2. There-
fore, if the signal can be considered bandlimited to| f |< 1/2
(i.e., Shannon’s sampling theorem is satisfied), the solution
obtained by FIR pre-filtering can be considered equivalent to
the optimal analog solution.
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Figure 2: Error kernels comparison.

4. SIMULATION RESULTS

In order to demonstrate the efficiency of our approximation
scheme, we compare it with two meaningful interpolation
methods, namely Keys’ cubic interpolation, which is the ref-
erence for high-quality image reconstruction methods, and
the more recent interesting shifted-knots linear interpolation
proposed by Bluet al. in [4]. We perform an image re-
sampling test, based on successive rotation of 256 gray level
images, that is a variant of that used in [4].
We randomly choose 14 anglesθi with θi ∈ [−π/2,π/2] for
1≤ i ≤ 14 and we setθ15 = 0. The valueθi represents the an-
gular position (with respect to the original one) of the image
at thei-th step. The image at stepi +1 is obtained by rotat-
ing the image at stepi by an angleθi+1−θi . It is clear that
at the 15-th step the image is exactly in the initial position
and we can compare the rotated image with respect to the
original one to evaluate the error introduced by successive
resamplings of the rotated rectangular image. All computa-
tions have been performed with floating point arithmetic so
as to avoid the effects of quantization. Furthermore, the error
has been computed only on the central part of the image so
that boundaries effect have been discarded.

This simulation experiment is different from that pro-
posed in [4] for which the image was rotated 15 times by
an angle 2π/15 in the same direction. Such a choice, in fact,
causes a compensation of the phase distortion potentially in-
troduced (and it is the case for the shifted-knots method)
by the approximation system, due to the presence of near-
opposite angles during the simulation. This is the reason for
which, here, shifted-knots linear interpolation gives smaller
SNR values than Keys’ cubic one (even if the images can
be considered visually more satisfactory), contrarily to what
reported in [4].

Figures 3 and 4 show the results of the test for the Pepper
and Baboon images, respectively. It is important to note that
the FIR-prefilter linear approximation can give higher quality
(both visual and with respect to the SNR value) than Keys’
cubic interpolation in 1/3 of the computation time.
Furthermore, it is interesting to compare the performance of
our method to that of the shifted-knots one; the phase distor-
tion of the latter, in fact, leads to a lower SNR value in our



Original image of pepper. Keys’ cubic interp.
SNR=27.71dB, Time=3.85s

Shifted-knots lin. interp.
SNR=25.14dB, Time=1.32s

FIR prefiltered lin. approx.
SNR=29.14dB, Time=1.38s

Figure 3: Results of simulations on the image Pepper.

Original image Baboon. Keys’ cubic interp.
SNR=20.50dB, Time=3.85s

Shifted-knots lin. interp.
SNR=18.02dB, Time=1.32s

FIR prefiltered lin. approx.
SNR=21.42dB, Time=1.38s

Figure 4: Results of simulations on the image Baboon.

rotation test. Visually, the obtained images are not blurred
(as with classic linear interpolation) but they are affected by
the presence of shot-noise. The least-squares linear approx-
imation, on the contrary, does not introduce this artifact and
gives images with very little blur, leading to higher quality
for about the same computational cost.

5. CONCLUSION

In this paper we have presented the idea of using a very sim-
ple linear phase FIR pre-filter to compute a least square lin-
ear approximation of a digital signal for bandlimited analog
signals reconstruction. The digital pre-processing filter is ap-
plied to the signal before performing the classic linear inter-
polation, so as to obtain a non interpolating analog approx-
imation. The usefulness of the approach has been demon-
strated by applying it to the problem of resampling rotated
images. In this context, the need for an exact interpolation of
the original pixels is not a requirement, and the quality of the
rotated signal remains very close to the original.
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