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Abstract: This work is focused on a nonlinear equation describing the oscilla-
tions of an extensible viscoelastic beam with fixed ends, subject to distributed
elastic external force. For a general axial load β, the existence of a finite/infinite
set of stationary solutions and buckling occurrence are scrutinized. The expo-
nential stability of the straight position is discussed. Finally, the related dy-
namical system in the history space framework is shown to possess a regular
global attractor.
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1. Introduction

In this paper we analyze the asymptotic behavior of the following nonlinear
dissipative evolution problem
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∂ttu+ ∂xxxxu+

∫ ∞

0
µ(s)∂xxxx[u(t) − u(t− s)]ds−

(
β + ‖∂xu‖2

L2(0,1)

)
∂xxu

= −ku+ f, (1)

in the unknown variable u = u(x, t) : [0, 1] × R → R, which describes the
vibrations of an extensible viscoelastic beam of unitary natural length. The
real function f = f(x) is the lateral (static) load distribution, the term −ku
represents the lateral action effected by the elastic foundation and the real pa-
rameter β denotes the axial force acting in the reference configuration (positive
in stretching, negative in compression). The memory kernel µ is a nonnegative
absolutely continuous function on R

+ = (0,∞) (hence, differentiable almost
everywhere) such that

µ′(s) + δµ(s) ≤ 0,

∫ ∞

0
µ(s)ds = κ, (2)

for some δ > 0 and κ > 0. In particular, µ has an exponential decay of rate δ
at infinity.

Precisely, the model is obtained by combining the pioneering ideas of Wo-
inowsky-Krieger [23] with the theory of Drozdov and Kolmanovskii [14], i.e.
taking into account the geometric nonlinearity due to the deflection, which
produces an elongation of the bar, and the energy loss due to the internal
dissipation of the material, which translates into a linear viscoelastic response
in bending.

In our analysis, we assume that both ends of the beam are hinged; namely,
for every t ∈ R

u(0, t) = u(1, t) = ∂xxu(0, t) = ∂xxu(1, t) = 0. (3)

Moreover, because of integro-differential nature of (1), the past history of u
(which need not fulfill the equation for negative times) is assumed to be known.
Hence, the initial condition reads

u(x, t) = u⋆(x, t), (x, t) ∈ [0, 1] × (−∞, 0], (4)

where u⋆ : [0, 1] × (−∞, 0] → R is a given function.

In order to apply the theory of strongly continuous semigroups, we recast
the original problem as a differential system in the history space framework. To
this end, following Dafermos [11], we introduce the relative displacement history

ηt(x, s) = u(x, t) − u(x, t− s),
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so that equation (1) turns into



∂ttu+ ∂xxxxu+

∫ ∞

0
µ(s)∂xxxxη(s)ds−

(
β + ‖∂xu‖2

L2(0,1)

)
∂xxu = −ku+ f,

∂tη = −∂sη + ∂tu.

(5)
Accordingly, the initial condition (4) becomes





u(x, 0) = u0(x), x ∈ [0, 1],

∂tu(x, 0) = u1(x), x ∈ [0, 1],

η0(x, s) = η0(x, s), (x, s) ∈ [0, 1] × R
+,

(6)

where we set

u0(x) = u⋆(x, 0), u1(x) = ∂tu⋆(x, 0), η0(x, s) = u⋆(x, 0) − u⋆(x,−s).
As far as the boundary conditions are concerned, (3), for every t ≥ 0, translates
into 




u(0, t) = u(1, t) = ∂xxu(0, t) = ∂xxu(1, t) = 0,

ηt(0, s) = ηt(1, s) = ∂xxη
t(0, s) = ∂xxη

t(1, s) = 0,

ηt(x, 0) = lim
s→0

ηt(x, s) = 0.

(7)

It is worth noting that the static counterpart of problem (1) reduces to
{
u′′′′ −

(
β + ‖∂xu‖2

L2(0,1)

)
u′′ + ku = f,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(8)

When k ≡ 0 the investigation of the solutions to (8) and their stability, in
dependence on β, represents a classical nonlinear buckling problem (see, for
instance, [2, 13, 20]). Its numerical solutions are available in [7], while their
connection with industrial applications is discussed in [15]. Recently, a careful
analysis of the corresponding buckled stationary states was performed in [19]
for all values of β. In [9] this analysis was improved to include a source f with
a general shape.

For every k > 0 and vanishing sources, exact solutions to (8) can be found
in [6], and at a first sight, this case looks like a slight modification of previ-
ously scrutinized models where k vanishes. This is partially true. Indeed, the
restoring elastic force, acting on each point of the beam, opposes the buckling
phenomenon and increases the critical Euler buckling value βc, which is no
longer equal to

√
λ1, the root square of the first eingenvalue of the ∂xxxx opera-

tor, but turns out to be a piecewise linear function of k. When the lateral load
f vanishes, the null solution is unique provided that β ≥ −βc(k) (see Theorem
2), and buckles when β exceeds this critical value, as well as in the case k = 0.
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On the contrary, for some special positive values of k, called resonant values,
infinitely many solutions may occur.

Moreover, in the case k ≡ 0, if f vanishes, the exponential decay of the en-
ergy is provided when β > −λ1, so that the unique null solution is exponentially
stable. On the contrary, as the axial load β ≤ −λ1 the straight position loses
stability and the beam buckles. So, a finite number of buckled solutions oc-
curs and the global attractor coincides with the unstable trajectories connecting
them.

By paralleling the results for k = 0, the null solution is expected to be
exponentially stable, when it is unique. Quite surprisingly, it is not so. For large
values of k, the energy decays with a sub-exponential rate when −β̄ > β > −βc

(see Theorem 8). In particular, for any fixed k > λ1, the positive limiting value
β̄(k) is smaller than the critical value βc(k), and the first overlaps the latter
only if 0 ≤ k ≤ λ1.

The motion equation (1) with µ = k = f = 0 turns out to be conservative
and has been considered for hinged ends in [2, 12], with particular reference
to well-posedness results. Adding an external viscous damping term δ∂tu (δ >
0) to this conservative model, stability properties of the unbuckled (trivial)
states have been established in [3, 13] and, more formally, in [20]. In this
case, the global dynamics of solutions for a general β has been tackled first in
[18], where some regularity of the attractor is obtained provided that δ is large
enough. When the stiffness of the surrounding medium is neglected (k = 0), the
existence of a regular attractor was proved for extensible Kirchhoff beam [10],
extensible viscoelastic [17] and thermo-elastic [16] beams. A similar result for an
extensible elastic beam resting on a viscoelastic foundation was obtained in [6].
This strategy can be generalized to the investigation of nonlinear dissipative
models which describe the vibrations of extensible thermoelastic beams [4],
and to the analysis of the long term damped dynamics of extensible elastic
bridges suspended by flexible and elastic cables [5]. In the last case the term
−ku is replaced by −ku+ and it represents a restoring force due to the cables.
Moreover, our approach may be adapted to the study of simply supported
bridges subjected to moving vertical load [22].

The final result of this work concerns the existence of a regular global at-
tractor for all values of the real parameter β. The main difficulty comes from
the very weak dissipation exhibited by the model, entirely contributed by the
memory term. So, the existence of the global attractor is stated through the
existence of a Lyapunov functional and the asymptotic smoothing property of
the semigroup generated by the abstract problem via a suitable decomposition
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first proposed in [17].

2. The Abstract Setting

In this section we will consider an abstract version of problem (5)-(7). To this
aim, let (H0, 〈·, ·〉, ‖ · ‖) be a real Hilbert space, and let A : D(A) ⊂ H0 → H0

be a strictly positive selfadjoint operator. For ℓ ∈ R, we introduce the scale of
Hilbert spaces

Hℓ = D(Aℓ/4), 〈u, v〉ℓ = 〈Aℓ/4u,Aℓ/4v〉, ‖u‖ℓ = ‖Aℓ/4u‖.
In particular, Hℓ+1 ⊂ Hℓ and the generalized Poincaré inequalities hold√

λ1 ‖u‖2
ℓ ≤ ‖u‖2

ℓ+1, ∀u ∈ Hℓ+1, (9)

where λ1 > 0 is the first eigenvalue of A.

Given µ satisfying (2), we consider the L2-weighted spaces

Mℓ = L2
µ(R+,Hℓ+2), 〈η, ξ〉ℓ,µ =

∫ ∞

0
µ(s)〈η(s), ξ(s)〉ℓ+2ds, ‖η‖2

ℓ,µ = 〈η, η〉ℓ,µ
along with the infinitesimal generator of the right-translation semigroup on M0,
that is, the linear operator

Tη = −Dη, D(T ) = {η ∈ M0 : Dη ∈ M0, η(0) = 0},
where D stands for the distributional derivative, and η(0) = lims→0 η(s) in H2.

Besides, we denote by M1
ℓ the weighted Sobolev spaces

M1
ℓ = H1

µ(R+,Hℓ+2) = {η ∈ Mℓ : Dη ∈ Mℓ}, ‖η‖2
M1

ℓ

= ‖η‖2
ℓ,µ + ‖Dη‖2

ℓ,µ.

Moreover, the functional

J (η) = −
∫ ∞

0
µ′(s)‖η(s)‖2

2ds

is finite provided that η ∈ D(T ). From the assumption (2) on µ,

‖η‖2
0,µ ≤ 1

δ
J (η). (10)

Finally, we define the product Hilbert spaces

Hℓ = Hℓ+2 ×Hℓ ×Mℓ.

For β ∈ R and f ∈ H0, we investigate the evolution system on H0 in the
unknowns u(t) : [0,∞) → H2, ∂tu(t) : [0,∞) → H0 and ηt : [0,∞) → M0



∂ttu+Au+

∫ ∞

0
µ(s)Aη(s)ds +

(
β + ‖u‖2

1

)
A1/2u = −ku+ f,

∂tη = Tη + ∂tu,

(11)
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with initial conditions

(u(0), ut(0), η
0) = (u0, u1, η0) = z ∈ H0.

Remark 1. Problem (5)-(7) is just a particular case of the abstract system
(11), obtained by setting H0 = L2(0, 1) and

A = ∂xxxx, D(∂xxxx) = {w ∈ H4(0, 1) : w(0) = w(1) = w′′(0) = w′′(1) = 0}.

This operator is strictly positive selfadjoint with compact inverse, and its
discrete spectrum is given by λn = n4π4, n ∈ N. Thus, λ1 = π4 is the smallest
eigenvalue. Besides, the peculiar relation (∂xxxx)

1/2 = −∂xx holds true, with
D(−∂xx) = H2(0, 1) ∩H1

0 (0, 1).

Besides, system (11) generates a strongly continuous semigroup (or dynam-
ical system) S(t) on H0 which continuously depends on the initial data: for
any initial data z ∈ H0, S(t)z is the unique weak solution to (11), with related
(twice the) energy given by

E(t) = ‖S(t)z‖2
H0

= ‖u(t)‖2
2 + ‖∂tu(t)‖2 + ‖ηt‖2

0,µ.

We omit the proof of these facts, which can be demonstrated either by means
of a Galerkin procedure or with a standard fixed point method. In both cases,
it is crucial to have uniform energy estimates on any finite time-interval.

3. Steady States

In the concrete problem (5)-(7), taking for simplicity f = 0, the stationary
solutions (u, 0, 0) solve the boundary value problem



u′′′′ −

(
β + ‖u′‖2

L2(0,1)

)
u′′ + ku = 0,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(12)

Our aim is to analyze the multiplicity of such solutions.

For every k > 0, let

µn(k) =
k

n2π2
+ n2 π2 , βc(k) = min

n∈N

µn(k).

Assuming that nk ∈ N be such that µnk
= min

n∈N

µn(k), then it satisfies

(nk − 1)2n2
k ≤ k

π4
< n2

k(nk + 1)2 .

As a consequence, βc(k) is a piecewise-linear function of k.
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We consider the resonant set

R = {i2j2π4 : i, j ∈ N, i < j}.
When k ∈ R there exists at least a value µj(k) which is not simple and µi = µj ,
i 6= j, provided that k = i2j2π4 (resonant values). In the sequel, let µm(k) be
the smallest value of {µn}n∈N which is not simple. Of course, the µn(k) are all
simple and increasingly ordered with n whenever k < 4π4. Given k > 0, let n⋆

be the integer-valued function given by

n⋆(β) = |Nβ| , Nβ = {n ∈ N : β + µn(k) < 0},
where |N | stands for the cardinality of the set N .

In the homogeneous case, we are able to establish the exact number of
stationary solutions and their explicit form. In particular, we show that there is
always at least one solution, and at most a finite number of solutions, whenever
the values of µn(k) not exceeding −β are simple.

Theorem 2. (see [6]) If β ≥ −βc(k), then for every k > 0 system (12) has
only the null solution, depicting the straight equilibrium position. Otherwise:

— if k ∈ R and β < −µm(k), the smallest non simple eigenvalue, there are
infinitely many solutions;

— if either k ∈ R and −µm(k) ≤ β < −βc(k), or k 6∈ R and β < −βc(k),
then besides the null solution there are also 2n⋆(β) buckled solutions, namely

u±n (x) = A±
n sin(nπx) , n = 1, 2, . . . , n⋆ (13)

with

A±
n = ± 1

nπ

√
− 2 [β + µn(k)]. (14)

Remark 3. Assuming k = 0 we recover the results of [9].

When k 6∈ R the set of all stationary states is finite. Depending on the
value of k and β, the solutions branch in the pairs from the unbuckled state
A±

n = 0 at the critical value β = −βc(k), i.e., the beam can buckle in either the
positive or negative directions of the transverse displacement. These branches
exist for all β < −βc(k) and A±

n are monotone increasing functions of |β|. For
each n, (14) admits real (buckled) solutions A±

n if and only if β < −µn. When
k < 4π4, for any β in the interval

− k

(n+ 1)2 π2
− (n+ 1)2 π2 < β < − k

n2 π2
− n2 π2

the set S0 of the stationary solutions contains exactly 2n⋆ +1 stationary points:
the null solution and the solutions represented by (13).

When k ∈ R the set S0 contains an infinite numbers of solutions and all
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Figure 1: The bifurcation picture when k = π4
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Figure 2: The bifurcation picture when k = 9π4

the resonant values are obtained by solving

n2π2 +
k

n2π2
= m2π2 +

k

m2π2
, m, n ∈ N , n > m .

The smallest value k is then equal to 4π4 and occurs when n = 2, m = 1. In
the sequel we present a sketch of different bifurcation pictures occurring when
k = π4 (see Figure 1), and k = 9π4 (see Figure 2).

4. The Lyapunov Functional

It is well known that the absorbing set gives a first rough estimate of the
dissipativity of the system. In addition, it is the preliminary step to scrutinize
its asymptotic dynamics and hence to prove the existence of a global attractor.
Unfortunately, when the dissipation is very weak, a direct proof via explicit
energy estimates might be very hard to find. For a quite general class of the
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so-called gradient systems it is possible to use an alternative approach appealing
to the existence of a Lyapunov functional. This technique has been adopted in
[17].

Definition 4. The Lyapunov functional is a function L ∈ C(H0,R) satis-
fying the following conditions:

(i) L(z) → +∞ if and only if ‖z‖H0
→ +∞;

(ii) L(S(t)z) is nonincreasing for any z ∈ H0;

(iii) L(S(t)z) = L(z) for all t > 0 implies that z ∈ S.

Proposition 5. The function

L(t) = E(t) +
1

2

(
β + ‖u(t)‖2

1

)2
+ k ‖u(t)‖2 − 2 〈f, u(t)〉

is a Lyapunov functional for S(t).

Proof. The continuity of L and assertion (i) above are clear. Using (11),
we obtain quite directly the inequality

d

dt
L(S(t)z) ≤ −δ‖ηt‖2

0,µ, (15)

which proves the monotonicity of L along the trajectories departing from z.
Finally, if L(S(t)z) is constant in time, we have that ηt = 0 for all t, which
implies that u(t) is constant. Hence, z = S(t)z = (u0, 0, 0) for all t, that is,
z ∈ S.

The existence of a Lyapunov functional ensures that

Lemma 6. For all t > 0 and initial data z ∈ H0, with ‖z‖H0
≤ R, there

exists a positive constant C (depending on ‖f‖ and R) such that

E(t) ≤ C.

Proof. Inequality (15) ensures that

L(t) ≤ L(0) ≤ C0(R, ‖f‖) .
Moreover, taking into account that

‖u(t)‖2 ≤ 1

λ1
‖u(t)‖2

2 ≤ 1

λ1
E(t) = C1E(t)

we obtain the estimate

L(t) ≥ E(t)− 2 〈f , u(t)〉 ≥ E(t)− 1

ε
‖f‖2 − ε ‖u(t)‖2 ≥ (1− εC1)E(t)− 1

ε
‖f‖2 .

Finally, fixing ε < 1
C1

, we have

E(t) ≤ 1

1 − εC1
(L(0) +

1

ε
‖f‖2) ≤ 1

1 − εC1

(
C0(R, ‖f‖) +

1

ε
‖f‖2

)
= C. �
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Moreover, defining the following functional

Φ(t) = E(t) + ε 〈∂tu , u〉 ,

where E(t) = E(t) + 1
2

(
β + ‖u(t)‖2

1

)2
+ k ‖u(t)‖2, we can prove

Lemma 7. For any given z ∈ H0 and for any t > 0 and β ∈ R, when ε is
small enough there exist three positive constants, m0, m1 and m2, independent
of t such that

m0 E(t) ≤ Φ(t) ≤ m1 E(t) + m2.

Proof. In order to prove the lower inequality we must observe that, by
Young inequality

|〈∂tu , u〉| ≥ −1

2
‖∂tu‖2 − 1

2
‖u‖2 ;

hence, we obtain

Φ(t) ≥ ‖u(t)‖2
2 +

(
1 − ε

2

)
‖∂tu(t)‖2 +

1

2

(
β + ‖u(t)‖2

1

)2

+
(
k − ε

2

)
‖u(t)‖2 + ‖ηt‖2

0,µ .

If we choose ε small enough to satisfy ε < 2 and ε < 2k, then we have

Φ(t) ≥ m0E(t) ≥ m0 E(t), (16)

where m0 = min{1 − ε
2 , 1 − ε

2k}.
The upper inequality can be obtained using the definition of Φ and applying

the estimate

|〈∂tu , u〉| ≤
1

2
‖∂tu‖2 +

1

2λ1
‖u‖2

2 . (17)

First, we can write

Φ(t) ≤
[
1 +

1

λ1

(
k +

ε

2

)]
‖u(t)‖2

2 +
(ε

2
+ 1

)
‖∂tu(t)‖2

+
1

2

(
β + ‖u(t)‖2

1

)2
+ ‖ηt‖2

0,µ.

Then, by (9) and Lemma 6 we infer
(
β + ‖u‖2

1

)
≤ |β| + 1√

λ1
C = C̄, (18)

so that we finally obtain

Φ(t) ≤
[
2 +

1

λ1

(
k +

ε

2

)
+
ε

2

]
E(t) +

1

2
C̄2 = m1 E(t) +m2. �

As a byproduct, we deduce the existence of a bounded absorbing set B0,



LONGTIME BEHAVIOR FOR OSCILLATIONS OF... 71

chosen to be the ball of H0 centered at zero of radius R0 = 1 + sup
{
‖z‖H0

:
L(z) ≤ K

}
, where K = 1 + supz0∈S

L(z0). Note that R0 can be explicitly
calculated in terms of the structural quantities of our system.

5. Exponential Stability

Recalling Theorem 2, the set S0 of stationary solutions reduces to a singleton
when

β ≥ −βc(k) = −min
n∈N

µn(k), µn(k) =
√
λn

[
1 +

k

λn

]
, λn = n4π4. (19)

It is worth noting that βc(k) is a piecewise-linear function of k, in that βc(k) =
µ1(k) when 0 < k <

√
λ1

√
λ2 = 4π4, and in general

βc(k) = µn(k) when
√
λn−1

√
λn < k <

√
λn

√
λn+1.

Unlike the case k = 0, the energy E(t) does not decay exponentially in the
whole domain of the (β, k) plain where (19) is satisfied, but in a region which
is strictly included in it.

More precisely, let

β̄(k) =

{
βc(k), 0 < k ≤ λ1,

2
√
k, k > λ1,

the following result holds

Theorem 8. When f = 0, the solutions to (1) decay exponentially, i.e.

E(t) ≤ c0 E(0) e−ct

with c0 and c suitable positive constants, if and only if β > −β̄(k).

Using the same strategy bolstered in [5, 6], the proof of this theorem is a
direct consequence of the following lemma.

Lemma 9. (see [6]) Let β ∈ R, k > 0 and

Lu = Au + βA
1

2u + k u .

There exists a real function ν = ν(β, k) such that

〈Lu , u〉 ≥ ν ‖u‖2
2 ,

where ν(β, k) > 0 if and only if β > −β̄(k).

Remark 10. We stress that Theorem 8 holds even if k = 0. In this
case however we have β̄(0) = −βc(0) = −

√
λ1. Then the null solution is

exponentially stable, if unique.
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6. The Global Attractor

Now we state the existence of a global attractor for S(t), for any β ∈ R and
k ≥ 0. We recall that the global attractor A is the unique compact subset of
H0 which is at the same time, fully invariant, i.e. S(t)A = A, for every t ≥ 0
and attracting, i.e.

lim
t→∞

δ(S(t)B,A) → 0,

for every bounded set B ⊂ H0, where δ stands for the Hausdorff semidistance
in H0 (see [1], [18], [21]).

We shall prove the following

Theorem 11. The semigroup S(t) on H0 possesses a connected global at-
tractor A bounded in H2, whose third component is included in D(T ), bounded
in M1

0 and pointwise bounded in H4. Moreover, A coincides with the unstable
manifold of the set S of the stationary points of S(t), namely,

A =

{
z̃ (0) :

z̃ is a complete (bounded) trajectory of S(t) :
lim
t→∞

‖z̃(−t) − S‖H0
= 0

}
.

The set S of all stationary solutions consists of the vectors of the form
(u, 0, 0), where u is a (weak) solution to the equation

Au+
(
β + ‖u‖2

1

)
A1/2u+ ku = f.

It is then apparent that S is bounded in H0. If S is finite, then

A =
{
z̃(0) : lim

t→∞
‖z̃(−t) − z1‖H0

= lim
t→∞

‖z̃(t) − z2‖H0
= 0

}
, (20)

for some z1, z2 ∈ S.

Remark 12. When f = 0, k ≥ 0 and β ≥ −βc(k), then A = S =
{(0, 0, 0)}. If β < −βc(k), then S = S0 may be finite or infinite, according to
Theorem 2. In the former case, (20) applies.

The existence of a Lyapunov functional, along with the fact that S is a
bounded set, allow us prove the existence of the attractor exploiting a general
result from [8], tailored for our particular case.

Lemma 13. (see [8]) Assume that, for every R > 0, there exist a positive
function ψR vanishing at infinity and a compact set KR ⊂ H0 such that the
semigroup S(t) can be split into the sum L(t)+K(t), where the one-parameter
operators L(t) and K(t) fulfill

‖L(t)z‖H0
≤ ψR(t) and K(t)z ∈ KR,
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whenever ‖z‖H0
≤ R and t ≥ 0. Then, S(t) possesses a connected global

attractor A, which consists of the unstable manifold of the set S.

The proof of Theorem 11 will be carried out be showing a suitable asymp-
totic compactness property of the semigroup, obtained exploiting a particular
decomposition of S(t) devised in [17].

By the interpolation inequality

‖u‖2
1 ≤ ‖u‖‖u‖2,

it is clear that, provided that γ > 0 is large enough,
1

2
‖u‖2

2 ≤ ‖u‖2
2 + β‖u‖2

1 + γ‖u‖2 ≤ m‖u‖2
2, (21)

for some m = m(β, γ) ≥ 1. Now, choosing γ = α + k, where k > 0 is a fixed
value, we assume α large enough so that (21) holds true. Let R > 0 be fixed
and ‖z‖H0

≤ R. Paralleling the procedure given in [17], we decompose the
solution S(t)z into the sum

S(t)z = L(t)z +K(t)z,

where

L(t)z = (v(t), ∂tv(t), ξ
t) and K(t)z = (w(t), ∂tw(t), ζt)

solve the systems



∂ttv +Av +

∫ ∞

0
µ(s)Aξ(s)ds + (β + ‖u‖2

1)A
1/2v + αv + kv = 0,

∂tξ = Tξ + ∂tv,

(v(0), ∂tv(0), ξ
0) = z,

(22)

and



∂ttw +Aw +

∫ ∞

0
µ(s)Aζ(s)ds + (β + ‖u‖2

1)A
1/2w − αv + kw = f,

∂tζ = Tζ + ∂tw,

(w(0), ∂tw(0), ζ0) = 0.

(23)

Then, Theorem 11 is proved as a consequence of the following lemmas.

Lemma 14. There is ω = ω(R) > 0 such that

‖L(t)z‖H0
≤ Ce−ωt.

It shows the exponential decay of L(t)z by means of a dissipation integral
(see Lemma 5.2 of [17]).
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Lemma 15. The estimate

‖K(t)z‖H2
≤ C

holds for every t ≥ 0.

It shows the asymptotic smoothing property ofK(t) in a more regular space,
for initial data bounded by R (see Lemma 6.3 of [17]).

The proof of these two lemmas can be done following the guidelines of [17],
remembering that in definition of the coefficient α in the functional Φ0 (see [17]
p. 726) also the elastic coefficient k must be taken into account.
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