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a b s t r a c t

This work is focused on the longtime behavior of a nonlinear evolution problem describing
the vibrations of an extensible elastic homogeneous beam resting on a viscoelastic
foundation with stiffness k > 0 and positive damping constant. Buckling of solutions
occurs as the axial load exceeds the first critical value, βc , which turns out to increase
piecewise-linearlywith k. Under hinged boundary conditions and for a general axial load P ,
the existence of a global attractor, along with its characterization, is proved by exploiting a
previous result on the extensible viscoelastic beam. As P ≤ βc , the stability of the straight
position is shown for all values of k. But, unlike the case with null stiffness, the exponential
decay of the related energy is proved if P < β̄(k), where β̄(k) ≤ βc(k) and the equality
holds only for small values of k.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Model equation

In this article, we investigate the longtime behavior of the following evolution problem
∂ttu+ ∂xxxxu−

(
β +

∫ 1

0
|∂ξu(ξ , ·)|2dξ

)
∂xxu = −ku− δ∂tu+ f ,

u(0, t) = u(1, t) = ∂xxu(0, t) = ∂xxu(1, t) = 0,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),

(1.1)

in the unknown variable u = u(x, t) : [0, 1]×R+ → R,R+ = [0,∞), which represents the vertical deflection of the beam.
For every x ∈ [0, 1], u0, u1 are assigned data. The real function f = f (x) is the (given) lateral static load distribution and
−ku − δ∂tu represents the (uniform) lateral action effected by the medium surrounding the beam. Finally, the parameter
β ∈ R accounts for the axial force acting in the reference configuration: β > 0 when the beam is stretched, β < 0 when
the beam is compressed. Usually, the axial load is referred as P = −β .
The solutions to problem (1.1) describe the transversal vibrations (in dimensionless variables) of an extensible elastic

beam, which is assumed to have hinged ends and to rest on a viscoelastic foundation with stiffness k > 0 and damping
constant δ > 0. The geometric nonlinearity which is involved accounts for midplane stretching due to the elongation of
the bar. A simplified version of this beammodel has been adopted to study the vibration of railway track structures resting
on a viscoelastic soil (see [1]). There, the elastic and damping properties of the rail bed are accounted for by continuously
distributed or closely spaced spring–damper units.
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In recent years, an increasing attention was payed on the analysis of vibrations and post-buckling dynamics of nonlinear
beam models, especially in connection with industrial applications. For a detailed overview, we refer the reader to [2] and
references therein. Nowadays, the study of this subject has become of particular relevance in the analysis of micromachined
beams [3,4] and microbridges [5].
It is worth noting that the static counterpart of problem (1.1) reduces tou′′′′ −

(
β +

∫ 1

0
|∂ξu(ξ , ·)|2 dξ

)
u′′ + ku = f ,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(1.2)

Obviously, these steady-state equations does not change in connection with dynamical models accounting for any kind of
additional damping, due to structural and/or external mechanical dissipation.When k ≡ 0 the investigation of the solutions
to (1.2) and their stability, in dependence on β , represents a classical nonlinear buckling problem in the structural mechanics
literature (see, for instance, [6–8]) which traces back to the pioneer article by Woinowsky-Krieger [9]. Numerical solutions
for this problem are available in the literature (see, for instance, [10]). Recently, a careful analysis of the corresponding
buckled stationary states and their stability properties was performed in [11] for all values of β . In [12], this analysis was
improved to include a more general nonlinear term and a source f with a general shape. As far as we know, no similar
analysis of (1.2) for the case k > 0 is present in the literature.
Neglecting the stiffness of the surrounding medium, k ≡ 0, the global dynamics of solutions to problem (1.1) has been

first tackled by Hale [13], who proved the existence of a global attractor for a general β , relying on the existence of a suitable
Lyapunov functional. The corresponding problem for an extensible viscoelastic beamhas been addressed in [14],when δ > 0,
and in [15], when δ ≡ 0. In spite of the difficulty which is represented by the geometric nonlinearity, in all these articles the
existence of the global attractor, alongwith its optimal regularity, is obtained for a general value ofβ bymeans of an abstract
operator setting. The analysis of the bending motion for an extensible thermoelastic beam is even more tangled since the
dissipation is entirely contributed by the heat equation, where the Fourier heat conduction law is assumed. Neverthelesss,
the existence of a regular global attractor can be shown even including into (1.1) the rotatory inertia term [16].
A common feature of previously quoted results is the following: if f = 0 the exponential decay of the energy is provided

when β > −βc , so that the unique null solution is exponentially stable if P < βc . On the contrary, as the axial load P
exceedsβc the straight position loses stability and the beambuckles. So, whenβ < −βc a finite number of buckled solutions
occurs and the global (exponential) attractor coincides with the unstable trajectories connecting them. For a general time-
independent source term f , the number of buckled solutions may be infinite and the attractor coincides with the unstable
set of the stationary points. The positive critical value βc is named Euler buckling load and, in the purely mechanical case,
it is equal to the square root of the first eingenvalue of the ∂xxxx operator (which is referred as λ1 in the sequel). In the
thermoelastic case, because of the thermal expansion, the mean axial temperature of the beam also affects the value of βc
(see [16]).

1.2. Outline of the article

At a first sight, problem (1.1) with k > 0 looks like a slight modification of previously scrutinized models, where k
vanishes. This is partially true. In particular, we remark that the restoring elastic force, acting on each point of the beam,
opposes the buckling phenomenon. So, the Euler buckling limitβc is no longer equal to

√
λ1, but now turns into an increasing

piecewise-linear function of k. When the lateral load f vanishes, the null solution is unique provided that β > −βc(k), and
buckles when β exceeds this critical value. In general, as well as in the case k = 0, the set of buckled solutions is finite, but
for some special positive values of k, called resonant values, infinitely many solutions may occur (see Theorem 1).
By paralleling the results for k = 0, the null solution is expected to be exponentially stable, when it is unique. Quite

surprisingly, it is not so. For large values of k, the energy decays with a sub-exponential rate when −β̄ > β > −βc (see
Theorem 6). In particular, for any fixed k > λ1, the positive limiting value β̄(k) is smaller than the critical value βc(k), and
the former overlaps the latter only if 0 ≤ k ≤ λ1. A picture of these functions, as k runs the positive axis, is given in Fig. 2.
The plan of the article is as follows. In Section 2, we discuss the general functional framework of (1.1) and exact solutions

for the stationary post-buckling problem are presented for all k > 0, when f = 0. After formulating an abstract version
of the dynamical problem, the existence of an absorbing set is addressed in Section 3. Some preliminary estimates and the
exponential stability result are established in Section 4. Themain result concerning the existence of a regular global attractor
is stated in Section 5, where the asymptotic smoothing property of the semigroup generated by the abstract problem is
proved by a suitable decomposition first proposed in [15].
Although we assume here that both ends of the beam are hinged, different boundary conditions for u are also physically

significant, such aswhen both ends are clamped, or one end hinged and the other one clamped. On the contrary, the so-called
cantilever boundary condition (one end clamped and the other one free) is not covered because it is pointedly inconsistent
with the extensibility assumption of themodel. Nevertheless, the hinged casewe consider here is very special. Indeed, other
boundary conditions lead to a completely different analysis that must take into consideration very special estimates for the
complementary traces on the boundary, and only weaker forms of the regularity properties of solutions remain valid (see,
for instance, [17]).
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It is worth noting that several articles (see, for instance, [10,18,19]) are devoted to approximations as well as numerical
simulations in the modelling of the deformations of extensible beams on elastic supports. In this connection, our article
which exhibits exact solutions is of interest in order to fit computer applications. In particular, our model can be useful
for engineering applications involving simply supported bridges subjected to moving vertical loads. For instance, it may be
adapted to the study of lively footbridges [20,21].
Finally, we remark that our analysis is carried over an abstract version of the original problem which is independent of

the space dimension, so that it could be extended to scrutinize shear deformations in plate models. The techniques of this
work apply to plate models as well, without substantial changes.
In addition, our strategy can be generalized to the investigation of nonlinear dissipative models which describe the

vibrations of extensible viscoelastic beams where the dissipative term derives from the internal viscoelastic dissipation
(memory). Moreover, we are going to scrutinize the longterm damped dynamics of extensible elastic bridges suspended by
flexible and elastic cables. In this model, the term −ku is replaced by −ku+ and it represents a restoring force due to the
cables, which is different from zero only when they are being stretched.

2. Stationary solutions

Our aim is to analyze the multiplicity of solutions to the boundary value problem (1.2). Letting L2(0, 1), the Hilbert space
of square summable functions on (0, 1), the domain of the differential operator ∂xxxx appearing in (1.2) is

D(∂xxxx) = {w ∈ H4(0, 1) : w(0) = w(1) = w′′(0) = w′′(1) = 0}.

This operator is strictly positive selfadjoint with compact inverse, and its discrete spectrum is given by λn = n4π4, n ∈ N.
Thus, λ1 = π4 is the smallest eigenvalue. Besides, the following relation holds true

(∂xxxx)
1/2
= −∂xx, D(−∂xx) = H2(0, 1) ∩ H10 (0, 1). (2.1)

For every k > 0, let

µn(k) =
k
n2π2

+ n2π2, βc(k) = min
n∈N

µn(k).

Assuming that nk ∈ N be such that µnk = minn∈N µn(k), then it satisfies

(nk − 1)2n2k ≤
k
π4

< n2k(nk + 1)
2.

As a consequence, βc(k) is a piecewise-linear function of k (see Fig. 2). The set

R = {i2j2π4 : i, j ∈ N, i < j}

is referred as the resonant set: when k ∈ R there exists at least a value µj(k), which is not simple. Indeed, µi = µj, i 6= j,
provided that k = i2j2π4 (resonant values). In the sequel, letµm(k) be the smallest value of {µn}n∈N, which is not simple. Of
course, the µn(k) are all simple and increasingly ordered with n whenever k < 4π4. Given k > 0, for later convenience let
n? be the integer-valued function given by

n?(β) = |Nβ |, Nβ = {n ∈ N : β + µn(k) < 0},

where |N | stands for the cardinality of the setN .
In the homogeneous case,we are able to establish the exact number of stationary solutions of (1.2) and their explicit form.

In particular, we will show that there is always at least one solution, and at most a finite number of solutions, whenever the
values of µn(k) not exceeding−β are simple.

Theorem 1. If β ≥ −βc(k), then for every k > 0 system (1.2) with f = 0 has the null solution, corresponding to the straight
equilibrium position. Otherwise:
• if k ∈ R and β < −µm(k), the smallest non simple eigenvalue, there are infinitely many solutions;
• whether k ∈ R and−µm(k) ≤ β < −βc(k), or k 6∈ R and β < −βc(k), then besides the null solution there are also 2n?(β)
buckled solutions, namely

u±n (x) = A
±

n sin(nπx), n = 1, 2, . . . , n? (2.2)

with

A±n = ±
1
nπ

√
−2 [β + µn(k)]. (2.3)

Proof. Clearly, u = 0 is a solution to (1.2) in the homogeneous case for all k and β . To find a nontrivial solution u, we put
h = β +

∫ 1
0

∣∣u′(ξ)∣∣2 dξ , so that u solves the differential equation
u′′′′ − hu′′ + ku = 0, h ∈ R, k > 0.
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Letting λ2 = χ , the characteristic equation

λ4 − hλ2 + k = 0

admits solutions in the form

χ1,2 =
h±
√
h2 − 4k
2

. (2.4)

As a consequence, taking into account the hinged boundary conditions, we obtain

• if h ≥ 2
√
k, then χ1,2 ∈ R+ and all corresponding values of λ are real, hence u ≡ 0;

• if h ≤ −2
√
k, then χ1,2 ∈ R− and λ1,2 = ±

√
|χ1|i, λ3,4 = ±

√
|χ2|i; hence

u = 2ia sinω1x+ 2ib sinω2x,

where a and b are suitable constants, while

ω1 =
√
|χ1| = nπ, ω2 =

√
|χ2| = `π, n, ` ∈ N. (2.5)

Now, letting 2 a = −iÃ and 2 b = −iB̃ , we can write the solution into the form

u = Ã sin nπx+ B̃ sin `πx. (2.6)

Moreover, from (2.4) and (2.5) we obtain

1
2

(
−h−

√
h2 − 4k

)
= n2π2 ⇒ h = −µn(k) = β +

∫ 1

0

∣∣u′(ξ)∣∣2 dξ (2.7)

1
2

(
−h+

√
h2 − 4k

)
= `2π2 ⇒ h = −µ`(k) = β +

∫ 1

0

∣∣u′(ξ)∣∣2 dξ (2.8)

from which it follows µ`(k) = µn(k). In order to represent
∫ 1
0

∣∣u′(ξ)∣∣2 dξ in explicit form, we are lead to consider two
occurrences.
• Let k 6∈ R. In this case, from (2.7) and (2.8) it follows ` = n and, by (2.6), the following equality holds∫ 1

0

∣∣u′(ξ)∣∣2 dξ = 1
2

(
Ã+ B̃

)2
n2π2 = −β − µn(k),

so that letting A = Ã + B̃, (2.3) can be easily obtained. Of course, such nontrivial solutions exist if and only if
−β > βc(k) = minn∈N µn(k).
• Let k ∈ R. Then, µ`(k) = µn(k) for some ` < n. In this case, from (2.6) we obtain the equality∫ 1

0

∣∣u′(ξ)∣∣2 dξ = 1
2
Ã2n2π2 +

1
2
B̃2`2π2, ` 6= n,

and, (2.7) and (2.8) cannot uniquely determine the values of Ã and B̃. Accordingly, (2.6) represents infinitely many
solutions provided that−β > µm(k). �

Remark 1. Assuming k = 0, we recover the results of [11] and [12].
When k 6∈ R, the set of all stationary states is finite and will be denoted by S0. Depending on the values of k and β , the

pairs of solutions branch from the unbuckled state A±n = 0 at the critical value β = −βc(k), i.e., the beam can buckle in
either positive or negative directions of the transverse displacement. These branches exist for all β < −βc(k) and A±n are
monotone increasing functions of |β|. For each n, (2.3) admits real (buckled) solutions A±n if and only if β < −µn. When
k < 4π4, for any β in the interval

−
k

(n+ 1)2π2
− (n+ 1)2π2 < β < −

k
n2π2

− n2π2,

the set S0 contains exactly 2n?+ 1 stationary points: the null solution and the pairs of solutions represented by (2.2). These
properties are sketched in Fig. 1 (see also [11]).

3. Absorbing set

Wewill consider an abstract version of problem (1.1). To this aim, let H0 be a real Hilbert space, whose inner product and
norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let A : D(A) b H0 → H0 be a strictly positive selfadjoint operator. We
denote by λ1 > 0, the first eigenvalue of A. For ` ∈ R, we introduce the scale of Hilbert spaces

H` = D(A`/4), 〈u, v〉` = 〈A`/4u, A`/4v〉, ‖u‖` = ‖A`/4u‖.
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Fig. 1. A sketch of the nonlinear static response of the beam when k < 4π4 .

Fig. 2. A picture of the functions−β̄(k) and−βc(k). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

In particular, H`+1 b H` and the following scale of Poincaré inequalities holds√
λ1‖u‖2` ≤ ‖u‖

2
`+1. (3.1)

Finally, we define the product Hilbert spaces
H` = H`+2 × H`.

3.1. Abstract problem

For β ∈ R and f ∈ H0, we investigate the following evolution equation onH0

∂ttu+ Au+
(
β + ‖u‖21

)
A1/2u+ δ∂tu+ ku = f , (3.2)

in the unknowns u(t) : [0,∞)→ H2 and ∂tu(t) : [0,∞)→ H0, with initial conditions
(u(0), ∂tu(0)) = (u0, u1) = z0 ∈ H0.

Problem (1.1) is just a particular case of the abstract system (3.2), obtained by setting H0 = L2(0, 1) and A the realization of
∂xxxx in H0.
Eq. (3.2) generates a strongly continuous semigroup (or dynamical system) S(t) onH0: for any initial data z0 ∈ H0, S(t)z0

is the unique weak solution to (3.2), with related (twice the) energy given by
E(t) = ‖S(t)z0‖2H0 = ‖u(t)‖

2
2 + ‖∂tu(t)‖

2.

Besides, S(t) continuously depends on the initial data. We omit the proof of these facts, which can be demonstrated by
means of a Galerkin procedure (e.g., following the lines of [14]). The crucial point in applying this technique is to have
uniformenergy estimates on any finite time-interval. As itwill be apparent, these estimates are easily implied by the uniform
inequalities on (0,+∞) established in the subsequent sessions.
Now, we prove the existence of the so-called absorbing set for the flow generated by problem (3.2), that is, a bounded

set into which every orbit eventually enters. Such a set is defined as follows:

Definition 1. Let B(0, R) be the open ball with center 0 and radius R > 0 in H0. A bounded set BH0 ⊂ H0 is called an
absorbing set for the semigroup S(t) if, for any R > 0 and any initial value z0 ∈ B(0, R), there exists t0(R) > 0 such that

z(t) ∈ BH0 ∀ t ≥ t0,

where z(t) = S(t)z0 is the solution starting from z0.
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The main result of this section follows from two lemmas, involving the functionalsL(t) andΦ(t) defined as

L(t) = E(t)+
1
2

(
β + ‖u(t)‖21

)2
+ k ‖u(t)‖2 ≥ E(t) ≥ 0, (3.3)

Φ(t) = L(t)+ ε 〈∂tu, u〉 . (3.4)

Lemma 2. For all t > 0 and z0 ∈ H0 with ‖z0‖H0 ≤ R, there exists a positive constant C (depending on ‖f ‖ and R) such that

E(t) ≤ C . (3.5)

Proof. If we consider the functional

F (t) = L(t)− 2 〈f , u(t)〉 ,

from the energy identity
dE
dt
= −2

〈(
β + ‖u‖21

)
A
1
2 u+ ku+ δ ∂tu− f , ∂tu

〉
it easily follows the decreasing monotonicity of F

dF
dt
=
dE
dt
+ 2

(
β + ‖u‖21

) 〈
A
1
4 u, A

1
4 ∂tu

〉
+ 2k 〈u, ∂tu〉 − 2 〈f , ∂tu〉

= −2δ ‖∂tu‖2 ≤ 0

and then

F (t) ≤ F (0) ≤ C0(R, ‖f ‖).

Taking into account that

‖u(t)‖2 ≤
1
λ1
‖u(t)‖22 ≤

1
λ1

E(t) = C1E(t),

we obtain the estimate

F (t) ≥ E(t)− 2 〈f , u(t)〉 ≥ E(t)−
1
ε
‖f ‖2 − ε ‖u(t)‖2 ≥ (1− εC1)E(t)−

1
ε
‖f ‖2 .

Finally, fixing ε < 1
C1
, we have

E(t) ≤
1

1− εC1

(
F (0)+

1
ε
‖f ‖2

)
≤

1
1− εC1

(
C0(R, ‖f ‖)+

1
ε
‖f ‖2

)
= C . �

Lemma 3. For any given z ∈ H0 and for any t > 0 and β ∈ R, when ε is small enough there exist three positive constants, m0,
m1 and m2, independent of t such that

m0E(t) ≤ Φ(t) ≤ m1E(t)+m2. (3.6)

Proof. In order to prove the lower inequality we must observe that, by Young’s inequality

|〈∂tu, u〉| ≥ −
1
2
‖∂tu‖2 −

1
2
‖u‖2 ;

hence, we obtain

Φ(t) ≥ ‖u(t)‖22 +
(
1−

ε

2

)
‖∂tu(t)‖2 +

1
2

(
β + ‖u(t)‖21

)2
+

(
k −

ε

2

)
‖u(t)‖2 .

If we choose ε small enough to satisfy ε < 2 and ε < 2k, then we have

Φ(t) ≥ m0L(t) ≥ m0E(t), (3.7)

wherem0 = min{1− ε
2 , 1−

ε
2k }.

The upper inequality can be obtained using the definition ofΦ and applying the estimate

|〈∂tu, u〉| ≤
1
2
‖∂tu‖2 +

1
2λ1
‖u‖22 . (3.8)

First, we can write

Φ(t) ≤
[
1+

1
λ1

(
k+

ε

2

)]
‖u(t)‖22 +

(ε
2
+ 1

)
‖∂tu(t)‖2 +

1
2

(
β + ‖u(t)‖21

)2
.
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Then, by (3.1) and Lemma 2 we infer(
β + ‖u‖21

)
≤ |β| +

1
√
λ1
C = C̄, (3.9)

so that we finally obtain

Φ(t) ≤
[
2+ 1

λ1

(
k+ ε

2

)
+

ε
2

]
E(t)+ 1

2 C̄
2
= m1 E(t)+m2. �

Theorem 4. For any β ∈ R, there exists an absorbing set inH0 for the dynamical system (S(t),H0).

Proof. By virtue of (3.3), we have
dL
dt
=
dE
dt
+ 2

(
β + ‖u‖21

) 〈
A
1
4 u, A

1
4 ∂tu

〉
+ 2k 〈u, ∂tu〉

= −2δ ‖∂tu‖2 + 2 〈f , ∂tu〉 .

Moreover, by (3.4)

dΦ
dt
=
dL
dt
+ ε 〈u, ∂ttu〉 + ε ‖∂tu‖2 = − (2δ − ε) ‖∂tu‖2 + 2 〈f , ∂tu〉

+ ε
[
−‖u‖22 − δ 〈∂tu, u〉 − k ‖u‖

2
− β ‖u‖21 − ‖u‖

4
1 + 〈f , u〉

]
.

A straightforward computation leads to the identity

dΦ
dt
+ εΦ + 2 (δ − ε) ‖∂tu‖2 +

ε

2
‖u‖41 = 2 〈f , ∂tu〉 + ε [〈f , u〉 − (δ − ε) 〈∂tu, u〉]+

ε

2
β2. (3.10)

In the following, we estimate the terms in the right hand side (rhs) of the previous equality. Bymeans of Hölder and Young’s
inequalities and (3.8), we have

dΦ
dt
+ εΦ +

1
2
(3δ − 5ε) ‖∂tu‖2 ≤

1
2
εβ2 +

(
1
ε
+
1
2

)
‖f ‖2 +

ε2(δ − ε + 1)
2λ1

‖u‖22 .

Now, choosing ε < 3
5 δ and ε < 1+ δ we find

dΦ
dt
+ εΦ ≤

1
2
εβ2 +

(
1
ε
+
1
2

)
‖f ‖2 +mε2E,

where

m =
1
2λ1

(1+ δ − ε) > 0.

Finally, from Lemma 3 we obtain

dΦ
dt
+$Φ ≤

1
2
εβ2 +

(
1
ε
+
1
2

)
‖f ‖2 ,

where$ = ε
(
1− m

m0
ε
)
is positive provided that ε < m0

m . Since Φ is positive also when β < 0 provided that ε is chosen
small enough, using Gronwall lemma it follows that

Φ (t) ≤ Φ (0) e−$ t +
1
2
εβ2 +

(
1
ε
+
1
2

)
‖f ‖2 , (3.11)

and accordingly

E(t) ≤
1
m0
Φ(t) ≤ Γ0(R)e−$ t + Γ1(β, ‖f ‖), (3.12)

where

Γ0(R) =
Φ(0)
m0

and Γ1(β, ‖f ‖ ) =
1
m0

[
1
2
εβ2 +

(
1
ε
+
1
2

)
‖f ‖2

]
.

As a consequence, every ball B
(
0, R̄

)
in H0 with radius R̄ > 1 + Γ1(β, ‖f ‖) can be chosen as an absorbing set in that it

verifies the following statement: for all z0 = (u0, u1 ) ∈ B(0, R), there exists t0(R) = 1
$
logΓ0(R) such that for any t > t0,

z(t) ∈ B(0, R̄). �
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4. Exponential stability

A direct proof of the exponential decay of the energy seems out of reach, so we exploit the equivalence between the
energy E and the functional

Φ̄ = Φ −
1
2
β2

which can be proved to be exponentially stable. The positivity of such a functional will be obtained as a direct corollary of
the next Lemma 5.
Recalling Theorem 1, the set S0 of stationary solutions reduces to a singleton when

β ≥ −βc(k) = −min
n∈N

µn(k), µn(k) =
√
λn

[
1+

k
λn

]
, λn = n4π4. (4.1)

It is worth noting that βc(k) is a piecewise-linear function of k, in that βc(k) = µ1(k) when 0 < k <
√
λ1
√
λ2 = 4π4, and

in general

βc(k) = µn(k) when
√
λn−1

√
λn < k <

√
λn
√
λn+1.

Unlike the case k = 0, the energy E(t) does not decay exponentially in the whole domain of the (β, k) plain where (4.1) is
satisfied, but in a region which is strictly included in it.
For futher purposes, let

β̄(k) =
{
βc(k) 0 < k ≤ λ1,
2
√
k k > λ1.

A picture of this function is given in Fig. 2.

Lemma 5. Let β ∈ R, k > 0 and

Lu = Au+ βA
1
2 u+ ku.

There exists a real function ν = ν(β, k) such that

〈Lu, u〉 ≥ ν ‖u‖22 ,

where ν(β, k) > 0 if and only if β > −β̄(k).

Proof. Taking into account the inner product

〈Lu, u〉 = ‖u‖22 + β ‖u‖
2
1 + k ‖u‖

2 ,

we put

X = ‖u‖2 ; Y = ‖u‖1 ; Z = ‖u‖

so that

〈Lu, u〉 = I(X, Y , Z) = X2 + βY 2 + k Z2.

If β ≥ 0, the desired inequality trivially holds true by choosing ν = 1.
Letting β < 0, by means of the interpolation inequality ‖u‖21 ≤ ‖u‖2 ‖u‖, we obtain

I(X, Y , Z) ≥ X2 + βXZ + kZ2 = J(X, Z).

Hence, the thesis can be rewritten as follows: find ν > 0 such that

J(X, Z) |D0 ≥ νX
2,

where D0 =
{
(X, Z) : X ≥ 0, Z ≥ 0, 0 ≤ Z ≤ X/

√
λ1
}
.

In order to prove this statement, we introduce the set

M =
{
m ∈ R : 0 ≤ m ≤

1
√
λ1

}
,

so that D0 = {(X, Z) : Z = mX, X ≥ 0 andm ∈ M} and the original problem reads: find ν > 0 such that

J(X, Z) |Z=mX ≥ νmX
2, ∀m ∈ M

and

ν = inf
m∈M

νm > 0.
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We first observe that

J(X, Z) |Z=mX =
(
1+ βm+ km2

)
X2 = η(m)X2

where η(m) is a concave parabola. Hence, we have to find the region in the (β, k)-plane where η admits a strictly positive
minimum on M , that is to say ηmin = ν > 0. We shall prove that ν > 0 if and only if β > −β̄(k). To this end, we split the
proof into four steps.

• Step 1.We consider the region R1 =
{
(β, k) : k > 0,−2

√
k < β < 0

}
. Since the discriminant of the parabola is negative,

∆η = β
2
− 4k < 0, the value η(m) is strictly positive for allm in the closed intervalM , and then ν > 0.

• Step 2. Let R2 =
{
(β, k) : 0 < k ≤ λ1,−

√
λ1 − k/

√
λ1 < β ≤ −2

√
k
}
. Observing that λ1 <

√
λ1
√
λ2, we infer that

βc(k) = µ1 =
√
λ1+ k/

√
λ1. Now, since∆η = β2− 4k ≥ 0, there exist two solutions,m1,m2 ∈ R, of η(m) = 0 so that

η changes sign on R. In particular, it must be negative inside the open interval (m1,m2) because of k > 0. On the other
hand, η is positive at the ends of M . Indeed, η(0) = 1. In order to evaluate the sign of η(1/

√
λ1) we let k = ρ λ1, with

0 < ρ ≤ 1, and we obtain

η

(
1
√
λ1

)
= (1+ ρ)+

β
√
λ1
.

According to the definition of R2

−

√
λ1 − ρ

√
λ1 < β < −2

√
ρλ1 (4.2)

therefore,
β
√
λ1
+ (1+ ρ) > 0,

which implies η
(
1/
√
λ1
)
> 0. Thus, we infer that either (m1,m2) ⊂ M , or (m1,m2) is external toM . In the sequel, we

prove the latter occurrence by showing that the vertex of the parabola lies outside of M . Letting m∗ the abscissa of the
vertex, it satisfies η′ |m=m∗ = β + 2km∗ = 0 so that

m∗ = −
β

2k
= −

β

2ρλ1
.

So, in order to have η(m) |M > 0, it is enough to prove that

−
β

2ρλ1
= m∗ ≥

1
√
λ1
,

which is trivially true because from (4.2) we have

β ≤ −2
√
ρ
√
λ1 ≤ −2ρ

√
λ1.

• Step 3. LetR3 =
{
(β, k) : k > λ1,−

√
λ1 − k/

√
λ1 < β ≤ −2

√
k
}
.Whenβ < −2

√
k, as beforewehave∆η = β2−4k >

0, so that η is negative valued in the open interval (m1,m2) delimited by solutions m1,m2 to the equation η(m) = 0.
Nevertheless, in this case the vertex of the parabola lies inside M . Indeed, if we take k = σλ1, with σ > 1, the abscissa
of the vertex satisfies

0 < m∗ = −
β

2σλ1
<

1
√
λ1
,

which holds true by virtue of the definition of R3, in that

−β < (1+ σ)
√
λ1 < 2σ

√
λ1.

As a consequence, the minimum of η onM is η(m∗) < 0. When β = −2
√
k, we havem1 = m2 = m∗ and η(m∗) = 0, so

that the minimum of η onM vanishes. In both cases, ηmin = ν is not positive.
• Step 4. We consider the set R4 =

{
(β, k) : k > 0, β < −

√
λ1 − k/

√
λ1
}
. In this case η(0) = 1, whilst

η

(
1
√
λ1

)
=

1
√
λ1

(√
λ1 + β +

k
√
λ1

)
< 0

and the minimum of η onM cannot be positive. �

We are now in a position to prove the following.

Theorem 6. When f = 0, the solutions to (1.1) decay exponentially, i.e.

E(t) ≤ c0 E(0)e−ct

with c0 and c suitable positive constants, provided that β > −β̄(k).
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Proof. Let Φ̄ be the functional obtained fromΦ by letting f = 0 and neglecting the term 1
2β
2, i.e.

Φ̄(t) = ‖u(t)‖22 + ‖∂tu(t)‖
2
+ β ‖u(t)‖21 +

1
2
‖u(t)‖41 + k ‖u(t)‖

2
+ ε 〈∂tu(t), u(t)〉 .

In view of applying Lemma 5, we remark that

Φ̄ = 〈Lu, u〉 + ‖∂tu‖2 +
1
2
‖u‖41 + ε 〈u, ∂tu〉 .

The first step is to prove the equivalence between E and Φ̄ , that is

c1E ≤ Φ̄ ≤ c2 E .

We split the proof into two parts.

• First step: c1 E ≤ Φ̄ .

By virtue of Lemma 5 and (3.1), the following chain of inequalities holds provided that β > −β̄(k), which ensures the
positivity of ν:

Φ̄ ≥

(
ν −

ε

2λ1

)
‖u‖22 +

1
2
‖u‖41 +

(
1−

ε

2

)
‖∂tu‖2

≥

(
ν −

ε

2λ1

)
‖u‖22 +

(
1−

ε

2

)
‖∂tu‖2 ≥ min

{
ν −

ε

2λ1
, 1−

ε

2

}
E .

If we choose ε < min {2νλ1, 2} and we put c1 = min
{
ν − ε

2 λ1
, 1− ε

2

}
, it follows

c1 E ≤ Φ̄.

• Second step: Φ̄ ≤ c2 E .

Using the expression of Φ̄ , Young’s inequality and (3.1), we can write the following chain of inequalities

Φ̄ ≤

(
1+

k
λ1
+
1
2 λ1

)
‖u‖22 +

(
1+

ε2

2

)
‖∂tu‖2 + β ‖u‖21 +

1
2
‖u‖41

≤

(
2+

k
λ1
+
1
2 λ1
+
ε2

2

)
E + β ‖u‖21 +

1
2
‖u‖41 .

In particular, from (3.9) we obtain

Φ̄ ≤

(
2+

k
λ1
+
1
2 λ1
+
ε2

2

)
E + C̄ ‖u‖21

≤

(
2+

k
λ1
+
1
2 λ1
+
ε2

2
+

C̄
√
λ1

)
E = c2 E .

The last step is to prove the exponential decay of Φ̄ . To this aim, remembering the hypothesis f = 0, we can write the
identity (3.10) in the following way:

dΦ̄
dt
+ εΦ̄ + 2 (δ − ε) ‖∂tu‖2 +

ε

2
‖u‖41 + ε (δ − ε) 〈∂tu, u〉 = 0.

Exploiting Young’s inequality, we obtain

dΦ̄
dt
+ εΦ̄ +

3
2
(δ − ε) ‖∂tu‖2 ≤

ε2 (δ − ε)

2λ1
‖u‖22

and choosing ε < δ, it follows

dΦ̄
dt
+ εΦ̄ ≤

ε2 (δ − ε)

2λ1
E ≤

ε2 (δ − ε)

2 c1λ1
Φ̄

and finally, if ε is small enough, we have

dΦ̄
dt
+ cΦ̄ ≤ 0, (4.3)
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where c = ε
[
1− ε(δ−ε)

2 c1λ1

]
> 0. Eq. (4.3) implies

c1E(t) ≤ Φ̄ (t) ≤ Φ̄ (0) e−ct ≤ c2 E (0) e−ct .

The thesis follows by letting c0 =
c2
c1
. �

Remark 2. We stress that Theorem 6 holds even if k = 0. In this case, however, we have β̄(0) = −βc(0) = −
√
λ1. Then

the null solution is exponentially stable, if unique.

In Fig. 2, the piecewise-straight line is the bifurcation line β = −βc(k): below it, the system has multiple stationary
solutions, above it, there exists only the null solution. The curve β = −β̄(k) is composed of the straight segment β = µ1(k),
when 0 < k ≤ λ1, and the parabola β = −2

√
k, if k > λ1. It is worth noting that each segment composing the graphic of

−βc is tangent to the parabola at k = λn = n4π4, n ∈ N. In the region of the plain (β, k), which is bounded from below
by β > −β̄(k) the exponential stability holds true. Whilst, in the area between the red and the blue line, when k > λ1, we
have asymptotic, but not exponential stability.

5. Global attractor

We now state the existence of a global attractor for S(t), for any β ∈ R and k ≥ 0. Recall that the global attractor A is
the unique compact subset ofH0, which is at the same time
(i) attracting:

lim
t→∞

δ(S(t)B,A)→ 0,

for every bounded setB ⊂ H0;
(ii) fully invariant:

S(t)A = A,

for every t ≥ 0.

Here, δ stands for the Hausdorff semidistance inH0, defined as (forB1,B2 ⊂ H0)

δ(B1,B2) = sup
z1∈B1

inf
z2∈B2
‖z1 − z2‖H0 .

We address the reader to the books [13,22] for a detailed presentation of the theory of attractors. We shall prove the
following.

Theorem 7. The semigroup S(t) onH0 possesses a connected global attractor A bounded inH2 = D(A)× D(A
1
2 ). Moreover,A

coincides with the unstable manifold of the set S of the stationary states of S(t), namely,

A =

{̃
z (0) :

z̃ is a complete (bounded) trajectory of S(t) :
lim
t→∞
‖̃z(−t)− S‖H0 = 0

}
.

The set S consists of all the vectors of the form (ū, 0), where ū is a (weak) solution to

Aū+
(
β + ‖ū‖21

)
A1/2ū+ kū = f .

It is then apparent that S is bounded inH0. If S is finite, then

A =


z̃ is a complete (bounded) trajectory of S(t)

z̃ (0) : such that ∃ z1, z2 ∈ S :
lim
t→∞
‖̃z(−t)− z1‖H0 = limt→∞

‖̃z(t)− z2‖H0 = 0

 . (5.1)

Remark 3. When f = 0, k ≥ 0 and β ≥ −βc(k), then A = S = {(0, 0)}. If β < −βc(k), then S = S0 may be finite or
infinite, according to Theorem 1. In the former case, (5.1) applies.

The existence of a Lyapunov functional, along with the fact that S is a bounded set, allows us to prove Theorem 7 by
paralleling some arguments devised in [15].
By the interpolation inequality ‖u‖21 ≤ ‖u‖‖u‖2 and (3.1), it is clear that

1
2
‖u‖22 ≤ ‖u‖

2
2 + β‖u‖

2
1 + γ ‖u‖

2
≤ m‖u‖22, (5.2)

for some m = m(β, γ ) ≥ 1, provided that γ > 0 is large enough. Now, choosing γ = µ+ k, where k > 0 is a fixed value,
we assume µ large enough so that (5.2) holds true. Then, we decompose the solution S(t)z into the sum (see [15])

S(t)z = L(t)z + K(t)z,
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where
L(t)z = (v(t), ∂tv(t)) and K(t)z = (w(t), ∂tw(t))

solve the systems{
∂ttv + Av + (β + ‖u‖21)A

1/2v + µv + δ∂tv + kv = 0,
(v(0), ∂tv(0)) = z,

(5.3)

and {
∂ttw + Aw + (β + ‖u‖21)A

1/2w − µv + δ∂tw + kw = f ,
(w(0), ∂tw(0)) = 0.

(5.4)

Having fixed the boundary set of initial data B(0, R), Lemma 2 entails
sup
t≥0

{
‖u(t)‖22 + ‖∂tu(t)‖

2}
≤ C = C(R), ∀ z0 ∈ B(0, R),

where (u(t), ∂tu(t)) = S(t)z0; this formula will be used many times in the subsequent proofs.
In order to parallel the procedure given in [15], we shall prove Theorem 7 as a consequence of the following five lemmas.

We start showing the exponential decay of L(t)z (see Lemmas 8 and 9) by means of a dissipation integral (see Lemma 10).
Then, we prove the asymptotic smoothing property of K(t), for initial data bounded by R (see Lemma 11). Finally, by
collecting all these results, we provide the desired consequence (see Lemma 12).
Henceforth, let R > 0 be fixed and ‖z‖H0 ≤ R. In addition, C will denote a generic positive constant which depends

(increasingly) only on R, unless otherwise specified, besides on the structural quantities of the system.

Lemma 8. There is ω = ω(R) > 0, such that

‖L(t)z‖H0 ≤ Ce
−ωt .

Proof. Denoting

E0(t) = ‖L(t)z‖2H0 = ‖v(t)‖
2
2 + ‖∂tv(t)‖

2,

for ε > 0 to be determined, we set

Φ0(t) = E0(t)+ β‖v(t)‖21 + (µ+ k)‖v(t)‖
2
+ ‖u(t)‖21‖v(t)‖

2
1 + ε〈∂tv(t), v(t)〉.

In light of Lemma 2 and inequalities (5.2), assuming that ε is small enough, we have the bounds

1
4

E0 ≤ Φ0 ≤ CE0. (5.5)

Now, we compute the time-derivative ofΦ0 along the solutions to system (5.3) and we obtain
dΦ0
dt
+ εΦ0 + 2(δ − ε)‖∂tv‖2 = 2〈∂tu, A1/2u〉‖v‖21 − ε(δ − ε)〈∂tv, v〉.

Using (3.5) and assuming ε small enough (in particular, ε < δ), we control the rhs by

C‖∂tu‖E0 +
ε

8
E0 + (δ − ε)‖∂tv(t)‖2.

So, from (5.5), we obtain
dΦ0
dt
+
ε

2
Φ0 + (δ − ε)‖∂tv‖

2
≤ C‖∂tu‖Φ0.

Finally, the functionalΦ0 fulfills the differential inequality

dΦ0
dt
+
ε

2
Φ0 ≤ C ‖∂tu‖Φ0. (5.6)

The desired conclusion is entailed by applying Lemmas 9 and 10. �

Lemma 9 (see Lemma 6.2, [15]). Let ϕ : [0,∞)→ [0,∞) satisfy

ϕ′ + 2εϕ ≤ gϕ,

for some ε > 0 and some positive function g such that∫ t

τ

g(y)dy ≤ c0 + ε(t − τ), ∀τ ∈ [0, t],

with c0 ≥ 0. Then, there exists c1 ≥ 0 such that

ϕ(t) ≤ c1ϕ(0)e−εt .
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Lemma 10. For any σ > 0 small∫ t

τ

‖∂tu (y)‖ dy ≤ σ(t − τ)+
C2
σ
,

for every t ≥ τ ≥ 0.

Proof. For ε ∈ (0, 1], we set

Ψ = Φ − 2 〈f , u〉 −
1
2
β2,

whereΦ is defined by (3.4). Taking the time- derivative of Ψ and using (3.10), we find

dΨ
dt
+ εΨ +

ε

2
‖u‖41 + 2(δ − ε)‖∂tu‖

2
= −ε [〈f , u〉 + (δ − ε) 〈∂tu, u〉] . (5.7)

By virtue of Lemma 2, E is bounded and hence

dΨ
dt
+ εΨ + (δ − ε) ‖∂tu‖2 ≤ ε C .

Since Ψ is uniformly bounded by Lemma 3, we end up with

dΨ
dt
+ (δ − ε) ‖∂tu‖2 ≤ ε [C − Ψ ] ≤ ε C .

Integrating this inequality on [τ , t], we get

(δ − ε)

∫ t

τ

‖∂tu (y)‖2 dy ≤ ε C(t − τ)+ Ψ (τ )− Ψ (t) .

Assuming ε < δ
2 , a further application of Lemma 3 entails∫ t

τ

‖∂tu (y)‖2 dy ≤ ε C1(t − τ)+ C2.

Finally, by Hölder and Young’s inequalities∫ t

τ

‖∂tu (y)‖ dy ≤
√
t − τ

(
ε C1(t − τ)+ C2

) 1
2

≤
√
t − τ

(√
ε C1
√
t − τ +

√
C2
)
≤

√
ε C1(t − τ)+

√
C2
√
t − τ

≤ 2
√
ε C1(t − τ)+

C2
2
√
ε C1
= σ(t − τ)+

C2
σ

where σ = 2
√
ε C1. �

The next result provides the boundedness of K(t)z in a more regular space.

Lemma 11. The estimate

‖K(t)z‖H2 ≤ C

holds for every t ≥ 0.

Proof. We denote

E1(t) = ‖K(t)z‖2H2 = ‖w(t)‖
2
4 + ‖∂tw(t)‖

2
2.

For ε > 0 small to be fixed later, we set

Φ1 = E1 + (β + ‖u‖21)‖w‖
2
3 + ε〈∂tw, Aw〉 − 2〈f , Aw〉 + k‖w‖

2
2.

The interpolation inequality

‖w‖23 ≤ ‖w‖2‖w‖4

and the fact that ‖w‖2 ≤ C (which follows by comparison from (3.5) and Lemma 8) entail

β‖w‖23 ≥ −
1
2

E1 − C .
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Therefore, provided that ε is small enough, we have the bounds

1
2

E1 − C ≤ Φ1 ≤ CE1 + C .

Taking the time-derivative ofΦ1, we find

dΦ1
dt
+ εΦ1 + 2(δ − ε)‖∂tw‖22 = 2〈∂tu, A

1/2u〉‖w‖23 + 2µ〈A
1/2v, A1/2∂tw〉

+ ε
[
µ〈A1/2v, A1/2w〉 − (δ − ε)〈∂tw, Aw〉 − 〈f , Aw〉

]
.

Using (3.5) and the above interpolation inequality, if ε is small enough, we control the rhs by

ε

8
E1 + C

√
E1 + C ≤

ε

4
E1 +

C
ε
≤
ε

2
Φ1 +

C
ε
.

Hence, if ε is fixed small enough (in particular ε < δ), we obtain

dΦ1
dt
+
ε

2
Φ1 ≤ C .

SinceΦ1(0) = 0, from the Gronwall lemma and the controls satisfied byΦ1, we obtain the desired estimate for E1. �

By collecting previous results, the following lemma can be applied to obtain the existence of the attractorA.

Lemma 12 (see [15], Lemma 4.3). Assume that, for every R > 0, there exists a positive function ψR vanishing at infinity and a
compact set KR ⊂ H0 such that the semigroup S(t) can be split into the sum L(t) + K(t), where the one-parameter operators
L(t) and K(t) fulfill

‖L(t)z‖H0 ≤ ψR(t) and K(t)z ∈ KR,

whenever ‖z‖H0 ≤ R and t ≥ 0. Then, S(t) possesses a connected global attractor A, which consists of the unstable manifold of
the set S.
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