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Propagation of nonclassical light through an absorbing and dispersive slab
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We calculate the effects of perpendicular propagation through a dispersive and absorbing dielectric slab at
arbitrary temperatures on specific nonclassical properties of an incident light field. The transmitted signal is
assumed to be measured by a detector that receives radiation only from the direction normal to the slab
surfaces. Squeezing and nonclassical counting statistics of the transmitted light are evaluated for continuous-
wave squeezed states incident on both sides of the slab. The degree of second-order coherence is instead
evaluated for amN-photon incident pulse, and the effects of transmission through the slab on its antibunching
are calculated.S1050-2947®9)06701-3

PACS numbd(s): 42.50.Dv, 12.20-m, 42.50.Ar

[. INTRODUCTION tained in Sec. V. In accordance with the one-dimensional
nature of the field quantization, it is assumed throughout that
The electromagnetic field has recently been quantized fothe statistics of the transmitted light are measured by a pho-
several sample geometries of a dispersive and absorbing dipdetector whose field of view is restricted to the direction
electric material[1-5], and for wave propagation perpen- pPerpendicular to the slab surfaces. The conclusions of the
dicular to the sample surfaces. The quantization schemes a®ork are discussed in Sec. VI.
based on earlier work that is extensively reviewed in these
references. We have applied the formalism to study the IIl. PRELIMINARIES

propagation of an optical pulse through a lossy and disper- e quantum-mechanical formalism for electromagnetic

sive dielectric slab maintained at a finite temperai6  \y5ye propagation through a lossy and dispersive dielectric

The optical properties of the pulse are modified by the temg 5 [1-5] has been summarized previougl§]. We give

perature, dispersion, and absorption in the dielectric, and byq e only the bare essentials needed for an appreciation of
the reflections from the slab surfaces. Some of these modify,o present paper.

cations, which are the same in classical and quantum treat- g form of the dielectric function for a slab of thickness
ments of pulse propagation, result in peak delays and shapsg ;

distortions in comparison with the properties of the incident 'S

pulse, and these have been covered in our previous 8drk s(w)=n*(w)=[n(0)+ik(w)]?® for |x|<I
However, for incident light of a nonclassical nature, there are e(X,0)= 1 for |x|>I,

also modifications of the quantum coherence and correlation (2.2

properties of the pulse that can only be described by a quan- o ]

tum theory. Moreover, when the slab is maintained at a nonwhere the complex refractive index ) is assumed to be a

zero temperature, the quantum statistical features of thknown function, which is related to the real refractive index

transmitted pulse are obscured or distorted by the additio(«) and the extinction coefficient(w), defined for positive

of, or interference with, thermal emission. The aim of thefrequencies. The real and imaginary parts of the dielectric

present paper is to determine the effects of transmission arf§nction are related by the Kramers-Kronig relations and, in

reflection by a thermal slab on specific nonclassical properParticular, the occurrence of absorption is an inevitable con-

ties of the incident light such as quadrature squeezing, sulgeguence of _the presence of_dlspersmn._ The electromagnetic

Poissonian photon counting statistics, and antibunching. ~ fi€ld is quantized on the basis of a continuous set of modes
The quantum treatment of propagation through an absorid2ropagating in the direction perpendicular to the ;urfa_lces of

ing and dispersive thermal slab is briefly summarized in Seche slab so that waves propagate parallel toxtfais with

II. For incident light with nonclassical statistics, the main their transverse-electric and magnetic-vector operators

interest lies in the extent to which these are retained aftele(x,t) and B(x,t) aligned with they and z axes, respec-

transmission through the slab. A quantum theory for the optively. The schematic arrangement of the propagation geom-

tical detection of nonclassical features of light is not ouretry for the various components of the field is given in Fig. 1,

intent here, but we use well-known results to derive generaivhich shows the notation for the slab input and output field

expressions for the photocount variance, Man@efactor, = operators.

and degree of second-order coherence of the transmitted field The electric field operatog(x,t) at a detector in the re-

and then specialize them to useful closed-form expressiongion x>1 has the positive frequency component

for specific situations of experimental interest. Thus the ef-

fects of propagation through the slab on initially squeezed - [ Jrolame,cS[D lox/c

light are I(D:ierFi)vegd in Sec. Illgand the effects on thg Mgr@el B (=i JO dohol4meoCSbr(w)e

factor are determined in Sec. IV. The corresponding results

for the antibunching of an incidemi-photon pulse are ob- +b(w)e 1®Xc]eiot (2.2
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and
a,(w) by(w) . .
IR) ‘f(xw) ‘f)= > (f|f*(x,w)f(x’,w’)|f):ﬁ(w,€))5(x—x’)5(w—w’),
- I -— L) (2.13
a,(w) b,(w)
‘ | ’ where
- ! x Nw,0)=[e"k0—-1]"1 (2.14

FIG. 1. Spatial configuration for the dielectric slab and notationig the mean number of thermal photons at frequeacnd
for the destruction operators used in the definition of the relevanfemperaturee. The|f>’s describe the states of a dissipative
electric fields. reservoir inside the slab, which are more formally repre-

d the Hermiti Lgat ion for it tive f sented by a statistical mixture.
and the Hermitian conjugate expression for Its negative re-— ¢ the input and output operators in E(R.3) satisfy

guency component. Hel@is the area of quantization in the boson commutation relations of the form
yz plane. The operator for the rightward-propagatmggo-
:EgJﬁilglolli g;/en in terms of the leftwards and rightwards [Dr(w),Di( @) ]=[ar(®),ak(w")]=[bL(w),Bf (0")]
. . . =8(w—w'), (2.15
br(w)=R(w)b (0) +T(w)ag(w)+F(w), (2.3
and their consistency is ensured by the noise operator com-
where mutator

T(w)=an(@)e M HED W) 24 [F () F0)]=[1-|R(0) 2~ [T(0) 2180 "),
and (2.1
R(w) = e~ 29/ n2( ) — 1][e¥on@)lc_ 11D ~1(), which is readily verified with the use of Eq&.8—(2.10.

@9 IIl. SQUEEZING

with In this section we examine how propagation through the

D(w)=[Nn(w)+ 12— [n(w)—1]2 exf4i wn(w)l/c], slab inf!uences t'h.e squeezing in an inc'ident signal beam.
(2.6) Squeezing, specificallgquadrature squeezingccurs when

the quantum fluctuations in one of the quadrature compo-

are the complex amplitudes of the transmission and reflerents of the electromagnetic field drops below the vacuum

tion coefficients, respectively. level: this is characterized by states of the field having nega-
The operatorf (w) represents the noise associated withtive normally ordered variances of the field operators, i.e.,
the dissipation in the slab, and its form is given by states with no classical analogues.

The effect of squeezing can be measured by a balanced

. . I ien(e)xic homodyne detection scheme. For the field on the right-hand
Flo)=i Van(w)K(w)/cﬁldx[V(w)e side of the slakcf. Fig. 1) the difference between the inte-
grated photocurrents in the two arms of a balanced detector
+W(w)e“M@Xf(x o), (2.77  can be represented by an operator of the fp8i8]
where A [lotTo oy s £ oryat
O—'ft dt{br(t)a o(t) —br()ao(t)} (3.0
0

V(w)=2[n(w)+1lexplio[n(w)—1]I/c}D Y w),
(2.8)  when the detector runs from tintg to time ty+T,. Here
) . a,o(t) represents the field of the local oscillator, which is
W(w)=2[n(w)—1]explio[3n(w)—1]l/c}D™(w), assumed to be in a coherent stdite, o} ) with a single-mode
2. amplitude of the form

and thef(x,w) are spatially distributed Langevin noise cur- ao(t)= Fﬁg expli po—iw ot} (3.2
rent operators with the commutation relation
. . HereF o denotes the mean photon flux of the local oscilla-
[f(x,0),fT(x",0)]=8x-x)d(w—-0'). (210  tor, ¢, its phase, ands o its frequency. When the local
o ] ) oscillator is much more intense than the signal, the measure-
At finite temperatulreﬁ the Langevin noise current operators ment operatof3.1) can be written in terms of a dimension-
have the expectation values less homodyne electric field operator that characterizes the
- a1 property of the signal measured at the detector,
(flT(x,0)[f)=(f[f'(x,0)|f)=0, (2.1
R R R R O=(FoTo)"E(¢L0.010), (3.3
(FIT(x,0)f (X", 0")|F)=(f|TT(x,0)TT(x",0")|f)=0,
(2.12 where
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gldo [ . with
E(dro, :—f do[Bl )&/ ool
(¢LO wLO) \/FTO 0 w[ R(w)
X (- w,g)+H.C] (3.4 D({a(w)}):eprdw a(w)ak(w)—H.c.f,
(3.10
and
gl(0o-w0)To_1 and analogous meanings for the parameggi’y) ando(w).
Uo—wo)=—""——. (3.5 Herea(w)=|a(w)|exdie,(w)] is the complex amplitude of

W= WLo the coherent component of the sté® with a mean photon

number per unit angular frequency bandwidth given by
|a(w)|2. This choice of states enables one to investigate how
the interference of the transmitted nonclassical signal field

The variance of the field transmitted through to the right of
the slab can then be written in the form

<[AE(¢ wL0)]2)ou with a phase-sensitive vacuum, rather than the conventional
Lo Lo one, affects the nonclassical statistics in the region of the
o0 5 detected fields. The expectation values in E26) are now
=2, ) do[{(0— o) evaluated with the use of EQ.3) as
+ = [ [ doi(bi(o buo) (BL(w),Br(0))= 8w 0" |R(w)|? sint? p(w)
0oJo 0

+|T(w)|? sint? o(w)}
X _ * ’r_ e—i(w'—m)(t0+T0) . .
{(w=w0){" (0"~ w) (N w)E(0))), (3.1
—Re(b}(w),bi(w")e 0L (w—w o)
X{(a)’—w,_o)ei(“"*‘”*Zwl_o)(tho)]} (3.6 (Ba(w),ﬁa(w’»:%ﬁ(w-l- o' —2Q0)
_ s . A o X{R*?(w)sinh 2(w)e~'¢»(®)
with the standard notatiofA,B)=(A,B)—(A)(B) for a cor- _ .
relator. The homodyne electric field operat@4) has the +T*2(w)sinh 2(w)e™ ¢},
useful property of a variancé3.6) equal to unity for the (3.12
vacuum state. The amount of squeezing is conveniently ’
he diff t h i ity. . . - .
gal_:_?]eedeg)éetcteag(lme\:z?ucees?ﬁs\{ézet?]é iﬁtzg:ggﬁﬁ é?g :rn;ty which are independent of the incident coherent amplitude
over a product state that comprises the incident states of tHt(®): The noise in the slab originates from dissipation, de-

field traveling lefwardg|L)) and rightwardg|R)) to the slab  Scriped here by stateg) for which all expectation values are
as well as stateff) that account for losses within the slab zero except those with an equal number of destruction and

(cf. Fig. 1. We take|L) as a continuous-mode squeezedcreation Langevin operatorSec. ). From the definition

vacuum state, such as that produced by a degenerate pa@J) and the propertie$2.10)—(2.l4), the average flux of .
metric amplifier pumped at frequencf8] noise photons emitted by the thermal excitation of the slab is

IL)=S({p(®),¢,(0)})[0) (squeezed vacuu)m(3 ) (fIF'(0)F(0")]f)=8(0—0")2N(0,0)[wn(w)k(v)/c]

with | « flld)qv(w)efiwn(w)x/c

S{p(w), @ (@)}) +W(w)etion(we|2 (3.13
=exp[ f dw p(w)e ()b (w)b (20— w)—H.c., that is conveniently expressed in terms of the reflection and

transmission coefficients as
(3.8

whereg,() is the phase ang(w) is the strength character-  (f|[FT(w)F(0")|f)=n(w,0)[1-|T(»)|*~|R(w)[?]
izing the squeezed vacuum at a given frequencyhe state N

represented by Eq3.7) is a stationary light beam with a Xo(w=a'). (3.14
dimensionless mean photdlux per unit angular frequency

bandwidth given by sirfip(w)]. The signal field traveling The noise flux clearly vanishes for a lossless slab, where
rightwards to the slab is taken as a squeezed coherent stdfl?>+|T|?=1 at all frequencies.

with the same pump frequency)2 The variance3.6) depends on the tim&, and, through
A A Egs.(3.11) and(3.12), it depends in a complicated fashion
IRY=D({a(w)})S{o(w),p,(w)})|0) on the frequency dispersion of the incident squeezed fields

(magnitude and phas@nd on the specific form of the slab
(squeezed coherent stpte (3.9 (complex refractive index. Yet, a compact expression can be
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derived for sufficiently longTy's (narrow detector band-
width) in which case the products of tli&s in Eq. (3.6) tend
to the delta functionS(w— w o) when the local oscillator
frequency is equal to the central frequer@yof the squeez-
ing. The measured field varian¢g.6) simplifies to

([AE(¢L0,w10)]2)=1+2{n+|R|]sin p—n]
+|T|*[sink? o—n]}
—Rg e?#o(R*2e ¢ sinh 2
+T*2e %0 sinh 2)],  (3.19

Quadrature Fluctuations

wheren is the mean number of thermal photons given by Eq.
(2.14). For simplicity we have omitted writing the various
functional dependencies from the coefficients on the right
hand side, and the frequency-dependent functions are &
evaluated atw, . It is instructive to rewrite this result in
terms of the variances of homodyne measurements made ¢
the incident fields. For the fielfl) traveling leftwards one
has

([AE(¢ro0 ,wLO)]2>T[>: 1+2sinlf p
_ Ranid)Lo*i(pp sinh 2p)

Quadrature Fluctuations

20 o 1 ‘
=e* si(¢ o 2b,) 1 11 12 1.3 14

+e ? cod(po—34,), (3.16

a5 / (78
and a similar expression for the rightwards-traveling incident
field |R) obtains by replacing— o and ¢,— ¢, . Thus Eq. FIG. 2. Quadrature variand8.15 of the field from a thin film
(3.15 can be written as as the local oscillator frequencys(o) is swept through the Rest-
strahl region, where(w) is given by Eq.(3.19 with £(«)=8.5,
<[AE(¢LO ,wLo)]2>°m— 1 0. =1.11w7, andl’=0.01lw+ . The band-gap region is shaded. The
film thickness 2 and the transverse resonant frequency are such
=2n(1-|R2=|T)? that w7l/c=10. The incident squeezed vacuum stdt® has
. , strengthp=0.2 and phase,=2¢, o— 2, while the squeezed coher-
+|RI*{([AE(dLo—argR,w0) 19|, — 1} ent field|R) has the same strength=0.2 with ¢, =2¢ o—5. Part

. ) (a) shows theseparatecontributions from the thermal noise pro-
+|TIH([AE(pLo—arg T1wLO)]2>Tr|1?>_1}a (3.17  duced by the slab at temperatupe=0.64w/k (dashed curve)j
the transmitted part of stal®) (gray curve ij, and the reflected part

with the coefficients again evaluatedat, . This result gen-  of state|L) (solid curve ii). The thermal contribution reduces to the
eralizes a squeezing conservation law previously derived foiinit vacuum-noise variance é&=0. Part(b) shows the total noise
a lossless beam splitt¢t0] to the transmission and reflec- for (i) © =0.6% w1 /k and(ii) ©=0. The input minimum noise lev-
tion at a lossy dielectric slab. We note that in the case of &ls are at 0.67cf. Eq. (3.13].
slab at zero temperature£0) with an ordinary vacuum
incident towards the leftd=0), Eq.(3.15 can be written as  dispersive and absorbing behaviors are described by a single-

) resonance complex permittivit(w) of the form
([AE(dL0,010)1)"1
wE —w’—iwl

=|TI*{([AE(¢Lo—arg T,w 0)]?)|r — 1} (3.18 e(w)=e(®) 57— ——, (3.19
wr—w —iwl’

The scaling of the squeezing, as measured by the difference
of the variance from unity, with the intensity transmissionwhere w1 and w, are the transverse and longitudinal fre-
coefficient agrees with previous resulisl, 12 for propaga- quencies of the resonance ahds the damping. In Figs. 2
tion through an absorbing slab. Jeffers and Baridf have  and 3 we examine the spectral features of the transmitted
given a more detailed derivation of the effects of dispersiorguadrature quantum noise for frequencies in the vicinity of
and frequency-dependent absorption on incident light with ahe resonance when the squeezed vacudumand the
Gaussian squeezing spectrum, and Schmidt, lIKramd  squeezed coherent fie|R) have the same noise levels. The
Welsch[14] have treated the propagation of squeezed lighsqueezing strength@,o) and phasesd,,¢,) are taken to
pulses, without inclusion of slab boundary effects. be constant over the resonance region. Raytsf the figures

We now use these results to analyze the propagation athow the quadrature variances of each of the three contribu-
guadrature noise through a thin film of a material whosetions in the absence of the other two, and pénisshow the
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IV. THE PHOTON COUNTING STATISTICS

=
W

In this section we examine how transmission through the
slab affects the photon number distribution of an incident
nonclassical light field. We analyze the counting statistics in
terms of the deviation from classic#Poisson statistics: the
deviation is conveniently assessed in terms of the Mandel
factor[15]

=
(S}

fary
—

Quadrature Fluctuations
& =~

N2\ — (N N2\ /N2
oo AN ey
(R ()

b
3

with the variance

([ANT?%)=(N?)—(N)? 4.2

and the normally ordered second moment

(:N2:)=(N?—(N). 4.3

A vanishingQ corresponds to coherent light, while a positive
or negativeQ determines whether the photon-counting sta-
tistics are super-Poissonian([AN]?)>(N)) or sub-
Poissonian ([ AN]?)<(N)). SinceQ must be non-negative
for a classical stochastic field, sub-Poissonian photon statis-
tics are regarded as an essentially quantum feature of the
T field [7,15].
The Mandel factor is typically measured by direct photo-
count detection, which now replaces the balanced homodyne
FIG. 3. Same as in Fig. 2 but with the different choice of phasedetection considered in Sec. lll. The results of sets of mea-
©,=2¢0— 2. surements in which the photocurrent is integrated over peri-
ods of timeT, can be predicted by the use of the dimension-

combined variance, which equals the sum of the three corl€SS number operatg]
tributions, less 2 to cancel the triple counting of the unit

vacuum variance. The oscillatory behavior of the noise N—fto+T0dt 0Bt 4.
above the band gap is due to the phase of the complex re- - t rR(DDR(L), (4.4
flection and transmission coefficients: the noise is sensitive

not only to the local oscillator phagéxed herg but to the  which represents the number of photons that arrive at the
relative phaseg, o—argRor ¢ o—argT, which are clearly detector betweety, andty+ T, . In practice, photon counters
dispersion dependent. A modest enhancement of the noisge sensitive to a bundle of frequencies whose bandwidth is
reduction with respect to the individual components arisegenerally small compared to their midfrequency. We model
from the coherent superposition of the reflected and transmithis by introducing a filter functiotd (w) in terms of which

ted noise, as is clearly seen by comparing Figs. 2 and 3. Ahe detected field at timeis given by

O =0, the thermal contribution is absent and maximum noise

reduction occurs for frequencies within the band gap, where . 1 -
the transmission is small. At elevated temperatures the ther- br(t)= — f
mal noise reaches the maximum value af around the Vam Jo

band-gap edge, where reflection and transmission are bogl]sing the input-output transformatid@.3) and the commu-

very small. The thermal noise diminishes on both sides of the ”. ) )
edge, but faster inside than outside the gap because the iatlon relationg2.15), the expectation values needed for the

crease of reflectivity for frequencies belaw is faster than

the combined increase of reflectivity and transmissivity for

frequencies above, . Moving further up abovey, the ther- (R)y= i Jt0+Todtfwdw xdw T
2 Jy, I P

Quadrature Fluctuations

o)

do e "“'H(w)br(w). (4.5)

f\1/I'andeI factor read as follows:

mal noise becomes vanishingly small because in our case

fiwy is larger thank© and the combined values of the re- . A

flection and transmission keep increasing toward unity. The X H* (w1)H(w5)(bs(w1)br(w,)) (4.9
overall effect of the nonzero temperature is that of a substan-

tial noise increase in the vicinity of the band-gap edge. and
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- 1 to+To to+To o o measures of the strengths of the squeezed and coherent com-
(:N:%)= 2m? J J dt'J’ dle dw, ponents of the statfR) [see the discussion following Egs.
fo to 0 0 (3.8 and (3.10]. The corresponding individual expression
w o _ _ . for the detected mean number of thermal photons emitted by
X J; dwzfo doge!(@17 @)t Fi(wzm et the slab at an elevated temperature is
* * & O'HTO\/;_
X H (wl)H (wZ)H(w?:)H(w4) <N>therma|:(zT)2 n(1_|T|2_|R|2), (411)
X(b(@1)bh(w2)br(w3)br(wy)). 4.7

which is consistent with expressions given[B81. One thus
The expectation values inside Eq4.6) and (4.7) will be  arrives at the following expressions for the detected photon-

evaluated for the same choice of states as in Sec. lll, i.enumber mean and variance:
with a squeezed vacuum stdte and a squeezed coherent . . . .
state|R) traveling leftwards and rightwards to the slab, re- (N)=(N)|y+{N)|r)+ (N} therma (4.12

spectively, and the same statH accounting for losses
within the slab. The actual evaluation is rather lengthy and*d
will be reported separately in the Appendix. A A (o To)?
As for the photocount variance of the previous section,(:N?:)—(N)2=-——5— (|R|* cosh  sint? p+|T|*
Egs.(4.6) and(4.7) are complicated functions of the integra- 16m

tion ti_me, th_e filter ar_1d inci_dent radiation characteristics,_ a_nd x{cosh 2r sint? o+ 20, \/;|a|2

the dielectric slab dispersive and absorptive characteristics.

A compact expression can again be derived for a situation of X[2 sinf?f o+ sinh 2r cog2¢,— ¢,)]}
practical interest. For a Gaussian filter with bandwidtf ) .

and central frequency,, , +2|T|?[RI? sint? p(sint? o+ 20/7|al?)

+ 1 sinh 2» RET?R*?[sinh 20€'(¢s~ 7))

Hi )= 1 (0— oy)? A8
(w)= T ex 252 |’ (4.9 +Acy\ 7| al?e e 0]
. . +2n[1—|T|*~|RI?][|R|? sini?
the integrals in(N) and(:N:?) can be evaluated with the L= [T IRIER P
help of the field expectation values given in the Appendix for +|T|?(sint? o+ 20y \/;| al?)]
the specific states of interest here. The multiple-frequency — ) -
integrals in Eqgs(4.6) and (4.7) can be carried out taking +n°[1-[T|*=[RI?]). (4.13

advantage .Of the fact Fhat In most cases of expe.nmer}tal Meor simplicity we omit writing the various functional depen-
terest the filter bandwidth is much smaller than its midfre- oo™ ot the coefficients on the right-hand side of Eq

quency (r,:wa)dso thatR(w), Tﬁw)' plw), (g(‘”)’ “Dfﬂ(w)'b (4.13, where all frequency-dependent functions are evalu-
‘P"k(w)’ an Ia(w)h 0 notl vary mucS_ ove&; an can_t €N D€ Hted at the central frequeneyy . The first two terms in Eq.

taken equal to their vajues aj, . Since the integration time (4.13 originate, respectively, from the reflected squeezed
is much shorter than the inverse of the filter b"md"\"dthvacuum fieldL) and the transmitted squeezed coherent field

(oyTp<<1), the multiple-time integrals in Eq<$4.6) and R): the former yi ; ; ; ;
. ) ; yields typical super-Poissonian statisfi€k
(4.7) can also be done. Consider first the detected photobvhile the latter, for a suitable choice ofo? \/;|a|2 and

numbers defined as in E@.6) but produced by each inci- hase 2, — mav reduce the super-Poissonian contribu-
dent statdL) or |R) in the absence of the other; for a slab at P a” $o. MAY » sup .
tions associated with the “vacua” on both sides of the slab.

zero temperature with vanishing noise flux, the results arery o mixed third and fourth terms of E61.13 are nonvan-

respectively, ishing only when squeezing is present on the right-hand side
A O'HTO\/; of_ the slab: for appropriat_e values of the phag@az ®p

<N)‘L>=ﬁ IR|? sinl? p (4.9  this term may further contribute to the nonclassical character

(2) of the transmitted counting statistics. The mixed penultimate

and term involves the slab thermal noise and the two incident
fields, while the last term, always positive, is a contribution

. UHTO\/; from the thermal noise alone.
<N>‘R>:W | T|2(sint? o+ 2047 al?). The values ofQ defined by Eq(4.1) for the contributions

41 of each incident fieldL) or |R) in the absence of the other,
(4.10 and for a slab at zero temperature, are, respectively,

Both these expressions contain a prefactor, determined by

the detection period and bandwidth, followed by the intensity T
reflection and transmission coefficients of the slab, respec- Q=
tively, and completed by factors that characterize the

strengths of the incident beams. The coherent component in agreement with the usual result for a squeezed vacuum
Eq. (4.10 gains an additional detection bandwidth factor as-state{Eq. (3.23 in Ref.[7]} scaled by a detection prefactor
sociated with the different definitions of sibr and|a|? as  and by the intensity transmission coefficient of the slab, and

T
HO |R|2 cosh 2, (4.19

Ao
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O-HTO

cosh 2r sint? o+ 20\ |32 sinkt o+ sinh 25 cog2¢,— ¢,)]
Qr= :
477\/;

IT|? : >
sintf o+ 20, \/;| al

(4.195

The value ofQ for the thermally emitted field alone, in the as the one provided in Fig(& (i) or Fig. 3a) (i). Elevated
absence of the incident fieldls) and |R), is temperatures have the overall effect of degrading the non-
classical features of the number distribution for signal modes
onuTo detected around the band-gap edge region.
chermalz—ﬁ[l_|T|2_|R|2]- (4.16
477\/;

V. ANTIBUNCHING

The composite Mandel factor is easily obtained by substitu- In this section we study how the degree of second-order
tion of Egs.(4.12 and(4.13 into Eq. (4.1), and there is no coherence

need to write down the complete expression. Owing to
higher-order correlations, this composi@ecannot be written 9@ (x,t,7)
as a sum of the individual contributior(4.14—(4.16), as "
was done for the lower-order quadrature variance in Eq.

£(-) £(-) =(+) E(+)
(3.17), and the mean detected photon number in EdlL2). = (B (OB Ot B T (x,t+ DE ()

Standard results for special cases follow from H¢sl2 (EC X DEM X HWET (x,t+ 1) ET)(x,t+ 7))
and(4.13. Thus, when the fielfL) is in an ordinary vacuum 51
state p=0), 6D
of a quantized electromagnetic field is modified by the pas-
0= oyTo @1 |R|2)2+|T* sage through a dispersive and absorbing dielectric slab that is
Amm kept at some finite temperature. The intensity correlation

(5.1) is proportional to the joint probability of detecting pho-
X {n?+sini? o(cosh - 20+ 207 al? tons at two timest andt+ 7 and is measured in a time-
. . resolved correlation experiment by a coincidence photocount
X[2sint? o+ sinh 2r cog2¢,~ ¢,) — 2N} detector placed ax. The intensity correlatior(5.1) deter-
L 2RITIZ(1=IRI?)(sint? o+ 2 2_R mines the effect of bunching or antibunching, which occur
TR o+ 20y r|al*~) wheng®@(7)<g® (r=0) or g@(7)>g® (r=0), respec-
x{| T|3(sint? o+ 20 \7|al?)+n(1—|R[2=|T|?)} L. tively. Photonbunchingis the tendency of photons to distrib-
4.17) ute themselves preferentially in clusters rather than at ran-

dom, so that when light falls on the photodetector, more
This reduces t@, , given by Eq(4.15, when the slab is at photon pairs are detected close together in time than further
zero temperaturen=0), and it further reduces t@=0 if

apart. Antibunchingis the opposite effect, in which fewer
|R) is also an ordinary vacuum state. If the slab is remove

d)hoton pairs are detected close together than further apart.
(T=1) and the coherent contribution to the mean photogS

Unlike in the previous sections, we take the incident field
number is much larger than the squeezing contribution, E L) traveling towards the left to be in a conventional vacuum
(4.17 agrees with the well-known resylEq. (3.26) of Ref.

State|0), while the field|R) traveling towards the right is in a
[7]] for the MandelQ factor of a squeezed coherent state jincontinuum photon-number state, denoted|hy¢). Such a
free space.

state can be generated with the use of a quantum operator

With the help of the result&t.12 and(4.13, we show in  2cting on the vacuum of the forg]
Fig. 4 the effects of loss, dispersion, and temperature on the
photon counting statistics by transmitting sub-Poissonian IRY=|N, &)= i fxdw £ (0)ak(w)
(|R) and reflecting super-Poissoniéh)) signals through a SN [ o R
resonant dielectric slab at finite temperature and having the
complex permittivity(3.17). The strengthg, o, and phases The function&(w) describes the frequency distribution of the
¢, ¢, are taken to be constant over the resonance region. Mhoton-number wave packet, whose form is determined by
0 =0, for the band-gap frequencies, the counting statisticéhe way in which the photon state is prepared. In contrast to
are super-Poissonian as they originate from the reflectethe stationary incident squeezed states assumed in Secs. Il
squeezed vacuurL) (vanishing transmissionwhile they —and IV, the number statfN,¢) is taken in the form of an
become progressively sub-Poissonian for modes above traptical pulse. Single-photdri6] and two-photori17] states
band gap owing either to an increasing transmission of thavith Gaussian wave packets, e.g., can be realized experimen-
incident sub-Poissonian fie|®) or to the “coherent” super- tally. We consider here a wave packet with a Gaussian dis-
position with the reflected squeezed vaculun[cf. curves tribution centered o, (carriey and a mean-square spatial
(i) and(iii) in Fig. 4@]. When© >0 the thermal noise adds length L?,
in with a maximum value of around the band-gap edge, but
otherwise decreases. The explanation for the decrease of the
thermal noise on both sides of the band-gap edge is the same

N
|0). (5.2

L2

1/4
§(a))=< ) exd —L%(0—w.)?4c?], (5.3

2arc?
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where the field operator is given by E.2) and t,=t
—x/c. The expectation value in the integrand can be evalu-
ated from Eq.(A3) where the average flux of thermal pho-
tons is given by Eq(3.14) and the average flux of the right-
wards incident photons can be directly evaluated from Eqgs.
(5.2 and (5.3). The intensity Eq.(5.5 for an N-photon
Gaussian wave packet is thgs]

Mandel Q factor

(ECXDEM(x,1))=N|J5(t,)|>+35(0),  (5.6)

with the notation

1(q)E\/ﬁ/4wsoch0wdw e YT (w)é(w) (5.7)

o8}’ b
g osf /
& and
o 04
E REIIEE A ':
g 0.2 N g
< ” Jo(q)= 47TSOCSJ dow e'“%n(w,0)
0f- " VA\/A
S : (ii) \/\/\/\/ X[l—|R(w)|2_|T(a))|2], (58)
02f T X
! 11 12 13 14 whereqis a generic time parameter.
Similarly one obtains for the intensity-intensity correla-
Oyl op tion in the numerator of Eq5.1),

FIG. 4. MandelQ factor (4.1) of the field transmitted through
dielectric slab of Fig. 2, in units by To/4myar, as the midfre-
quency ) of a narrow-band photodetctor varies in the Reststrahl A % %
region. The incident fieldL) is a squeezed vacuunp€0.2,¢, <4 S)f dwlw% f dw w% f dw-wl?
=2¢,) With Q=1.08(super-Poissonian The incident fieldR) is a mEoC

(EC (X DEC (X, t+ 1) EM(x,t+ 1) ET(x,1))

squeezed coherent state=0.2,¢,=2¢,— 7, 204 \| a|?=25) w

with Q= —0.33 (sub-Poissonian Part(a) shows separate Mandel xf dw4w}1’29i<w1—w4>trei(wz—w3)(tr+T)

Q factors from Eqs(4.14—(4.16 for the thermal noise of the slab 0

at temperatur® = 0.6 w1 /k (dashed curve)j the transmitted part o ~ ~ ~

of the field|R) (gray curve i), and the reflected part of the fielid) X<f|<0|<R|bR(wl)bR(wz)bR(ws)bR(w4)| R>|0>|f>-
(solid curve ii). Part (b) shows the totalQ factor for (i) © (5.9
=0.6hwr/k and(ii) ©=0.

The frequency spread of the wave packat/is and its tem-  The expectation value in the integrand is now evaluated from
poral length is of ordeL/c. For number states the reference EQ. (A4) where the relevant slab noise and incident field
value of Eq.(5.1), from which bunching or antibunching is averages are carried out in much the same way as done for

assessed, is those in Eq.(A3). Similarly to Eqg.(5.6) we can cast, after
much algebra, the numerator of E¢.1) into the compact
@_q 1 5.4 form,
E(—) E(—) E(+) E(+)
independent of the form of the wave packet and the measure- (EOGDET Gt BT t+ M ETV (D)
ment position and times. =N(N=1)[J;(t,)[3|I1(t, + )2+ NI, (0)[ |I1(t,)|?
With this choice of states the transmitted intensityxat ( Dat) Pt | 20 a(t)
> is +[31(t+ 7)[21+ 2N R Iy (t,) 37 (t,+ 7)p(7)]
+132(7)[2+35(0)%. (5.10

<E<*>(x,t>é<+><x,t>>

J dow,w? f dw,wdZei (@1~ w2t Gathering together Eqg5.6) and (5.10 we obtain the de-
gree of second-order coherence in the regior (cf Fig. 1)
when the incident fieldL) is a conventional vacuum and the
X (f|(0|(RIbL(w1)br(w,)|R)[0)|f), (5.5  field |R) is anN-photon Gaussian wave packet,

4778008
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g@(t, 1) = N(N=1)]35(t) |31t + 7[>+ NI (0)[[I3(t) [+ [I(t, + 7)]?]
N [NJ1(tr) [+ 32(0) JIN[Ix(t, + 7)[*+ I(0)]

2N R J;(t,) % (t,+ 7)J5(7) ]+ [Io( 1) |2+ 35(0)2
[N[J1(t)][+I2(0) N[ I (t, + 7)[?+ J5(0) ]

(5.11

The effect of the temperature g?) is entirely contained in interval of integration. The real refractive indexw) and the
the functionJ,, which vanishes for a slab &=0. extinction coefficientk(w) can also be taken to be constant
Some simple limiting cases are immediately apparent usover the narrow pulse bandwidth and exactly equal to their
ing simple properties af,(q) that are derived in more detail valuesn. and «. at the carrier frequency. In addition, since
later in the section. In the absence of an incident numbethe pulse frequency spreamL is generally much smaller

state one has thanw., we replace the lower bound in the integral bye
| 2 and the square-root frequency factor bw.. Given these
Ja(7) simplifications the integral in Eq5.7) can be carried out to
20 5\ 2 _ p g
go(7m)=1+ 3,002 (N=0). (512 Lptain
For zero time delayr=0, this takes the value of 2 expected J1(q) = VhwJAme LS(8) 1/4-|-Ce*iwcqf(cq/L)2_
for the chaotic light radiated by a thermal slab, while f& (5.14

that are larger than the thermal light coherence time

=#/kO, giP(7) tends to unity agJ,(7)| becomes much The evaluation of Eq5.14) at the time when the peak of the
smaller thanJ,(0) (rea). In the presence of an incident num- pulse enters the detector then yields

ber state N#0) and a slab at zero temperatudk€0), the

degree of second-order coheren@®l1l) reduces to that g T2 26272

given in Eq.(5.4); this degree of second-order coherence is  |J(t,+ 7)|>=—————=exXp — 73>

less than unity and it remains unchanged as the pulse propa- |-580\/§ Lo+21%( .~ 1)

gates through the slab. More generally for 0, Eq. (5.11) (5.19

reduces to o . ) )
which, in turn, provides an expression fdy(t,) when 7 is

@ N(N+1)[J,(t,)]* set equal to 0. This expression accounts for modifications
g (t)=2— TN[3,(0) 2+ 3,(0) 2 (7=0). (5.13  due to the slower travel time and multiple internal reflections
n 2 inside the slab through the increasé(;2—1)? of the pulse

For low temperatures and large photon numbers, wherg@€an-square width. We neglect, on the other hand, pulse
J,(0)<N|J,(t,)|? and the contribution from the pulse domi- modifications due to dispersion and absorption, which are of
nates that from the slab, this reduces to the v but at  less importance in this context and are fully treatediGh
high temperatures and small photon numbers, widg(@) A closed-form expression fod,(q) will also be given.
>N|J;(t,)|? and the slab contribution is dominant, the de-We take againy(w)— 7. and k(w)— k. constant over the
gree of second-order coherene13 tends to the chaotic narrow bandwidth of the pulse. With the help of E@s4)-
light value of 2. Apart from these limit cases, bunchimg  (2.6), after some effort, it is possible to show that
antibunching from the full form of the degree of second-

order coherence in Eq5.11) can be assessed only when hclmeoSP

explicit expressions for the integrall(q) and J,(q) are ()=

available. Their evaluation requires the inclusion of appro- [(7c+1)"+ k]

priatg_parts of the mode functiom§.4)—(2.6) along with a X{ e (me+1)2+ k2]14(q,0,0)
specific form of the(complex refractive index of the me-

dium. This makes the integration hard to perform in general —4|nc|?1o(9,4k¢,0) — 7c(|ng|?

and the subsequent results difficult to handle except for some . )
situations of experimental relevance, which will be examined — 276+ 1)16(0,8x6,0) Tire(ne|*~ 1)

inthe following. . . X[1o(0,4Ke , 76)~ o 4Ke, — 7c) ]

We proceed to derive a particular closed-form expression
for J,(q). We consider a pulse whose lengthis much +2K§[|0(q,4KC,—477C)+|O(q,4KC,47]C)]},
greater than the slab thickness,Lor 2l (w)/, so that the (5.16
transmitted pulse retains the appearance of a single pulse, '
without breaking up into a series of component pulses.
Under this condition the pulse frequency spreéd is much
smaller than the oscillation frequency|df(»)|. We assume 2 ~ral-i(bl+qe)](w/C)
that the carrier frequency, coincides with one of the rela- l4(q.a,b) = ('_) f do o e e
tive maxima ofT(w) which, to a very good approximation, ” c gt —1
can then be taken equal to its vallig at . over the whole (5.17

where
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An analytic expression for this integral exists in terms of 1f
special functions, but it is not useful. We find it convenient
to change the integral into a converging sum whose evalua-g ¢gi
tion is readily performed19]. We rewrite the denominator ¢
in Eq. (5.17) in terms of a progressive series so that the € i
resulting exponential can be straightforwardly integrated to

eren

obtain %
O. 0.4
- E £
'O(q'a'b):n; [al+i(bl+qc)+ (nkc/kO) 2" 3 02
(5.18
(@) o 50 100 150 200

The final form of the degree of second-order coherence is
obtained by substituting Egqg5.15 and (5.16 into Eg.

(5.19).

(5.19

One observes from Eq5.195 that for large delays, g
|3,(t,+ 7)| in Eq. (5.12) is very small, and the degree of §
second-order coherence becomes £

]

|92(7)[? 3

@)t s - 2
Ot L0 = A 5 ) 32(0) + NI (P g
S

&

For an incident pulse much broader than the thermal coher-
ence lengthcr,, which is typically the case for pulses of .
duration longer than a few picoseconds and a slab tempera 0 1 2 3 4 5
ture higher than about 3 K, the second term of E§19

falls rapidly to zero|J,(7)| being much smaller tha,(0) (b) /7,

when 7> 7.. The behavior of the degree of second-order

coherence5.11) for intermediate time delaysis otherwise )
not easily assessed, and in Fig. 5 the function is plotted fophoton and awo-photon Gaussian wave packet that has propagated
’ ’ across a thin slab with extinction coefficiemt,=2.95x10 *

single andtwo-photon Gaussian pulses propagating througl'%

FIG. 5. Degree of second-order cohererigel3 for a single

. - ; dashed curveand x.=2.95<10 2 (solid curve. For all curves,
a slab with different temperatures and absorption parameter, veand i ( 9

. N e real refractive index and the magnitude of the transmission co-
At Vggy low temperatures in pars), the pulse contribution efficient are kept aty.=2.85 and|T¢|=0.6. The pulse carrier fre-

to g;7; is dominant and the transmitted signal retains its anyuencyw, and film thickness Rare such thats.l/c=500, while
tibunched character to delays of the order of the pulse duranhe incident pulse length is 20 times the film thickness. The two
tion L/c. For longer time delays essentially only the uncor-sets of curvesi) and(ii) of part(a) describe, respectivelg!? and
related vacuum will be detected producing a unit secondg? for a slab at temperatu® =2.5x 10 3% w. /k. Part(b) refers
order coherence. For the numerical values chosen in Fig. %o a slab at a higher temperatuBe=2.5x 10 4 w./k where the
at low temperature&/c is about two orders of magnitude two degrees of coherence essentially coincide. The delay is mea-
longer thanr. . At room temperatures in pafth), the thermal sured in units of the mean coherence time=#/kO.
contribution is instead dominant and the transmitted signal
field is clearly bunched regardless of which photon-numbegdent light beams. Thus for quadrature-squeezed incident
wave packet impinges onto the slab. Bunching occurs over bight, we have shown how the squeezing of the transmitted
time scale of the order of the thermal coherence time, whictight, as measured by balanced homodyne detection, is de-
is now much smaller than the low-temperature case graded by the absorption in the slab and by the reflection and
Similarly, by comparing different absorption regimes, it is transmission effects at the slab surfaces; for slabs at elevated
seen that in the low-temperature case the correlation timgimperatures, the thermal noise generated within the slab
are somewhat shortened by the progressive loss of photdtroduces a further degradation in the squeezing. We have
correlations as the pulse traverses a slab with larger absorgerived a simple relation, E¢3.17), for the squeezing in the
tion. At higher temperatures, increased absorption further inoutput from the slab in terms of the squeezings in the two
hibits the residual correlations from the pulse component irinput beams and the thermal noise generated within the slab.
the transmitted signal yielding a slightly enhanced bunching/Ve have illustrated these formal results by numerical calcu-
effect (more chaotic signal lations of the frequency dependence of the squeezing after
transmission through a slab in the Reststrahl region of a
single dielectric resonance.

Nonclassical aspects of the photon-counting statistics, as

We have used a recently developed quantization schenmaeasured by direct detection, are also reduced by transmis-
for the electromagnetic field in a dispersive and absorbingion through the slab. Thus, the Mand@ factor for
dielectric slab to determine the effects of transmissionincident-squeezed light and the degree of second-order co-
through the slab on various nonclassical features of the inciherence for incident-antibunched light both tend towards

VI. CONCLUSIONS
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classical values after transmission, and these tendencies asethe pulse, depending on its parameters and those of the
enhanced when the slab is maintained at an elevated terdielectric medium. The quantum theory thus embraces re-
perature. The frequency variations of the effects of transmissults derivable by classical theory, where this provides an
sion on the MandelQ factor have also been illustrated by adequate description of the phenomena, but it also covers the
numerical results for the single-resonance form of the dielecspecifically quantum-mechanical effects treated in the
tric permittivity of the slab. The degree of second-order co-present paper, where the classical theory is manifestly inad-
herence has been evaluated for the transmission of an inaéquate. The thermal noise that inevitably accompanies
dent number-state pulse, and numerical results have begmopagation through an attenuating slab at elevated tempera-
presented for single- and two-photon states. The results oltdres is also a quantum-mechanical feature, governed essen-
tained for the photon-counting statistics agree with specialially by Planck’s law. The one theory thus covers the entire
cases derived previously, but the slab quantization formalismange of phenomena associated with optical propagation
allows a more comprehensive treatment, with proper incluthrough dielectric media.

sion of the effects of the surfaces and of thermal generation

within the slab. ACKNOWLEDGMENT
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the left of the slab, when the field&) and |R) traveling

towards the slab retain their natures as a squeezed vacuum APPENDIX

and a squeezed coherent state, respectively. These results for

the reflection case can be written down directly, simply by 4 Zve ddeive f]l_ehre the expectation value(zjs appearinhg in Egs.
interchanging T(w_o)—R(wo) in Eq. (3.15 and (4.6) and(4.7). The average is over a product state that com-

: i the incident states of the field traveling leftwaity)
T(wy)—R(wy) in Eq. (4.17), as expected from the symme- Prises
try of the problem. A similar conversion applies to the de-and rightwards(|R)) to t.he slab as We” as stat¢b) that
gree of second-order coherence. account for losses within t_he sldbf. F|g.. 1. 'From the ex-
The results derived here for the effects of propagatiodP™€SSion(2.3) for the outgoing propagating field one obtains

through a lossy medium on the nonclassical properties of

incident light complement those in our previous publication Lt —p* BT 1VA

[6], concerned with the quantum-mechanical formulation of (br(1)bg(2))=Ri Ry(L[bi (1)bL(2)[L)

the problem, and with the effects of propagation on the initial +T¥ T2<R|éL(1)éR(2)|R>

peak position and width of an incident optical pulse. The

predictions for the magnitudes of the latter effects are the +{f|ET(L)E(2)[f) (A1)

same in classical and quantum theories, and they include
apparent delay or acceleration and broadening or narrowingnd

(bl(1)bE(2)br(3)br(4)) = (f|FT(1)FT(2)F(3)F(4)| f) +{R} R§ RsR4(L|b] (1)b](2)by(3)b.(4)|L)
+RYRS TsT4(L|b] (1)b](2)|L)(R|ar(3)ar(4)|R) + R RsT3 To(L|b{ (1)b(3)[L)
X(R|ak(2)8r(4)|R) + RE RsTT T4(L|D{(2)bL(3)[L)(R|ak(1)ar(4)|R)
+(FIFT(DF(3)If) T3 T(RIAR(2)8r(4)|R) +(fIFT(1)F(4)|f) T; To(RIak(2)ar(3)|R)
+(f[FT(2)F(3)|f) TI T4(RIAL(1)ar(4)|R) +(f|FT(2)F (4)[)TI To(RIAK(1)ar(3)|R)

+(Rj~T; and b —ag)}, (A2)

which reduce to

(fI(OK(RIbL(1)br(2)[RY|0)|F) =T T3 (R|ak(1)ar(2)|R)+(f|FT(1)F(2)]f), (A3)

and
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(FI(O[(RIbE(1)bf(2)br(3)br(4)|R)0)|f)=(F|FT(1)FT(2)F(3)F(4)| )+ T{ T3 T4T,
X (R|ak(1)ak(2)ar(3)ar(4)|R)+(f|FT(1)F(3)[F)T5 T,
X (Rlak(w2)ar(4)[R)+(fIFT(1)F (4)| ) T5 To(RIak(2)ar(3)[R)
+(f[FT(2)F(3)|f) T T4(RIaL(1)ar(4)|R)

+(f|FT(2)F(4)|)T: T(RIak(2)ar(3)|R), (A4)

when L) is taken as a conventional vacuum stiile Here (Rlak(1)ar(2)|R)=a* ay+ 8, sint? oy, (A7)
the numbers denote the corresponding frequencies. Notice '
that in Eg.(Al) the contributions from the transmitted, the TP TP r
reflected,qand the slab noise fields are all separate while ig‘|b'-(1)b'-(2)b'-(3)b'-(4)lL>
the higher-order correlation functid®2) there appear also
entangled terms that originate from the interference between
these three components.

When the statdl) is a squeezed vacuum and the signal

=¢l(¢o,~¢s) sinh p; sinh p,

X [coshp, coshpzd; 203 4+ €905~ ¢2) sinh p, sinh pg

field |R) is in a squeezed coherent state the relevant expecta- X (13024t 8146291, (A8)
tion values on the right—hand side of E¢&1)—(A4) can be A A .
evaluated with the help of the resul3.7)—(3.10 and one  (L|b (1)b (2)|L)=€'¢": &; ,sinhp, coshpy, (A9)
obtains, after some algebra,
A B )
(RIAK(1)a}(2)a(3)ax(4)|R) = at a} asa (LIBL(L)BU2)IL) = 3y pinfF py. (A10
+€'(®s,~¢0) sinh oy sinh o4{ ; 203 4 COsha, coshag The noise in the slab originates from the dissipation, de-
‘ o scribed here by statg$) introduced in Sec. Il. The fourth-
+ €' (P03 0))[ 8 38, 4+ 8148, 5]SiNh o7, sinh o3} order noise correlation function in EqéA2) and (A4) is

4 0.5 - sinh h expressed in terms of second-order ones as usually done for
a3@s€ 77101, SINN 0y COShoy Gaussian random variables, i.e.,
+af al €965, sinh oy coshoy+ af a8y 5 Sinkf o e
R U A E N TN ENT
+a* a3514sinhz O'1+ a* a4523sinhz (0]
2 ) 1 , 2t A ~t ~
. =(f[FI(DF(3)[F)(fIFT(2)F(4)[f)
+a’1‘ a352'4 S”ﬂlh2 O3, (AS) ~ ~ A A~
_ +HFT(DF@@IEIFT(2FB3)If) (A11)
<R|3R(l)éR(2)|R>=ala2+ €'%o1 sinh (o] COShO’lﬁlﬁz,
(A6)  that can be evaluated at once by using 8414).
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