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Propagation of nonclassical light through an absorbing and dispersive slab
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We calculate the effects of perpendicular propagation through a dispersive and absorbing dielectric slab at
arbitrary temperatures on specific nonclassical properties of an incident light field. The transmitted signal is
assumed to be measured by a detector that receives radiation only from the direction normal to the slab
surfaces. Squeezing and nonclassical counting statistics of the transmitted light are evaluated for continuous-
wave squeezed states incident on both sides of the slab. The degree of second-order coherence is instead
evaluated for anN-photon incident pulse, and the effects of transmission through the slab on its antibunching
are calculated.@S1050-2947~99!06701-3#

PACS number~s!: 42.50.Dv, 12.20.2m, 42.50.Ar
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I. INTRODUCTION

The electromagnetic field has recently been quantized
several sample geometries of a dispersive and absorbin
electric material@1–5#, and for wave propagation perpen
dicular to the sample surfaces. The quantization scheme
based on earlier work that is extensively reviewed in th
references. We have applied the formalism to study
propagation of an optical pulse through a lossy and disp
sive dielectric slab maintained at a finite temperature@6#.
The optical properties of the pulse are modified by the te
perature, dispersion, and absorption in the dielectric, and
the reflections from the slab surfaces. Some of these mo
cations, which are the same in classical and quantum tr
ments of pulse propagation, result in peak delays and sh
distortions in comparison with the properties of the incide
pulse, and these have been covered in our previous work@6#.
However, for incident light of a nonclassical nature, there
also modifications of the quantum coherence and correla
properties of the pulse that can only be described by a qu
tum theory. Moreover, when the slab is maintained at a n
zero temperature, the quantum statistical features of
transmitted pulse are obscured or distorted by the addi
of, or interference with, thermal emission. The aim of t
present paper is to determine the effects of transmission
reflection by a thermal slab on specific nonclassical prop
ties of the incident light such as quadrature squeezing, s
Poissonian photon counting statistics, and antibunching.

The quantum treatment of propagation through an abs
ing and dispersive thermal slab is briefly summarized in S
II. For incident light with nonclassical statistics, the ma
interest lies in the extent to which these are retained a
transmission through the slab. A quantum theory for the
tical detection of nonclassical features of light is not o
intent here, but we use well-known results to derive gene
expressions for the photocount variance, MandelQ factor,
and degree of second-order coherence of the transmitted
and then specialize them to useful closed-form express
for specific situations of experimental interest. Thus the
fects of propagation through the slab on initially squeez
light are derived in Sec. III and the effects on the MandeQ
factor are determined in Sec. IV. The corresponding res
for the antibunching of an incidentN-photon pulse are ob
PRA 591050-2947/99/59~3!/2279~12!/$15.00
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tained in Sec. V. In accordance with the one-dimensio
nature of the field quantization, it is assumed throughout t
the statistics of the transmitted light are measured by a p
todetector whose field of view is restricted to the directi
perpendicular to the slab surfaces. The conclusions of
work are discussed in Sec. VI.

II. PRELIMINARIES

The quantum-mechanical formalism for electromagne
wave propagation through a lossy and dispersive dielec
slab @1–5# has been summarized previously@6#. We give
here only the bare essentials needed for an appreciatio
the present paper.

The form of the dielectric function for a slab of thickne
2l is

«~x,v!5 H «~v!5n2~v!5@h~v!1 ik~v!#2 for uxu< l
1 for uxu. l ,

~2.1!

where the complex refractive indexn(v) is assumed to be a
known function, which is related to the real refractive ind
h~v! and the extinction coefficientk~v!, defined for positive
frequencies. The real and imaginary parts of the dielec
function are related by the Kramers-Kronig relations and,
particular, the occurrence of absorption is an inevitable c
sequence of the presence of dispersion. The electromag
field is quantized on the basis of a continuous set of mo
propagating in the direction perpendicular to the surfaces
the slab so that waves propagate parallel to thex axis with
their transverse-electric and magnetic-vector opera
Ê(x,t) and B̂(x,t) aligned with they and z axes, respec-
tively. The schematic arrangement of the propagation ge
etry for the various components of the field is given in Fig.
which shows the notation for the slab input and output fi
operators.

The electric field operatorÊ(x,t) at a detector in the re
gion x. l has the positive frequency component

Ê~1 !~x,t !5 i E
0

`

dvA\v/4p«0cS@ b̂R~v!eivx/c

1b̂L~v!e2 ivxlc#e2 ivt ~2.2!
2279 ©1999 The American Physical Society
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2280 PRA 59M. ARTONI AND R. LOUDON
and the Hermitian conjugate expression for its negative
quency component. HereS is the area of quantization in th
yz plane. The operator for the rightward-propagatingoutgo-
ing field is given in terms of the leftwards and rightwar
input fields by

b̂R~v!5R~v!b̂L~v!1T~v!âR~v!1F̂~v!, ~2.3!

where

T~v!54n~v!e2iv@n~v!21# l /cD21~v! ~2.4!

and

R~v!5e22iv l /c@n2~v!21#@e4ivn~v!l /c21#D21~v!,
~2.5!

with

D~v!5@n~v!11#22@n~v!21#2 exp@4ivn~v!l /c#,
~2.6!

are the complex amplitudes of the transmission and refl
tion coefficients, respectively.

The operatorF̂(v) represents the noise associated w
the dissipation in the slab, and its form is given by

F̂~v!5 iA2vh~v!k~v!/cE
2 l

l

dx@V~v!e2 ivn~v!x/c

1W~v!eivn~v!x/c# f̂ ~x,v!, ~2.7!

where

V~v!52@n~v!11#exp$ iv@n~v!21# l /c%D21~v!,
~2.8!

W~v!52@n~v!21#exp$ iv@3n~v!21# l /c%D21~v!,
~2.9!

and thef̂ (x,v) are spatially distributed Langevin noise cu
rent operators with the commutation relation

@ f̂ ~x,v!, f̂ †~x8,v8!#5d~x2x8!d~v2v8!. ~2.10!

At finite temperatureU the Langevin noise current operato
have the expectation values

^ f u f̂ ~x,v!u f &5^ f u f̂ †~x,v!u f &50, ~2.11!

^ f u f̂ ~x,v! f̂ ~x8,v8!u f &5^ f u f̂ †~x,v! f̂ †~x8,v8!u f &50,
~2.12!

FIG. 1. Spatial configuration for the dielectric slab and notat
for the destruction operators used in the definition of the relev
electric fields.
-

c-

and

^ f u f̂ †~x,v! f̂ ~x8,v8!u f &5n̄~v,U!d~x2x8!d~v2v8!,
~2.13!

where

n̄~v,U!5@e\v/kU21#21 ~2.14!

is the mean number of thermal photons at frequencyv and
temperatureU. The u f &’s describe the states of a dissipativ
reservoir inside the slab, which are more formally rep
sented by a statistical mixture.

All of the input and output operators in Eq.~2.3! satisfy
boson commutation relations of the form

@ b̂R~v!,b̂R
†~v8!#5@ âR~v!,âR

†~v8!#5@ b̂L~v!,b̂L
†~v8!#

5d~v2v8!, ~2.15!

and their consistency is ensured by the noise operator c
mutator

@ F̂~v!,F̂†~v8!#5@12uR~v!u22uT~v!u2#d~v2v8!,
~2.16!

which is readily verified with the use of Eqs.~2.8!–~2.10!.

III. SQUEEZING

In this section we examine how propagation through
slab influences the squeezing in an incident signal be
Squeezing, specificallyquadrature squeezing, occurs when
the quantum fluctuations in one of the quadrature com
nents of the electromagnetic field drops below the vacu
level: this is characterized by states of the field having ne
tive normally ordered variances of the field operators, i
states with no classical analogues@7#.

The effect of squeezing can be measured by a balan
homodyne detection scheme. For the field on the right-h
side of the slab~cf. Fig. 1! the difference between the inte
grated photocurrents in the two arms of a balanced dete
can be represented by an operator of the form@8,9#

Ô5 i E
t0

t01T0
dt$b̂R

†~ t !âLO~ t !2b̂R~ t !âLO
† ~ t !% ~3.1!

when the detector runs from timet0 to time t01T0 . Here
âLO(t) represents the field of the local oscillator, which
assumed to be in a coherent stateu$aLO%& with a single-mode
amplitude of the form

aLO~ t !5FLO
1/2 exp$ ifLO2 ivLOt%. ~3.2!

HereFLO denotes the mean photon flux of the local oscil
tor, fLO its phase, andvLO its frequency. When the loca
oscillator is much more intense than the signal, the meas
ment operator~3.1! can be written in terms of a dimension
less homodyne electric field operator that characterizes
property of the signal measured at the detector,

Ô5~FLOT0!1/2Ê~fLO ,vLO!, ~3.3!

where

nt
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Ê~fLO ,vLO!5
eifLO

A2pT0
E

0

`

dv@ b̂R
†~v!ei ~v2vLO!t0

3z~v2vLO!1H.c.# ~3.4!

and

z~v2vLO!5
ei ~v2vLO!T021

v2vLO
. ~3.5!

The variance of the field transmitted through to the right
the slab can then be written in the form

^@DÊ~fLO ,vLO!#2&out

5
1

2pT0
E

0

`

dvuz~v2vLO!u2

1
1

pT0
E

0

`

dv8E
0

`

dv$^b̂R
†~v!,b̂R~v8!&

3z~v2vLO!z* ~v82vLO!e2 i ~v82v!~ t01T0!

2Re@^b̂R
†~v!,b̂R

†~v8!&e2ifLOz~v2vLO!

3z~v82vLO!ei ~v81v22vLO!~ t01T0!#% ~3.6!

with the standard notation̂Â,B̂&[^Â,B̂&2^Â&^B̂& for a cor-
relator. The homodyne electric field operator~3.4! has the
useful property of a variance~3.6! equal to unity for the
vacuum state. The amount of squeezing is convenie
gauged by the difference between the variance and unity

The expectation values inside the integrals in Eq.~3.6! are
over a product state that comprises the incident states o
field traveling leftwards~uL&! and rightwards~uR&! to the slab
as well as statesu f & that account for losses within the sla
~cf. Fig. 1!. We take uL& as a continuous-mode squeez
vacuum state, such as that produced by a degenerate
metric amplifier pumped at frequency 2V @8#,

uL&5Ŝ~$r~v!,wr~v!%!u0& ~squeezed vacuum!,
~3.7!

with

Ŝ~$r~v!,wr~v!%!

5expH E dv r~v!e2 iwr~v!b̂L~v!b̂L~2V2v!2H.c.J ,

~3.8!

wherewr(v) is the phase andr~v! is the strength character
izing the squeezed vacuum at a given frequencyv. The state
represented by Eq.~3.7! is a stationary light beam with a
dimensionless mean photonflux per unit angular frequency
bandwidth given by sinh2@r(v)#. The signal field traveling
rightwards to the slab is taken as a squeezed coherent
with the same pump frequency 2V,

uR&5D̂~$a~v!%!Ŝ~$s~v!,ws~v!%!u0&

~squeezed coherent state!, ~3.9!
f
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with

D̂~$a~v!%!5expH E dv a~v!âR
†~v!2H.c.J ,

~3.10!

and analogous meanings for the parametersws(v) ands~v!.
Herea(v)5ua(v)uexp@iwa(v)# is the complex amplitude o
the coherent component of the stateuR&, with a mean photon
number per unit angular frequency bandwidth given b
ua(v)u2. This choice of states enables one to investigate h
the interference of the transmitted nonclassical signal fi
with a phase-sensitive vacuum, rather than the conventio
one, affects the nonclassical statistics in the region of
detected fields. The expectation values in Eq.~3.6! are now
evaluated with the use of Eq.~2.3! as

^b̂R
†~v!,b̂R~v8!&5d~v2v8!$uR~v!u2 sinh2 r~v!

1uT~v!u2 sinh2 s~v!%

1^F̂†~v!F̂~v8!&, ~3.11!

^b̂R
†~v!,b̂R

†~v8!&5 1
2 d~v1v822V!

3$R* 2~v!sinh 2r~v!e2 iwr~v!

1T* 2~v!sinh 2s~v!e2 iws~v!%,

~3.12!

which are independent of the incident coherent amplitu
a~v!. The noise in the slab originates from dissipation, d
scribed here by statesu f & for which all expectation values ar
zero except those with an equal number of destruction
creation Langevin operators~Sec. II!. From the definition
~2.7! and the properties~2.10!–~2.14!, the average flux of
noise photons emitted by the thermal excitation of the sla

^ f uF̂†~v!F̂~v8!u f &5d~v2v8!2n̄~v,U!@vh~v!k~v!/c#

3E
2 l

l

dxuV~v!e2 ivn~v!x/c

1W~v!e1 ivn~v!x/cu2 ~3.13!

that is conveniently expressed in terms of the reflection
transmission coefficients as

^ f uF̂†~v!F̂~v8!u f &5n̄~v,U!@12uT~v!u22uR~v!u2#

3d~v2v8!. ~3.14!

The noise flux clearly vanishes for a lossless slab, wh
uRu21uTu251 at all frequencies.

The variance~3.6! depends on the timeT0 and, through
Eqs. ~3.11! and ~3.12!, it depends in a complicated fashio
on the frequency dispersion of the incident squeezed fie
~magnitude and phase! and on the specific form of the sla
~complex! refractive index. Yet, a compact expression can
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2282 PRA 59M. ARTONI AND R. LOUDON
derived for sufficiently longT0’s ~narrow detector band
width! in which case the products of thez’s in Eq. ~3.6! tend
to the delta functiond(v2vLO) when the local oscillator
frequency is equal to the central frequencyV of the squeez-
ing. The measured field variance~3.6! simplifies to

^@DÊ~fLO ,vLO!#2&out5112$n̄1uRu2@sinh2 r2n̄#

1uTu2@sinh2 s2n̄#%

2Re@e2ifLO~R* 2e2 iwr sinh 2r

1T* 2e2 iws sinh 2s!#, ~3.15!

wheren̄ is the mean number of thermal photons given by E
~2.14!. For simplicity we have omitted writing the variou
functional dependencies from the coefficients on the rig
hand side, and the frequency-dependent functions are
evaluated atvLO . It is instructive to rewrite this result in
terms of the variances of homodyne measurements mad
the incident fields. For the fielduL& traveling leftwards one
has

^@DÊ~fLO ,vLO!#2& uL&
in 5112 sinh2 r

2Re~e2ifLO2 iwr sinh 2r!

5e2r sin2~fLO2 1
2 fr!

1e22r cos2~fLO2 1
2 fr!, ~3.16!

and a similar expression for the rightwards-traveling incid
field uR& obtains by replacingr→s andfr→fs . Thus Eq.
~3.15! can be written as

^@DÊ~fLO ,vLO!#2&out21

52n̄~12uRu22uTu2!

1uRu2$^@DÊ~fLO2arg R,vLO!#2& uL&
in 21%

1uTu2$^@DÊ~fLO2arg T,vLO!#2& uR&
in 21%, ~3.17!

with the coefficients again evaluated atvLO . This result gen-
eralizes a squeezing conservation law previously derived
a lossless beam splitter@10# to the transmission and reflec
tion at a lossy dielectric slab. We note that in the case o
slab at zero temperature (n̄50) with an ordinary vacuum
incident towards the left (r50), Eq.~3.15! can be written as

^@DÊ~fLO ,vLO!#2&out21

5uTu2$^@DÊ~fLO2arg T,vLO!#2& uR&
in 21%. ~3.18!

The scaling of the squeezing, as measured by the differe
of the variance from unity, with the intensity transmissi
coefficient agrees with previous results@11,12# for propaga-
tion through an absorbing slab. Jeffers and Barnett@13# have
given a more detailed derivation of the effects of dispers
and frequency-dependent absorption on incident light wit
Gaussian squeezing spectrum, and Schmidt, Kno¨ll, and
Welsch@14# have treated the propagation of squeezed li
pulses, without inclusion of slab boundary effects.

We now use these results to analyze the propagatio
quadrature noise through a thin film of a material who
.
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dispersive and absorbing behaviors are described by a sin
resonance complex permittivity«~v! of the form

«~v!5«~`!
vL

22v22 ivG

vT
22v22 ivG

, ~3.19!

where vT and vL are the transverse and longitudinal fre
quencies of the resonance andG is the damping. In Figs. 2
and 3 we examine the spectral features of the transmit
quadrature quantum noise for frequencies in the vicinity
the resonance when the squeezed vacuumuL& and the
squeezed coherent fielduR& have the same noise levels. Th
squeezing strengths~r,s! and phases (wr ,ws) are taken to
be constant over the resonance region. Parts~a! of the figures
show the quadrature variances of each of the three contr
tions in the absence of the other two, and parts~b! show the

FIG. 2. Quadrature variance~3.15! of the field from a thin film
as the local oscillator frequency (vLO) is swept through the Rest-
strahl region, where«~v! is given by Eq.~3.19! with «(`)58.5,
vL51.11vT , andG50.01vT . The band-gap region is shaded. Th
film thickness 2l and the transverse resonant frequency are su
that vTl /c510. The incident squeezed vacuum stateuL& has
strengthr50.2 and phasewr52wLO22, while the squeezed coher
ent field uR& has the same strengths50.2 with ws52wLO25. Part
~a! shows theseparatecontributions from the thermal noise pro
duced by the slab at temperatureU50.6\vT /k ~dashed curve i!,
the transmitted part of stateuR& ~gray curve ii!, and the reflected part
of stateuL& ~solid curve iii!. The thermal contribution reduces to th
unit vacuum-noise variance atU50. Part~b! shows the total noise
for ~i! U50.6\vT /k and~ii ! U50. The input minimum noise lev-
els are at 0.67@cf. Eq. ~3.13!#.
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combined variance, which equals the sum of the three c
tributions, less 2 to cancel the triple counting of the u
vacuum variance. The oscillatory behavior of the no
above the band gap is due to the phase of the complex
flection and transmission coefficients: the noise is sensi
not only to the local oscillator phase~fixed here! but to the
relative phasesfLO2argR or fLO2argT, which are clearly
dispersion dependent. A modest enhancement of the n
reduction with respect to the individual components aris
from the coherent superposition of the reflected and trans
ted noise, as is clearly seen by comparing Figs. 2 and 3
U50, the thermal contribution is absent and maximum no
reduction occurs for frequencies within the band gap, wh
the transmission is small. At elevated temperatures the t
mal noise reaches the maximum value of 2n̄ around the
band-gap edge, where reflection and transmission are
very small. The thermal noise diminishes on both sides of
edge, but faster inside than outside the gap because th
crease of reflectivity for frequencies belowvL is faster than
the combined increase of reflectivity and transmissivity
frequencies abovevL . Moving further up abovevL the ther-
mal noise becomes vanishingly small because in our c
\vT is larger thankU and the combined values of the re
flection and transmission keep increasing toward unity. T
overall effect of the nonzero temperature is that of a subs
tial noise increase in the vicinity of the band-gap edge.

FIG. 3. Same as in Fig. 2 but with the different choice of pha
ws52wLO22.
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IV. THE PHOTON COUNTING STATISTICS

In this section we examine how transmission through
slab affects the photon number distribution of an incide
nonclassical light field. We analyze the counting statistics
terms of the deviation from classical~Poisson! statistics: the
deviation is conveniently assessed in terms of the Man
factor @15#

Q[
^@DN̂#2&2^N̂&

^N̂&
5

^:N̂2:&2^N̂&2

^N̂&
, ~4.1!

with the variance

^@DN̂#2&5^N̂2&2^N̂&2 ~4.2!

and the normally ordered second moment

^:N̂2:&5^N̂2&2^N̂&. ~4.3!

A vanishingQ corresponds to coherent light, while a positiv
or negativeQ determines whether the photon-counting s
tistics are super-Poissonian (^@DN̂#2&.^N̂&) or sub-
Poissonian (̂@DN̂#2&,^N̂&). SinceQ must be non-negative
for a classical stochastic field, sub-Poissonian photon sta
tics are regarded as an essentially quantum feature of
field @7,15#.

The Mandel factor is typically measured by direct pho
count detection, which now replaces the balanced homod
detection considered in Sec. III. The results of sets of m
surements in which the photocurrent is integrated over p
ods of timeT0 can be predicted by the use of the dimensio
less number operator@8#

N̂5E
t0

t01T0
dt b̂R

†~ t !b̂R~ t !, ~4.4!

which represents the number of photons that arrive at
detector betweent0 andt01T0 . In practice, photon counter
are sensitive to a bundle of frequencies whose bandwidt
generally small compared to their midfrequency. We mo
this by introducing a filter functionH(v) in terms of which
the detected field at timet is given by

b̂R~ t !5
1

A2p
E

0

`

dv e2 ivtH~v!b̂R~v!. ~4.5!

Using the input-output transformation~2.3! and the commu-
tation relations~2.15!, the expectation values needed for t
Mandel factor read as follows:

^N̂&5
1

2p E
t0

t01T0
dtE

0

`

dv1E
0

`

dv2ei ~v12v2!t

3H* ~v1!H~v2!^b̂R
†~v1!b̂R~v2!& ~4.6!

and

e
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2284 PRA 59M. ARTONI AND R. LOUDON
^:N̂:2&5
1

~2p!2 E
t0

t01T0
dtE

t0

t01T0
dt8E

0

`

dv1E
0

`

dv2

3E
0

`

dv3E
0

`

dv4ei ~v12v3!t1 i ~v22v4!t8

3H* ~v1!H* ~v2!H~v3!H~v4!

3^b̂R
†~v1!b̂R

†~v2!b̂R~v3!b̂R~v4!&. ~4.7!

The expectation values inside Eqs.~4.6! and ~4.7! will be
evaluated for the same choice of states as in Sec. III,
with a squeezed vacuum stateuL& and a squeezed cohere
state uR& traveling leftwards and rightwards to the slab, r
spectively, and the same statesu f & accounting for losses
within the slab. The actual evaluation is rather lengthy a
will be reported separately in the Appendix.

As for the photocount variance of the previous secti
Eqs.~4.6! and~4.7! are complicated functions of the integr
tion time, the filter and incident radiation characteristics, a
the dielectric slab dispersive and absorptive characteris
A compact expression can again be derived for a situatio
practical interest. For a Gaussian filter with bandwidthsH
and central frequencyvH ,

H~v!5
1

A2p
expF2

~v2vH!2

2sH
2 G , ~4.8!

the integrals in^N̂& and ^:N̂:2& can be evaluated with th
help of the field expectation values given in the Appendix
the specific states of interest here. The multiple-freque
integrals in Eqs.~4.6! and ~4.7! can be carried out taking
advantage of the fact that in most cases of experimenta
terest the filter bandwidth is much smaller than its midf
quency (sH!vH) so thatR(v), T(v), r~v!, s~v!, wr(v),
ws(v), anda~v! do not vary much oversH and can then be
taken equal to their values atvH . Since the integration time
is much shorter than the inverse of the filter bandwid
(sHT0!1), the multiple-time integrals in Eqs.~4.6! and
~4.7! can also be done. Consider first the detected pho
numbers defined as in Eq.~4.6! but produced by each inci
dent stateuL& or uR& in the absence of the other; for a slab
zero temperature with vanishing noise flux, the results
respectively,

^N̂& uL&5
sHT0Ap

~2p!2 uRu2 sinh2 r ~4.9!

and

^N̂& uR&5
sHT0Ap

~2p!2 uTu2~sinh2 s12sHApuau2!.

~4.10!

Both these expressions contain a prefactor, determined
the detection period and bandwidth, followed by the intens
reflection and transmission coefficients of the slab, resp
tively, and completed by factors that characterize
strengths of the incident beams. The coherent compone
Eq. ~4.10! gains an additional detection bandwidth factor a
sociated with the different definitions of sinh2 s and uau2 as
.,

-

d

,

d
s.
of

r
y

n-
-

n

t
e,

by
y
c-
e
in
-

measures of the strengths of the squeezed and coherent
ponents of the stateuR& @see the discussion following Eqs
~3.8! and ~3.10!#. The corresponding individual expressio
for the detected mean number of thermal photons emitted
the slab at an elevated temperature is

^N̂& thermal5
sHT0Ap

~2p!2 n̄~12uTu22uRu2!, ~4.11!

which is consistent with expressions given in@6#. One thus
arrives at the following expressions for the detected phot
number mean and variance:

^N̂&5^N̂& uL&1^N̂& uR&1^N̂& thermal ~4.12!

and

^:N̂2:&2^N̂&25
~sHT0!2

16p3 „uRu4 cosh 2r sinh2 r1uTu4

3$cosh 2s sinh2 s12sHApuau2

3@2 sinh2 s1sinh 2s cos~2wa2ws!#%

12uTu2uRu2 sinh2 r~sinh2 s12sHApuau2!

1 1
2 sinh 2r Re$T2R* 2@sinh 2sei ~ws2sr!

14sHApuau2ei ~2wa2wr!#%

12n̄@12uTu22uRu2#@ uRu2 sinh2 r

1uTu2~sinh2 s12sHApuau2!#

1n̄2@12uTu22uRu2#2
…. ~4.13!

For simplicity we omit writing the various functional depen
dencies of the coefficients on the right-hand side of E
~4.13!, where all frequency-dependent functions are eva
ated at the central frequencyvH . The first two terms in Eq.
~4.13! originate, respectively, from the reflected squeez
vacuum fielduL& and the transmitted squeezed coherent fi
uR&; the former yields typical super-Poissonian statistics@7#
while the latter, for a suitable choice of 2sHApuau2 and
phase 2wa2ws , may reduce the super-Poissonian contrib
tions associated with the ‘‘vacua’’ on both sides of the sla
The mixed third and fourth terms of Eq.~4.13! are nonvan-
ishing only when squeezing is present on the right-hand s
of the slab: for appropriate values of the phase 2wa2wr ,
this term may further contribute to the nonclassical chara
of the transmitted counting statistics. The mixed penultim
term involves the slab thermal noise and the two incid
fields, while the last term, always positive, is a contributi
from the thermal noise alone.

The values ofQ defined by Eq.~4.1! for the contributions
of each incident fielduL& or uR& in the absence of the othe
and for a slab at zero temperature, are, respectively,

QuL&5
sHT0

4pAp
uRu2 cosh 2r, ~4.14!

in agreement with the usual result for a squeezed vacu
state$Eq. ~3.23! in Ref. @7#% scaled by a detection prefacto
and by the intensity transmission coefficient of the slab, a
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QuR&5
sHT0

4pAp
uTu2

cosh 2s sinh2 s12sHApuau2@2 sinh2 s1sinh 2s cos~2wa2ws!#

sinh2 s12sHApuau2
. ~4.15!
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The value ofQ for the thermally emitted field alone, in th
absence of the incident fieldsuL& and uR&, is

Qthermal5
sHT0

4pAp
n̄@12uTu22uRu2#. ~4.16!

The composite Mandel factor is easily obtained by subst
tion of Eqs.~4.12! and ~4.13! into Eq. ~4.1!, and there is no
need to write down the complete expression. Owing
higher-order correlations, this compositeQ cannot be written
as a sum of the individual contributions~4.14!–~4.16!, as
was done for the lower-order quadrature variance in
~3.17!, and the mean detected photon number in Eq.~4.12!.

Standard results for special cases follow from Eqs.~4.12!
and~4.13!. Thus, when the fielduL& is in an ordinary vacuum
state (r50),

Q5
sHT0

4pAp
„n̄2~12uRu2!21uTu4

3$n̄21sinh2 s~cosh 2s22n̄!12sHApuau2

3@2 sinh2 s1sinh 2s cos~2wa2ws!22n̄#%

12n̄uTu2~12uRu2!~sinh2 s12sHApuau22n̄!…

3$uTu2~sinh2 s12sHApuau2!1n̄~12uRu22uTu2!%21.

~4.17!

This reduces toQuR& , given by Eq.~4.15!, when the slab is a
zero temperature (n̄50), and it further reduces toQ50 if
uR& is also an ordinary vacuum state. If the slab is remov
(T51) and the coherent contribution to the mean pho
number is much larger than the squeezing contribution,
~4.17! agrees with the well-known result@Eq. ~3.26! of Ref.
@7## for the MandelQ factor of a squeezed coherent state
free space.

With the help of the results~4.12! and~4.13!, we show in
Fig. 4 the effects of loss, dispersion, and temperature on
photon counting statistics by transmitting sub-Poisson
~uR&! and reflecting super-Poissonian~uL&! signals through a
resonant dielectric slab at finite temperature and having
complex permittivity~3.17!. The strengthsr, s, and phases
wr ,ws are taken to be constant over the resonance region
U50, for the band-gap frequencies, the counting statis
are super-Poissonian as they originate from the refle
squeezed vacuumuL& ~vanishing transmission!, while they
become progressively sub-Poissonian for modes above
band gap owing either to an increasing transmission of
incident sub-Poissonian fielduR& or to the ‘‘coherent’’ super-
position with the reflected squeezed vacuumuL& @cf. curves
~ii ! and~iii ! in Fig. 4~a!#. WhenU.0 the thermal noise add
in with a maximum value ofn̄ around the band-gap edge, b
otherwise decreases. The explanation for the decrease o
thermal noise on both sides of the band-gap edge is the s
-

o

.

d
n
q.

he
n

e

At
s
d

he
e

the
me

as the one provided in Fig. 2~a! ~i! or Fig. 3~a! ~i!. Elevated
temperatures have the overall effect of degrading the n
classical features of the number distribution for signal mo
detected around the band-gap edge region.

V. ANTIBUNCHING

In this section we study how the degree of second-or
coherence

g~2!~x,t,t!

5
^Ê~2 !~x,t !Ê~2 !~x,t1t!Ê~1 !~x,t1t!Ê~1 !~x,t !&

^Ê~2 !~x,t !Ê~1 !~x,t !&^Ê~2 !~x,t1t!Ê~1 !~x,t1t!&

~5.1!

of a quantized electromagnetic field is modified by the p
sage through a dispersive and absorbing dielectric slab th
kept at some finite temperature. The intensity correlat
~5.1! is proportional to the joint probability of detecting pho
tons at two timest and t1t and is measured in a time
resolved correlation experiment by a coincidence photoco
detector placed atx. The intensity correlation~5.1! deter-
mines the effect of bunching or antibunching, which occ
when g(2)(t),g(2) (t50) or g(2)(t).g(2) (t50), respec-
tively. Photonbunchingis the tendency of photons to distrib
ute themselves preferentially in clusters rather than at r
dom, so that when light falls on the photodetector, mo
photon pairs are detected close together in time than fur
apart. Antibunchingis the opposite effect, in which fewe
photon pairs are detected close together than further apa

Unlike in the previous sections, we take the incident fie
uL& traveling towards the left to be in a conventional vacuu
stateu0&, while the fielduR& traveling towards the right is in a
continuum photon-number state, denoted byuN,j&. Such a
state can be generated with the use of a quantum ope
acting on the vacuum of the form@8#

uR&5uN,j&5
1

AN!
F E

0

`

dv j* ~v!âR
†~v!GN

u0&. ~5.2!

The functionj~v! describes the frequency distribution of th
photon-number wave packet, whose form is determined
the way in which the photon state is prepared. In contras
the stationary incident squeezed states assumed in Sec
and IV, the number stateuN,j& is taken in the form of an
optical pulse. Single-photon@16# and two-photon@17# states
with Gaussian wave packets, e.g., can be realized experim
tally. We consider here a wave packet with a Gaussian
tribution centered onvc ~carrier! and a mean-square spati
lengthL2,

j~v!5S L2

2pc2D 1/4

exp@2L2~v2vc!
2/4c2#, ~5.3!
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The frequency spread of the wave packet isc/L and its tem-
poral length is of orderL/c. For number states the referenc
value of Eq.~5.1!, from which bunching or antibunching is
assessed, is

gN
~2!512

1

N
, ~5.4!

independent of the form of the wave packet and the measu
ment position and times.

With this choice of states the transmitted intensity atx
. l is

^Ê~2 !~x,t !Ê~1 !~x,t !&

5
\

4p«0cS E
0

`

dv1v1
1/2E

0

`

dv2v2
1/2ei ~v12v2!tr

3^ f u^0u^Rub̂R
†~v1!b̂R~v2!uR&u0&u f &, ~5.5!

FIG. 4. MandelQ factor ~4.1! of the field transmitted through
dielectric slab of Fig. 2, in units ofsHT0/4pAp, as the midfre-
quency (vH) of a narrow-band photodetctor varies in the Reststra
region. The incident fielduL& is a squeezed vacuum (r50.2,wr

52wa) with Q51.08~super-Poissonian!. The incident fielduR& is a
squeezed coherent state (s50.2,ws52wa2p, 2sHApuau2525)
with Q520.33 ~sub-Poissonian!. Part ~a! shows separate Mandel
Q factors from Eqs.~4.14!–~4.16! for the thermal noise of the slab
at temperatureU50.6\vT /k ~dashed curve i!, the transmitted part
of the field uR& ~gray curve ii!, and the reflected part of the fielduL&
~solid curve iii!. Part ~b! shows the totalQ factor for ~i! U
50.6\vT /k and ~ii ! U50.
re-

where the field operator is given by Eq.~2.2! and t r5t
2x/c. The expectation value in the integrand can be eva
ated from Eq.~A3! where the average flux of thermal pho
tons is given by Eq.~3.14! and the average flux of the right
wards incident photons can be directly evaluated from E
~5.2! and ~5.3!. The intensity Eq.~5.5! for an N-photon
Gaussian wave packet is then@6#

^Ê~2 !~x,t !Ê~1 !~x,t !&5NuJ1~ t r !u21J2~0!, ~5.6!

with the notation

J1~q![A\/4p«0cSE
0

`

dv e2 ivqv1/2T~v!j~v! ~5.7!

and

J2~q![
\

4p«0cS E
0

`

dv e2 ivqvn̄~v,U!

3@12uR~v!u22uT~v!u2#, ~5.8!

whereq is a generic time parameter.
Similarly one obtains for the intensity-intensity correl

tion in the numerator of Eq.~5.1!,

^Ê~2 !~x,t !Ê~2 !~x,t1t!Ê~1 !~x,t1t!Ê~1 !~x,t !&

5S \

4p«0cSD E
0

`

dv1v1
1/2E

0

`

dv2v2
1/2E

0

`

dv3v3
1/2

3E
0

`

dv4v4
1/2ei ~v12v4!trei ~v22v3!~ tr1t!

3^ f u^0u^Rub̂R
†~v1!b̂R

†~v2!b̂R~v3!b̂R~v4!uR&u0&u f &.

~5.9!

The expectation value in the integrand is now evaluated fr
Eq. ~A4! where the relevant slab noise and incident fie
averages are carried out in much the same way as done
those in Eq.~A3!. Similarly to Eq. ~5.6! we can cast, after
much algebra, the numerator of Eq.~5.1! into the compact
form,

^Ê~2 !~x,t !Ê~2 !~x,t1t!Ê~1 !~x,t1t!Ê~1 !~x,t !&

5N~N21!uJ1~ t r !u2uJ1~ t r1t!u21NJ2~0!@ uJ1~ t r !u2

1uJ1~ t r1t!u2#12N Re@J1~ t r !J1* ~ t r1t!J2~t!#

1uJ2~t!u21J2~0!2. ~5.10!

Gathering together Eqs.~5.6! and ~5.10! we obtain the de-
gree of second-order coherence in the regionx. l ~cf Fig. 1!
when the incident fielduL& is a conventional vacuum and th
field uR& is anN-photon Gaussian wave packet,

l
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gN
~2!~ t r ,t!5

N~N21!uJ1~ t r !u2uJ1~ t r1t!u21NJ2~0!@ uJ1~ t r !u21uJ1~ t r1t!u2#

@NuJ1~ t r !u21J2~0!#@NuJ1~ t r1t!u21J2~0!#

1
2N Re@J1~ t r !J1* ~ t r1t!J2~t!#1uJ2~t!u21J2~0!2

@NuJ1~ t r !u21J2~0!#@NuJ1~ t r1t!u21J2~0!#
. ~5.11!
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The effect of the temperature ongN
(2) is entirely contained in

the functionJ2 , which vanishes for a slab atU50.
Some simple limiting cases are immediately apparent

ing simple properties ofJ2(q) that are derived in more deta
later in the section. In the absence of an incident num
state one has

g0
2~t!511

uJ2~t!u2

J2~0!2 ~N50!. ~5.12!

For zero time delay,t50, this takes the value of 2 expecte
for the chaotic light radiated by a thermal slab, while fort’s
that are larger than the thermal light coherence timetc

5\/kU, g0
(2)(t) tends to unity asuJ2(t)u becomes much

smaller thanJ2(0) ~real!. In the presence of an incident num
ber state (NÞ0) and a slab at zero temperature (J250), the
degree of second-order coherence~5.11! reduces to that
given in Eq.~5.4!; this degree of second-order coherence
less than unity and it remains unchanged as the pulse pr
gates through the slab. More generally fort50, Eq. ~5.11!
reduces to

gN
~2!~ t r !522

N~N11!uJ1~ t r !u4

@NuJ1~ t r !u21J2~0!#2 ~t50!. ~5.13!

For low temperatures and large photon numbers, wh
J2(0)!NuJ1(t r)u2 and the contribution from the pulse dom
nates that from the slab, this reduces to the value~5.4! but at
high temperatures and small photon numbers, whereJ2(0)
@NuJ1(t r)u2 and the slab contribution is dominant, the d
gree of second-order coherence~5.13! tends to the chaotic
light value of 2. Apart from these limit cases, bunchingor
antibunching from the full form of the degree of secon
order coherence in Eq.~5.11! can be assessed only whe
explicit expressions for the integralsJ1(q) and J2(q) are
available. Their evaluation requires the inclusion of app
priate parts of the mode functions~2.4!–~2.6! along with a
specific form of the~complex! refractive index of the me-
dium. This makes the integration hard to perform in gene
and the subsequent results difficult to handle except for s
situations of experimental relevance, which will be examin
in the following.

We proceed to derive a particular closed-form express
for J1(q). We consider a pulse whose lengthL is much
greater than the slab thickness, orL@2lh(v)/p, so that the
transmitted pulse retains the appearance of a single p
without breaking up into a series of component pulses@18#.
Under this condition the pulse frequency spreadc/L is much
smaller than the oscillation frequency ofuT(v)u. We assume
that the carrier frequencyvc coincides with one of the rela
tive maxima ofT(v) which, to a very good approximation
can then be taken equal to its valueTc at vc over the whole
s-

er

s
a-

re

-

-

-

l
e

d

n

se,

interval of integration. The real refractive indexh~v! and the
extinction coefficientk~v! can also be taken to be consta
over the narrow pulse bandwidth and exactly equal to th
valueshc andkc at the carrier frequency. In addition, sinc
the pulse frequency spreadc/L is generally much smalle
thanvc , we replace the lower bound in the integral by2`
and the square-root frequency factor byAvc. Given these
simplifications the integral in Eq.~5.7! can be carried out to
obtain

J1~q!5A\vc/4p«0LS~8p!1/4Tce
2 ivcq2~cq/L !2

.
~5.14!

The evaluation of Eq.~5.14! at the time when the peak of th
pulse enters the detector then yields

uJ1~ t r1t!u25
\vcuTcu2

LS«0A2p
expH 2

2c2t2

L212l 2~hc
221!2J ,

~5.15!

which, in turn, provides an expression forJ1(t r) when t is
set equal to 0. This expression accounts for modificati
due to the slower travel time and multiple internal reflectio
inside the slab through the increase 2l 2(hc

221)2 of the pulse
mean-square width. We neglect, on the other hand, p
modifications due to dispersion and absorption, which are
less importance in this context and are fully treated in@6#.

A closed-form expression forJ2(q) will also be given.
We take againh(v)→hc andk(v)→kc constant over the
narrow bandwidth of the pulse. With the help of Eqs~2.4!–
~2.6!, after some effort, it is possible to show that

J2~q!5
\c/p«0Sl2

@~hc11!21kc
2#2

3$hc@~hc11!21kc
2#I 0~q,0,0!

24uncu2I 0~q,4kc,0!2hc~ uncu2

22hc11!I 0~q,8kc,0!1 ikc~ uncu221!

3@ I 0~q,4kc ,hc!2I 0~q,4kc ,2hc!#

12kc
2@ I 0~q,4kc ,24hc!1I 0~q,4kc,4hc!#%,

~5.16!

where

I 0~q,a,b!5S l

cD 2E
0

`

dv v
e2@al2 i ~bl1qc!#~v/c!

e\v/kU21
.

~5.17!
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An analytic expression for this integral exists in terms
special functions, but it is not useful. We find it convenie
to change the integral into a converging sum whose eva
tion is readily performed@19#. We rewrite the denominato
in Eq. ~5.17! in terms of a progressive series so that t
resulting exponential can be straightforwardly integrated
obtain

I 0~q,a,b!5 (
n51

`
l 2

@al1 i ~bl1qc!1~n\c/kU!#2 .

~5.18!

The final form of the degree of second-order coherenc
obtained by substituting Eqs.~5.15! and ~5.16! into Eq.
~5.11!.

One observes from Eq.~5.15! that for large delays,
uJ1(t r1t)u in Eq. ~5.11! is very small, and the degree o
second-order coherence becomes

gN
~2!~ t r ,t@L/c!→11

uJ2~t!u2

J2~0!@J2~0!1NuJ1~ t r !u2#
.

~5.19!

For an incident pulse much broader than the thermal co
ence lengthctc , which is typically the case for pulses o
duration longer than a few picoseconds and a slab temp
ture higher than about 3 K, the second term of Eq.~5.19!
falls rapidly to zero,uJ2(t)u being much smaller thanJ2(0)
when t@tc . The behavior of the degree of second-ord
coherence~5.11! for intermediate time delayst is otherwise
not easily assessed, and in Fig. 5 the function is plotted
single- andtwo-photon Gaussian pulses propagating throu
a slab with different temperatures and absorption parame
At very low temperatures in part~a!, the pulse contribution
to g1,2

(2) is dominant and the transmitted signal retains its
tibunched character to delays of the order of the pulse d
tion L/c. For longer time delays essentially only the unco
related vacuum will be detected producing a unit seco
order coherence. For the numerical values chosen in Fig
at low temperaturesL/c is about two orders of magnitud
longer thantc . At room temperatures in part~b!, the thermal
contribution is instead dominant and the transmitted sig
field is clearly bunched regardless of which photon-num
wave packet impinges onto the slab. Bunching occurs ov
time scale of the order of the thermal coherence time, wh
is now much smaller than the low-temperature casetc .
Similarly, by comparing different absorption regimes, it
seen that in the low-temperature case the correlation ti
are somewhat shortened by the progressive loss of ph
correlations as the pulse traverses a slab with larger abs
tion. At higher temperatures, increased absorption further
hibits the residual correlations from the pulse componen
the transmitted signal yielding a slightly enhanced bunch
effect ~more chaotic signal!.

VI. CONCLUSIONS

We have used a recently developed quantization sch
for the electromagnetic field in a dispersive and absorb
dielectric slab to determine the effects of transmiss
through the slab on various nonclassical features of the i
f
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dent light beams. Thus for quadrature-squeezed incid
light, we have shown how the squeezing of the transmit
light, as measured by balanced homodyne detection, is
graded by the absorption in the slab and by the reflection
transmission effects at the slab surfaces; for slabs at elev
temperatures, the thermal noise generated within the
produces a further degradation in the squeezing. We h
derived a simple relation, Eq.~3.17!, for the squeezing in the
output from the slab in terms of the squeezings in the t
input beams and the thermal noise generated within the s
We have illustrated these formal results by numerical cal
lations of the frequency dependence of the squeezing a
transmission through a slab in the Reststrahl region o
single dielectric resonance.

Nonclassical aspects of the photon-counting statistics
measured by direct detection, are also reduced by trans
sion through the slab. Thus, the MandelQ factor for
incident-squeezed light and the degree of second-order
herence for incident-antibunched light both tend towa

FIG. 5. Degree of second-order coherence~5.13! for a single-
photon and atwo-photon Gaussian wave packet that has propaga
across a thin slab with extinction coefficientkc52.9531024

~dashed curve! and kc52.9531023 ~solid curve!. For all curves,
the real refractive index and the magnitude of the transmission
efficient are kept athc52.85 anduTcu>0.6. The pulse carrier fre-
quencyvc and film thickness 2l are such thatvcl /c>500, while
the incident pulse lengthL is 20 times the film thickness. The tw
sets of curves~i! and~ii ! of part ~a! describe, respectively,g2

(2) and
g1

(2) for a slab at temperatureU52.531023\vc /k. Part~b! refers
to a slab at a higher temperatureU52.531021\vc /k where the
two degrees of coherence essentially coincide. The delay is m
sured in units of the mean coherence timetc5\/kU.
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classical values after transmission, and these tendencie
enhanced when the slab is maintained at an elevated
perature. The frequency variations of the effects of transm
sion on the MandelQ factor have also been illustrated b
numerical results for the single-resonance form of the die
tric permittivity of the slab. The degree of second-order c
herence has been evaluated for the transmission of an
dent number-state pulse, and numerical results have b
presented for single- and two-photon states. The results
tained for the photon-counting statistics agree with spe
cases derived previously, but the slab quantization formal
allows a more comprehensive treatment, with proper inc
sion of the effects of the surfaces and of thermal genera
within the slab.

One could carry out an analogous treatment for areflec-
tion configuration, as opposed to thetransmissionconfigura-
tion of Fig. 1. Results similar to the quadrature field fluctu
tions given by Eq.~3.15! and the MandelQ factor given by
Eq. ~4.17! can be derived for the field traveling away fro
the left of the slab, when the fieldsuL& and uR& traveling
towards the slab retain their natures as a squeezed vac
and a squeezed coherent state, respectively. These resu
the reflection case can be written down directly, simply
interchanging T(vLO)↔R(vLO) in Eq. ~3.15! and
T(vH)↔R(vH) in Eq. ~4.17!, as expected from the symme
try of the problem. A similar conversion applies to the d
gree of second-order coherence.

The results derived here for the effects of propagat
through a lossy medium on the nonclassical properties
incident light complement those in our previous publicati
@6#, concerned with the quantum-mechanical formulation
the problem, and with the effects of propagation on the ini
peak position and width of an incident optical pulse. T
predictions for the magnitudes of the latter effects are
same in classical and quantum theories, and they inc
apparent delay or acceleration and broadening or narrow
are
m-
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-
ci-
en
b-
al
m
-
n

-

um
for

y

-

n
of

f
l

e
de
ng

of the pulse, depending on its parameters and those of
dielectric medium. The quantum theory thus embraces
sults derivable by classical theory, where this provides
adequate description of the phenomena, but it also covers
specifically quantum-mechanical effects treated in
present paper, where the classical theory is manifestly in
equate. The thermal noise that inevitably accompan
propagation through an attenuating slab at elevated temp
tures is also a quantum-mechanical feature, governed es
tially by Planck’s law. The one theory thus covers the ent
range of phenomena associated with optical propaga
through dielectric media.
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APPENDIX

We derive here the expectation values appearing in E
~4.6! and~4.7!. The average is over a product state that co
prises the incident states of the field traveling leftwards~uL&!
and rightwards~uR&! to the slab as well as statesu f & that
account for losses within the slab~cf. Fig. 1!. From the ex-
pression~2.3! for the outgoing propagating field one obtain

^b̂R
†~1!b̂R~2!&5R1* R2^Lub̂L

†~1!b̂L~2!uL&

1T1* T2^RuâR
†~1!âR~2!uR&

1^ f uF̂†~1!F̂~2!u f & ~A1!

and
^b̂R
†~1!b̂R

†~2!b̂R~3!b̂R~4!&5^ f uF̂†~1!F̂†~2!F̂~3!F̂~4!u f &1$R1* R2* R3R4^Lub̂L
†~1!b̂L

†~2!b̂L~3!b̂L~4!uL&

1R1* R2* T3T4^Lub̂L
†~1!b̂L

†~2!uL&^RuâR~3!âR~4!uR&1R1* R3T2* T4^Lub̂L
†~1!b̂L~3!uL&

3^RuâR
†~2!âR~4!uR&1R2* R3T1* T4^Lub̂L

†~2!b̂L~3!uL&^RuâR
†~1!âR~4!uR&

1^ f uF̂†~1!F̂~3!u f &T2* T4^RuâR
†~2!âR~4!uR&1^ f uF̂†~1!F̂~4!u f &T2* T3^RuâR

†~2!âR~3!uR&

1^ f uF̂†~2!F̂~3!u f &T1* T4^RuâR
†~1!âR~4!uR&1^ f uF̂†~2!F̂~4!u f &T1* T3^RuâR

†~1!âR~3!uR&

1~Ri↔Ti and b̂L↔âR!%, ~A2!

which reduce to

^ f u^0u^Rub̂R
†~1!b̂R~2!uR&u0&u f &5T1* T2* ^RuâR

†~1!âR~2!uR&1^ f uF̂†~1!F̂~2!u f &, ~A3!

and
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^ f u^0u^Rub̂R
†~1!b̂R

†~2!b̂R~3!b̂R~4!uR&u0&u f &5^ f uF̂†~1!F̂†~2!F̂~3!F̂~4!u f &1T1* T2* T3T4

3^RuâR
†~1!âR

†~2!âR~3!âR~4!uR&1^ f uF̂†~1!F̂~3!u f &T2* T4

3^RuâR
†~v2!âR~4!uR&1^ f uF̂†~1!F̂~4!u f &T2* T3^RuâR

†~2!âR~3!uR&

1^ f uF̂†~2!F̂~3!u f &T1* T4^RuâR
†~1!âR~4!uR&

1^ f uF̂†~2!F̂~4!u f &T1* T3^RuâR
†~2!âR~3!uR&, ~A4!
ti
e
e

ee

a
c

de-
-

e for
when uL& is taken as a conventional vacuum stateu0&. Here
the numbers denote the corresponding frequencies. No
that in Eq.~A1! the contributions from the transmitted, th
reflected, and the slab noise fields are all separate whil
the higher-order correlation function~A2! there appear also
entangled terms that originate from the interference betw
these three components.

When the stateuL& is a squeezed vacuum and the sign
field uR& is in a squeezed coherent state the relevant expe
tion values on the right–hand side of Eqs.~A1!–~A4! can be
evaluated with the help of the results~3.7!–~3.10! and one
obtains, after some algebra,

^RuâR
†~1!âR

†~2!âR~3!âR~4!uR&5a1* a2* a3a4

1ei ~ws4
2ws1

! sinh s1 sinh s4$d1,2d3,4 coshs2 coshs3

1ei ~ws3
2ws2

!@d1,3d2,41d1,4d2,3#sinh s2 sinh s3%

1a3a4e2 iws1d1,2 sinh s1 coshs1

1a1* a2* eiws3d3,4 sinh s3 coshs31a2* a4d1,3 sinh2 s1

1a2* a3d1,4 sinh2 s11a1* a4d2,3 sinh2 s2

1a1* a3d2,4 sinh2 s2 , ~A5!

^RuâR~1!âR~2!uR&5a1a21eiws1 sinh s1 coshs1d1,2,
~A6!
ys

rd
ce

in

n

l
ta-

^RuâR
†~1!âR~2!uR&5a1* a21d1,2sinh2 s1 , ~A7!

^Lub̂L
†~1!b̂L

†~2!b̂L~3!b̂L~4!uL&

5ei ~ws4
2ws1

! sinh r1 sinh r4

3@coshr2 coshr3d1,2d3,41ei ~ws3
2ws2

! sinh r2 sinh r3

3~d1,3d2,41d1,4d2,3!#, ~A8!

^Lub̂L~1!b̂L~2!uL&5eiws1 d1,2 sinh r1 coshr1 , ~A9!

^Lub̂L
†~1!b̂L~2!uL&5d1,2 sinh2 r1. ~A10!

The noise in the slab originates from the dissipation,
scribed here by statesu f & introduced in Sec. II. The fourth
order noise correlation function in Eqs.~A2! and ~A4! is
expressed in terms of second-order ones as usually don
Gaussian random variables, i.e.,

^ f uF̂†~1!F̂†~2!F̂~3!F̂~4!u f &

5^ f uF̂†~1!F̂~3!u f &^ f uF̂†~2!F̂~4!u f &

1^ f uF̂†~1!F̂~4!u f &^ f uF̂†~2!F̂~3!u f & ~A11!

that can be evaluated at once by using Eq.~3.14!.
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