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We develop a quantum-mechanical Hamiltonian formulation to treat the polariton in the frame-
work of quantum optics. We exploit two specific Hamiltonians: the conventional Hopfield model,
and a more general Hamiltonian. For both of these, exciton-polariton quantum states are found to
be squeezed (intrinsic polariton squeezing) with respect to states of an intrinsic, nonpolaritonic,
mixed photon-exciton boson. The amount and duration of intrinsic squeezing during the polariton
period are calculated for exciton polaritons in typical I-VII and III-V semiconductors. Among the
noteworthy features is the possibility of tuning the amount of intrinsic squeezing by varying the
frequency —wave-vector dispersion of the polariton mode. We further analyze the photon statistics
of the electromagnetic component of the polariton. Tunable non-Poissonian photon statistics and
squeezing (optical polariton squeezing) are found in the radiative component of the exciton polari-
ton. This entails the reduction of the Auctuations of the polariton electromagnetic field component
below the limit set by the vacuum Iluctuations. The Mandel Q factor for the number distribution of
photons in a polariton coherent state has been evaluated. Although small, for I-VII and III-V ma-
terials in the range of modes analyzed, the Q factor could be enhanced for phonon polaritons as well
as for other materials. Interpretations of the origin of squeezing in polariton states are presented.

INTRODUCTION

The present paper reports detailed results of our inves-
tigations of quantum-optical properties of the mixed po-
larization modes in crystals known as polaritons. In a
previous brief report' we showed that polaritons are "in-
trinsically" squeezed and we also analyzed theoretically
an experiment that could detect such squeezing.

The polariton, the normal mode of the coupled
matter-radiation system, has been well known for at least
40 years since the independent pioneering work of Tolpy-
go and Huang. Certain properties of the polaritons
have been extensively studied by a variety of spectroscop-
ic methods. In particular, the resonant Brillouin scatter-
ing (RBS) technique proposed and theoretically analyzed
by Brenig, Zeyher, and Birman has permitted careful
and quantitative mapping of the frequency —wave-vector
dispersion cv(k)—:rvk for exciton polaritons. In addition,
delicate steady-state optical reAection and transmission
studies using polarized light and optical pulse (transient)
studies have complemented the RBS experiments to
determine co& with very high precision. Many details are
given in several review volumes. ' Phonon polaritons
have been studied by related methods, which in many
cases antedate the work on exciton polaritons. '

The theoretical framework for predicting and analyz-
ing these optical properties which depend on the polari-
ton dispersion cok is also of long standing and was early
developed by Tolpygo, Huang, Pekar, Agranovich and
Ginzburg, Hopfield, ' and others. Striking success was
achieved by using rather simple theoretical models which
encompass the major relevant physics. In particular, one
model commonly referred to as the Hopfield-model Ham-

iltonian has been useful. ' For our present purposes this
will be our "benchmark" and will be referred to below as
the conventional model. We shall also extend this model
along lines of somewhat related early work of Dexter and
Heller, " Knox, ' and others on excitons to give a gen-
eralized model Hamiltonian. Still further modifications
of these basic descriptions are often used to investigate
nonlinear processes, decay processes, and other higher-
order effects which are n6t directly of interest in our
work.

Despite this extensive literature, the investigation of
the quantum-optical properties of these crystal mixed
modes has lagged. By contrast, the study of the
quantum-optical properties of the single-mode and mul-
timode cavity electromagnetic radiation, either in isola-
tion or in interaction with one or more atoms, has been
extensively developed. ' Part of this impetus has been
the expectation that low-noise devices can be made for
use, e.g., as gravity-wave detectors or in communication
technology which will take advantage of "squeezed
light. "' Of course, the study of the basic statistical
properties of light is by itself a major stimulus for such
investigations. These effects found in optics have a cer-
tain generality and they may have analogs in condensed
media.

The present work will exploit a variety of interesting
physical consequences of the simple mathematical result
that the linear canonical Bogoliubov transformation
which diagonalizes the matter-radiation Hamiltonian to
produce polaritons is a squeeze transformation. One
noteworthy feature is that the amount of squeezing de-
pends on its frequency, i.e., it is "tunable. " Here, there is
a quantitative difference, depending on which polariton
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Hamiltonian is used: the conventional or the generalized
one. Because of this, we find it useful to discuss separate-
ly (in fact, sequentially) these two cases, and to emphasize
different quantum-statistical properties of the two mod-
els.

In all cases, the polariton is the true normal mode of
the system. In order to study properties related to this
mode, one must populate the mode, e.g., by irradiating
the system with an incident laser beam. Just as with any
Bose normal mode, the occupancy number of each state
needs to be specified. We defer to elsewhere a detailed
discussion of questions related to converting incident
coherent laser light to the occupancy of squeezed polari-
ton states. This is related to the quantum-optic extinc-
tion theorem announced elsewhere by one of us. '

In Sec. I of this paper, we review some useful results
related to the coherent- and squeezed-state formalism.
We develop modifications of the standard results in order
to account for mixed modes, as will arise for polaritons.

In Sec. II we discuss the nonspatially dispersive (local)
Hopfield polariton mode and the nonclassical effects that
arise when that is populated. Among them, we show that
the quantum statistics of the (dressed) photonic part of
the polariton is nonclassical. The deviations from classi-
cal behavior are tunable and depend on the wave-
vector —frequency mode that is populated. The Mandel Q
factor for the number distribution of photons in a polari-
ton coherent state is determined, and we discuss how best
to measure it. In particular, optical polariton squeezing,
that is, the reduction of the Auctuations of the photon
field in polariton quantum states below the vacuum-state
value is predicted. These considerations are illustrated
by numerical calculations for exciton polaritons in typical
I-VII and III-V semiconductors where the nonspatially
dispersive model is relevant. For these materials, indeed,
the conventional Hopfield polariton model has been
shown to reproduce the correct experimental energy
dispersion curves. ' Because the polar phonon polariton
is also nonspatially dispersive, a completely similar
analysis applies and estimates are given for a phonon po-
lariton also.

In Sec. III we begin with a study of a more general po-
lariton Hamiltonian. It includes some additional cou-
pling and it belongs more completely to the dynamical
algebra Sp(S,C). With suitable parameters this Hamil-
tonian gives rise to a polariton dispersion cok which
agrees with experiments. Again, the Bogoliubov polari-
ton transformation gives squeezed states. These are iso-
morphic to the conventional two-mode squeezed photon
states. Here, however, squeezing is investigated not with
respect to photons but to certain boson quasiparticles (c),
which are mixtures of photon and exciton, yet not polari-
tons. They are intrinsic to the polariton structure and
this squeezing will be therefore referred to as intrinsic po-
Iariton squeezing. Within this generalized model Hamil-
tonian, interpretations of intrinsic squeezing in polariton
states are presented. Both sudden frequency change and
wave-vector mode quantum correlations are envisaged as
the mechanism for producing squeezed fluctuations of the
intrinsic boson c. Among the nonclassical properties of
the c's, we analyze the dependence on the wave-

vector —frequency dispersion of the intrinsic polariton
squeezing, and of the periodic reduction of their envelope
of fluctuations below the vacuum value. Quantitative cal-
culations are given for exciton polaritons in typical I-VII
and III-V semiconductors. Finally, note that the theory
presented here differs in one qualitative fashion from usu-
al treatments of electromagnetic squeezing because our
theory is linear. It is commonly believed that nonlineari-
ty is needed to produce squeezed light, e.g. , parametric
amplification, four-wave mixing, etc. But our work
shows that squeezing can occur owing to the particular
polariton mode mixing in a linear resonant medium.
Nonlinearities are not necessary, although nonlinearity
may be sufhcient in other cases. A certain similarity in
viewpoint to that of Abram, ' and Glauber and Lewe-
stein, ' is pointed out.

I. MULTIMODE COHERENT
AND SQUEEZED STATES

In this section we will establish notations, and we will
review the definitions and some useful properties of num-
ber states, coherent states and squeezed states.

We denote by a and b two different Bose particles while
1 and 2 denote two distinct modes for each particle; thus,

A. Number states

We denote a normalized number state for the mode 1

of particle a by

Ini), =[n, !] ' (& t) 'IO) .

Two-mode normalized number states for particle a are

Inin2), = Ini ), lnz &,

and likewise for particle b. The mixed-mode operator

yr=— i a+diPib( (l=1,2) (1.2)

is a Bose-particle destruction operator which is a linear
combination of al and bi with "weights" a& and Pl.
Then,

[yi, y&]=1, provided that la&l +IP&l =1 . (1.3)

A relative phase yI between the two distinct particles
may also be introduced by redefining (1.2) as

yI = Iai I dl+& '113' lb& . (1.4)

R.ecall that for the vacuum state I0) of each operator,
one has

e, Io& =e, lo& =b, lo& =b, l0& =0 .
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The number states of these operators can be defined in
complete analogy with those for the &&'s and bI's.

B. Coherent states

where a] (no caret) is the complex (c-number) eigenvalue.
Two-mode coherent states Ia, 2 & are defined to be simul-
taneous eigenstates of both annihilation operators; e.g.,
for 8

&
and 82, one has

and a2 la]2 & =a2 Ia]2 &, (1.6)

with continuous complex eigenvalues

It is often useful to consider that two-mode coherent
states are generated by applying the two-mode displace-
ment operator onto the vacuum IO &,

Following Glauber, ' coherent states of the bosons &I

or b& or yI can be defined as eigenstates of the respective
destruction operators, e.g. ,

(1.5)

A] 2(z) a]2&, =A] 2(z)la]2&, . (1.12)

In the configuration space these states represent Gaussian
wave packets. For a suitable Hamiltonian the width of
these Gaussians varies periodically in time, becoming
smaller and bigger than that of the vacuum state: They
are not therefore minimum-uncertainty states for all
times as the state evolves, but only for certain specific
times during the entire oscillation cycle. ' For the cavity
photons this property reAects the nonstationarity of the
noise of the e.m. field in a squeezed state.

For the mixed boson y&, one proceeds identically,
defining single-mode (l = 1,2) squeezed states Iy] &„

~]( )Iy]&.=l]( )ly]&, (&=1,2) (1.13)

and likewise for &2 to obtain A2. In analogy with the
coherent states, they can be defined alternatively as eigen-
states of the A' s:

A](z) la]2 &.= A ] (z) la]2 &. ,

A2(z)la]2 &, = A2(z) Ia]2 &,

where A ] (z) and A2(z) are complex eigenvalues. If there
is no possible confusion, we may write

—=exp[ —
—,'(la]l +la21 )e" 'e" '10& . (1.7)

as the eigenstates of the squeezed annihilation operator

f'](z) =S r(z)y]S ]' (z) =y]coshr+y&e'+sinhr, (1.14)

Here, la, 2 I
is the average number of bosons a in mode 1

or 2. In the configuration space, these states represent
minimum-uncertainty (MU) gaussian wave packets
whose width is fixed in time. In a time-dependent picture
of the e.m. field this property is referred to as time sta-
tionarity of the noise of the light field in a coherent
state. We can proceed similarly to introduce single-
mode and two-mode coherent states for the bI's and y&'s.

with

S'f(z)=exp[(r/2)(y]y]e '~ y]y ]e'~)]—(1=1,2) .

(1.15)

The corresponding two-mode squeezed states Iy, 2&,
for the mixed bosons y, and y2 are defined as eigenstates
of

I ](z) ly]2 & I ](z) ly]2 &. ,

1,(z)ly„&,=l,(z)ly]2&, .
C. Squeezed states (1.16)

Here,

I ](z)—:S $2(z)y ]S r]z(z) =y]coshr+y 2e' +sinhr, (1.17)

I 2(z) =Sr]2(z)y2S r]z(z) =y2coshr+y ]e' +sinhr, (1.18)

la]2 &, =D(a»)S»(z)lo&, (1.8)
and

Here our particular interest is in squeezed ("low-
noise") states, and especially in two-mode squeezed
states. They have been discussed in the literature. ' ' '

One useful definition of a two-mode squeezed state is that
it is obtained by displacing the squeezed vacuum; e.g.,
one has

where

S ]2(z)—:S ]2(r, ]I]1)=exp[r(it]a2e 2™—a t]a 2e2™)] (1.9)

is the two-mode squeeze operator, r is the squeeze factor,
and y is a phase. z = [ r, y] is used as an abbreviated col-
lective notation. Of course, identical formulas hold for
the bI and y& bosons.

There is an alternate useful way to obtain the state
Ia, 2 &„ i.e., by transforming the two annihilation opera-
tors 8i and &2 into squeezed annihilation operators. For
example, we may transform a

&
as

S ]2(z)a]2;z(z) =a]coshr+a2e 'Psinhr =—A, (z), (1.10)

S „(z)=exp[r( —y', y,'e" +y]y2e "')] . (1.19)

&gain, the squeezed state
I y, 2 &, can be generated by first

applying (1.19) on the vacuum followed by a displace-
ment [cf. (1.7)]:

ly]2& D(l 12)S 12(z)I0& (1.20)

In the two-mode case the meaning we assign to a, p, r, ]I]1

is the same as for the single-mode case, except for the
squeeze factor. In the former case, r mediates the cou-
pling between two distinct modes 1 and 2, while in the
latter case, r mediates the coupling between the same
mode. Compare, e.g. , S in (1.19) with S in (1.15). This
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point may be made even clearer if one lets r —+0 in the ex-

plicit expression for the annihilation operator I i (or I 2):

i/iwhere we set yi ——Iyi Ie '. For a given r, extremal values
for (1.25) obtain when 2/i =y and 2P, =g&+ ir, that is,

I"i=ai lailcoshr+& ze '+lazlsinhr ((bP, ) ) —=e +—"(N, )+sinh r(1+sinh2r) . (1.26)
+b, e '

IP, I
coshr +b ze

'
IP2I sinhr . (1.21)

D. Non-Poissonian statistics and squeezing

One useful figure of merit for a squeezed state is the
departure from Poissonian statistics for the number of
bosons in the state. Consider the distribution (P) of
the number of bosons yi in the state

I y, 2), . Results that
will be used in the following are now derived. The width
of I' can be characterized by the square root of

& (&+i)'& =—.& rifi(3 ir"i)'ly12&.

—t.&ri~lr" i&lri2&. ]' (~=I 2)

namely, the variance of the fluctuations of the number of
bosons yi in the squeezed state Iy, 2), . In order to evalu-
ate, say, ((hA', ) ), we first give

In this limit, I
&

only couples && to b]. In the states
ly, z)„ instead rAO, the two distinct modes become so
tightly correlated that they no longer fluctuate indepen-
dently by even the small amount allowed in a coherent
state. ' As we shall see later states like Iy, 2), turn out to
be a good physical representation for a polariton quan-
turn state where the two distinct bosons are excitons and
photons coupling inside the crystal with pairs of opposite
wave-vector modes to form a new excitation of the com-
bined electromagnetic-radiation —dielectric-material sys-
tem. "

The upper sign corresponds to ~ and the lower to 0.
For clarity of exposition in the remainder of this paper,

we will treat only these two limits rather than intermedi-
ate cases. Furthermore, we wil1 consider the limit
Iy i I

))e ", which will turn out to be of some importance
to us. Under this circumstance the coherent contribution
to the mean number lfirst term in (1.23)] greatly exceeds
the squeezed contribution (second term), and
(Pi ) =

I y i I
. Also, the first term on the right-hand side

of (1.26) exceeds the second one and the variance can be
approximated as

&(&N, )') =(, &e '"=s+'-&+ &-, &N &—= ly I'.
(1.27)

This result should be compared with the equivalent re-
sult for a coherent state (Poisson distribution), for which
((bA', ) ) =(Ni ). Thus, the state Iy, 2), carries a non-
Poissonian counting statistics whose deviations are mea-
sured by the squeezed amplitude s —=e". In particular, de-
pending on whether 2P, —y is 0 or m., P(N, ) represents a
distribution broader or narrower than a Poissonian:
s —+super-Poissonian or s ~sub-Poissonian. When

I yi I
is not sufficiently dominant in (8i ), the connection

between ((bNi) ) and (Ni ) is not straightforward. A
completely analogous discussion can be given for the oth-
er mode 2.

.&r»lr"ilri2&. =ri .

Then,

& 8i &—:, & yi2lr" tir"il y 12 &
—Ir il'+»nh'r

(1.22)

(1.23)

II. NONCLASSICAL PROPERTIES
OF CONVENTIONAL POLARITONS

where

I y, I'= la, 'lail'+ Ib i I'IPil'

&Xi+ Ia,P, I(a, hie '+c.c. ) (1.24)

is obtained from (1.2). It is clearly seen from (1.23) and
(1.24) that in the state Iy, 2), the mean number has two
contributions: one arising from the coherent excitation
of the mixed boson y„ i.e., Iy, I, and the other from the
squeezing. Thus, P strongly depends on the relative
weight of these two contributions. Furthermore, as
shown by (1.24), several elements inffuence the coherent
contribution. A straightforward calculation yields

In this section we develop the theory of the quantum-
statistical properties associated with the familiar local ex-
citon polariton. The theory will apply also to the
optical-phonon polariton, or other coupled polarization
mode (photon plus magnon, for example). The Bogo-
liubov transformation from the coupled bare photons
plus bare excitons to polaritons will be shown to be a
two-mode squeezed transformation. This gives rise to
tunable non-Poissonian photon statistics and optical po-
lariton squeezing over the entire polariton dispersion.
The Mandel Q factor that measures these effects is ana-
lyzed. Results for typical I-VII and III-V semiconduc-
tors are reported.

A. The polariton and squeezing

& (aA'i )'&—:lyil'Ie '"cos'I: —,'(y —2/i)]

+e "sin
I —,'(p —2$, )]I

+ —,
' sinh (2r), (1.25)

We briefly review the quantum mechanics of a polari-
ton. We adopt the standard polariton model due to
Hopfield and we emphasize that the local, nonspatially
dispersive case will be treated here. The Hamiltonian'
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'~"" = g [Pick(& kook+ —,')+irir00(b kbk+ —,')+B(k)(& tk&k+&k& tk+& tk& t k+dkct k)
k&0,
k(0

+l A ( k)( b k&k b k& —k +bk& —k +bk& k )]
—= 2 I&+k+&'-"k]

k &0
(2.1)

can be separated into the sum of Hamiltonians for pairs
of wave-vector modes +k and —k, so we begin by con-
sidering a polariton mode of given wave vector +k in
(2.1) and its relevant Hamiltonian. Here, ck and coo are
the bare photon and exciton frequencies, respectively,
with &k and bk the associated annihilation operators,
while

Po is the photon-exciton oscillator coupling strength pro-
portional to a dipole matrix element squared. We tem-
porarily replace

~1,2~~+k, —k ~ ~1,2~b+k, —k ~

~12 ~+k, —k ~ ~ 12~ +k, —k ~

(ficoo) (4irPO)'
A (k)=

2( 11ick iricoo )
'

(iricoo)B (k) =(irPO) ck =

3.75

A (k)
flcop

(2.2)

A,(k) ~—irick, @~irido, o ~4m.PO, (2.3)

so as to make a connection with the results of Sec. I. The
Hamiltonian (2.1), say, for a fixed single mode, can be
represented by the generic bilinear Hamiltonian

'(A. ,p, o ) =A, (& td, + ,' )+p(b—,bi+ —,
'

)

+f(Q tb, &,b ti+—a2b, —0 2b, )

+g(&,it, +8'1&,+8', &2+&,8 2), (2.4)

O
co 3.3 I—

h(dg
fl Gulp

~ 309-

UB

with f=i V'cry— /2'1/Rand , g
—=o p /4A, . It can be

shown that this Hamiltonian can be diagonalized by us-
ing a Bogoliubov transformation in the particular form
developed in Eq. (1.21). The diagonalizing transforma-
tion is implemented with the values of a„a2, p„p2, r, y,
y„and g2 defined by

~~, ~cos r = " [(i"—")'+op,"]-'"(A, +e)( —c, )

2&A, c.

e '~P, ~coshr

2.87—
CI e+ '~(a2(sinhr

1/2
OP

( + )[( 2 2)2+ 4]—1/2

(2.5)

2.65
0,29

1

0.33
1

0.37 0.4I
P [( 2 2)2+ 4] —1/2(k —e)( —e )

2&kc

e '
~P2~sinhr

Polariton wave vector k ( lo crn ) ' 1/2
OP

[( 2 2)2+O 4] —1/2

FIG. 1. Frequencies of the CuC1 exciton-polariton coupled
mode' as a function of the wave vector (solid line): two values,

and co, correspond to each given (real) k, one in the upper
branch (UBP) and the other in the lower branch (LBP). One
wave vector only corresponds to a given energy (no spatial
dispersion) on each branch. The broken lines show the disper-
sion relations of "bare" photons and excitons. ko is the cross-
over wave vector of the bare photon and bare exciton energy
dispersion curves (Acko=kcoo). For an isotropic medium there
is also a longitudinal exciton mode: A'col. coLT ——coI —coo is the
transverse-longitudinal splitting frequency, coo is the transverse
exciton energy, and 6 are the distances of the upper and
lower polariton energy branches from the longitudinal and
transverse exciton energies, respectively.

to obtain

f~"=e(l t,l, +-,') . (2.6)

e F(k, ,p, o )E +G(p—)=O, (2.7)

with F,6 certain functions of A, ,p, o..
Restoring hereafter the notation, one finds [cf. (2.3)]

fP'=.[rt,„l. „+,],
with c solution of

(2.8)

c. in Eqs. (2.5) and (2.6) satisfies a biquadratic equation,
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& —E [(«k) +(&coo)'+4~Po(hcoo) ]+(%coo«k)'=0 .

(2.9)

This yields the correct energy dispersion for polaritons
when e~ck is identified as the "physical" polariton ener-

gy for a given wave-vector mode k. Eq. (2.9) has the solu-
tions c.+k=a. k and c+k=a. k. U and I. denote upperL L U U

and lower branches of the energy dispersion curves. Typ-
ical curves for exciton polaritons in CuC1 are plotted in
Fig. 1.

Thus, Eqs. (2.4)—(2.6) demonstrate the transformation
from bare photon plus bare exciton to a normal-mode
physical polariton is a two-mode particle squeezing trans-
formation whose generator is of the form (1.17). Hence,
states of the Hamiltonian (2.8) are equivalent to two-
mode squeezed states of the mixed bosons

1"'+k = Iap I&~k+e"'"
I pk I&+k,

(2.10)
'Y k lak —Id —k+e Ipk Ib

to the vacuum photon field 8+k. ' We will call this type
of squeezing optical polariton squeezing as compared to
the intrinsic squeezing, introduced above. The exciton-
photon polariton mixture alters the statistical properties
of the vacuum radiation field. This will be treated in
some detail below. Similarly, we can discuss the change
in the statistics of an uncoupled exciton upon polariton
formation.

B. Squeezing magnitudes

Let us then study the properties of polariton quantum
states by characterizing the polariton annihilation opera-

tor I +k.. It depends in general on eight parameters
[a&,pk, y+k, yk, rk J. We will now give the explicit ex-
pressions for these parameters in terms of the starting
coef5cients in the Hamiltonian. This in particular will

permit us to exhibit the squeeze factor, from which we
obtain numerical values of the amount of squeezing for
some specific materials. Equations (2.3) and (2.5) give

The vacuum, number, and coherent states of the polari-
ton Hamiltonian (2.8) turn out to be squeezed with
respect to the vacuum, number, and coherent (two-mode)
states of the mixed bosons (2.10). The latter are the an-
nihilation operators of a photon-exciton mixed particle,
intrinsic to the polariton structure, yet not a polariton.
We will then call the present type of squeezing intrinsic
polariton squeezing, whereas it occurs with respect to the
states of the intrinsic boson y. The physical polariton de-
scribed by the operator below is a superposition of
"dressed" photons and excitons,

Ack+sk N2 k =—Cl, k
2+Ek«k QMp

+4m po
Ip„+ Icoshr, = 1+

2V MI, ~~o

' 1/2
AQ)0

IEI,
—«k

I N2 k
Ia„ I

sinhr„= =—C
2+Ek «k +Mk

=C2, k

(2.14)

g pol~ g pol I ph +I exc
+k r +k +k +k

g pol g pol(

2l +k
—2l gk

~+k~ —k' +&—k~+k'=e

(2.11)

(2.12)

+4~po
Ipk Isinhr„= 1—

2+Mk &coo

where

(&k /&~o)'I

Mk =&z,k+4~po .

1/2
Aa)0

=C4 k

r +"k = Ia„ ld+„c„k+e
' "la„ ld ks„k

and

r +'„=e' +"(Ip„ I

b—+kc„

(2.13a)

+e ""e '' "'+" IP-„ lb' „s„). (2.13b)

that in turn are specified linear combinations of "bare"
photon and "bare" exciton given as [cf. (1.21)]

Ipk I'=1—lak I' . (2.15)

Thus the parameters left to determine are laA+. I, lak I,
and rk We now .give Iak I: From the first and second
two equations in (2.14), one obtains

For our purposes in this paper, we only need consider ab-
solute values in Eq. (2.5). Further, owing to the boson
nature of the y+k's, the two parameters Ipk I

can be ex-
pressed in terms of Iaj, I, respectively, as [cf. Eq. (1.3)]

Here c„=coshrk and s„=sinhrk. Analogous expres-
"k "k

sions hold for the wave-vector mode —k. Equation (2.12)
along with (1.10) further suggests that the photon-field
component of a polariton may be squeezed with respect

I

C2

Thus, (2.15) and (2.16) yield

2 1/2

C4, k
(2.16)

lak+I '= 1+ C2, k
2 '1/2

la„ I

'= 1+
1,k

1 — 1+
%coo Ack

~k ~k1+ 1—
0 Ack

(2.17)
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k

1+)„ , g„= I C3 k I'+
I c4 „I' . (2.18)

We last evaluate rk from the second and fourth equations
in (2.14) and the equalities (2.16). The other determina-
tion of rk using the first and third equations in (2.14) is
equivalent owing to (2.16). We obtain

a+ (fiick —E„' )
tanhTk '

(Xck+s„")
1/2

58.00

38.00
O

O

18.00
l2
n) 17.00

g. 15.00
(I)

CuCI (UBP)
CuCI ( I BP)

r '= —'lnk

ak1+
&k

1

U, L
k

k

U, L 1k

k

(2.19)

From the second of these equations, tanhrk ( 1 as it must,
while the first one tells us that distinct squeeze factors
correspond to upper and lower energy dispersion
branches at fixed k (cf. Fig. 1). Further, by changing
(tuning) the wave-vector —energy dispersion along a given
branch, we explore all possible values of the squeeze fac-
tor relevant to that branch. With this we have connected
uk, Pk~, rk, which parametrize the physical polariton
transformation (2.11), to quantities subject to experimen-
tal control. Using Ek' and Iak I

as obtained from Eqs.
(2.9) and (2.17), respectively, we calculate the amount of
squeezing for the upper and lower branches of exciton
polaritons in CuC1 and GaAs for k ranging in the vicinity
of the crossover wave vector kp. These are plotted in
Fig. 2.

It is instructive to solve Eq. (2.18) for the squeeze fac-
tor in terms of the ratio nk ' =Ack/Ek', that is,

5.00

1.00

GoAs (UBP) '=- ~ ~

G g (LBP)

k
GaAs
0

0.25 0. 52 0. 59

Polariton wave vector k ( IO cm )

0.46

hU+ h coLT
rp =—tanh

2h cop
Tp = tanh

2Acop

(2.21)

Generally speaking, rp increases for small transverse exci-
ton frequencies and large separations A.

FIG. 2. Magnitude of the squeeze factor in CuCl and GaAs
exciton polaritons as a function of k calculated within the con-
ventional Hopfield model from the exact expressions (2.18) for
LBP {—- ——) and UBP ( —.. —.. —..—..) modes in the vicini-
ty of ko. All the numerical evaluations have been here obtained
using material parameters as given in Ref. 16: %coo" '=3.20 eV,
A'coo' '= 1.51 eV, e " '=4.6, e ' '= 12.5, 4vrP " '=0 0158
4~P() ' '=0.0013.

nk , obta'ined by solving Eq. (2.9),

I
n U, L]2— Ack 4m po

1 —(~k' ~~o)UL UL 2

r~~ =r~~= 'In[n UL]—
P = ko 2 ko

(2.20)

From (2.18) one also has

is just the square root of the exciton-polariton dielectric
function. Two points are to be noted here. The squeeze
factor is directly connected to (1) the index of refraction
of the medium and (2) the weights of the exciton and pho-
ton components of the polariton. This settles how

squeezing in polaritons is related to intrinsic properties of
the dielectric material. A value of unity for the bulk
dielectric constant (eb ) is assumed throughout this treat-
ment: It derives from taking ck as photon frequency in

Eq. (2.1). An eb&1 is introduced by rescaling the speed
of light in vacuum c ~c /+eb.

A. special value of rk which will become useful in the
following sections is that evaluated at the wave-vector
crossover kp of the uncoupled light and exciton energy
dispersions (see Fig. 1); from (2.17), Iak I

= Iak I, and

then

C. Non-Poissonian photon statistics
in a polariton coherent state: theory

In this section we discuss the fluctuations of the num-
ber of bare photons in a polariton quantum state. As for
quantum states of the polariton field, one might consider
either number states

I ng ), in which a mode k is occupied
by nf polaritons, or coherent states. The former are a
convenient basis when experiments with a fixed number
of particles are involved, but they are not of direct
significance, however, in a typical solid-state optical ex-
periment where the probe exciting the polariton is usually
a light source with no definite numbers of photons such
as a laser. This more realistic situation can instead be
properly described by using coherent states: in the fol-
lowing polariton coherent states will be considered as the
quantum states relevant to our problem. Specifically, we
will show that the Poissonian number distribution,
characteristic of vacuum photons in a coherent state,
does turn into non-Poissonian when referred to an
exciton-polariton coherent state. According to the treat-
ment given in Secs. I C and II A, the latter are the eigen-
states Iy+k ), of the annihilation operator (2.11) or the
two-mode states in Eq. (1.16). We first give the variance
of the bare photon number 8 ~+ k

=& + k a + k in a polari-
ton coherent state. In Appendix A we show that



QUANTUM-OPTICAL PROPERTIES OF POLARITON WAVES 3743

((SA'~")') = "(8[")—~a'p+~ ~

+ + (IPk I
+ 1—, ke "—

IPk I'~-(,k}+IPk I'[&(~&5"}'&—~ok]
ak

+~ak ~ [[1+sinh(2rk)]sinh rk+e "~Pk
~

(8k"') —A z k~Pk ~ ], (2.22a)

1. High photon intensity

First of all, since (8$") is related to the intensity of
the coherent photon flux (Appendix B}, one can always
choose this intensity such that the first term on the
right-hand side of (2.22a) dominates, the squeeze ampli-

"ktude (e ") remaining unaltered. By varying the intensity,
the mode k of the polariton which is populated remains
fixed and so does rk Thus u. nder this circumstance [cf.
also Eq. (1.27)],

&(~A'~")') =e- ""&8
t,")=s "&Pg"& (2.22b)

In this case the distinction between Poissonian and non-
Poissonian depends on the squeeze amplitude sk only.
The latter characterizes the noise-power reduction ratio
in a semiconductor, which is nearly constant (=-0.99) for
GaAs, but slightly varying (0.91—0.99}for CuC1 exciton-
polariton modes in the vicinity of the crossover wave vec-
tor ko. The above result readily shows that the change of
the photon statistics when an exciton polariton is created
relates to intrinsic properties of the dielectric: It de-
pends, through sk, on the index of refraction.

where Aok, A+I k, A
& k, and A 2k are complicated

functions which, for clarity of exposition, are only given
in the Appendix A. In (2.22a) the expectation values are
all evaluated upon the states

~ y+k ),. Denoting by ~
vac )

the vacuum photon coherent state, the corresponding
number distribution is such that

&vac~(bA' ~kk) ~vac&= &vac~A'&"~vac&;

by comparison (2.22a) thus shows that bare photons in a
polariton coherent state do not have a Poissonian (classi-
cal) distribution. Due to the complicated form of the
general result (2.22a}, we will now note some
simplifications.

&(~A ~")'&=. ""(("&
sinh rk+ [1+sinh(2rk ) ]

ak
+2rk

+ IPk I
~ —), k Iak I ~1 k

(2.22c)

More precisely, the validity of Eq. (2.22c) not only de-
pends on the relative magnitude of ~ak ~

and ~pk ~
but

also on their individual magnitudes, on the index of re-
fraction, through rk, and on the values of A', k and

A& k. These are all mode-dependent quantities and the
conditions under which the approximation (2.22c) is valid
must be accounted for case by case.

We notice that Eqs. (2.22) may also be used to obtain
specific results for the degree of second-order coherence
and the Mandel Q factor. ' They provide an equivalent
way to describe the photon statistics. For the former we
have

(,)
&~ k~kd kdk & (,)

while the latter can be given as [cf. (2.22a)]

( (~& (")'&—&&)"&

Qk =— „=—e "—I+6,k . (2.24)

In the case of high photon intensity or when the polari-
ton mode can be singled out so that the approximation
(2.22c) holds, one has, respectively,

(2.25a)

and

Qsm —(e "k

2. Selected polariton modes

1

(g h)

S1nh rk
[1+sinh(2r„) ]

ak
+2rk

+ IP'k I

Otherwise, regardless of the coherent photon intensity,
one may simplify the result (2.22a) by using the fact that
the magnitudes of ~ak ~

and ~pk ~
vary by tuning the ener-

gy of the polariton mode. One can conveniently excite
polariton modes such that, for instance

~ pk ~
is appropri-

ately smaller than ~ak ~, in which case neglecting terms
quadratic and of higher order in ~Pk /ak ~

(2.22a) is ap-
proximated by

(2.25b)

Recall that in the coherent state case, Qk=0, while
departures of the photon statistics from this case are
measured by Qk+0. Sub-Poissonian statistics carries a
Qk &0 while the opposite holds in the super-Poissonian
case. Let us also recall that the lower and upper signs



3744 M. ARTONI AND JOSEPH L. BIRMAN

correspond to pk =cpk/2 and pk =(yk+tr)/2, respective-
ly. pk is the phase of the complex eigenvalue yk

yk =tan

blakl»npk+ + bk»n(pk+yk)

&k bak lcos4'k + + bk cos(4'k+Xk )

(2.26)

Qk;„=(e "—1)+5k for pk =0'k/2,

g+
k =

Iaka„+ I'+sinh'r„

sinh rk
X [1+sinh(2r„) ]

(2.27b)

+ IPk I

&k

or clearly in the case of high photon intensity, for which
one has

+2rk
Qk'~, „=e "—1 for Pk =(yk+vr)/2,

2rkQk'~;„=e "—1 «r pk=qk/2.

(2.28a)

(2.28b)

In both cases one simply has pk=pk. The functional
dependence of pk is otherwise quite complicated.

Typical values for Q in the wave-vector region of in-
terest to us are rather small and can be directly estimated
from the results of Figs. 2, 4, and 5. For exciton polari-
tons in GaAs, sub-Poissonian statistics amounts to a Q"'
varying in the range [—0.016, —0.020] and

[—0.018, —0.021] for UBP and LBP modes (see Fig. 1),
respectively. For exciton polaritons in CuC1 the devia-
tions from Poissonian are of the same order of magni-
tude, though slightly bigger: Q"' ranges between

[—0.079, —0.058] and [ —0.095, —0.06] for UBP and
LBP modes, respectively. In each semiconductor the
same values, with positive sign, apply to the case of
super-Poissonian statistics, owing to the small r ( —10 )

involved. On the other hand, when particular modes are
selected (Iak I

)) Ipk I ), one has to include the additional
5 to the relevant Q', which, however, does not sensibly
modify the previous estimations for Q. In the wave-
vector crossover region of the polariton spectrum, taking,
e.g. , Iak I

=10 (Appendix B), one has 5=10 for GaAs
and 6=10 "for CuC1.

D. Detection analysis

In the remainder of this section we discuss from a
theoretical point of view the problem of detection of

All parameters are defined in Sec. I [cf (1.2) —(1.6)]. Ow-
ing to the rest 6k, it is difficult to establish whether the
two choices above for pk correspond to extremal values
of the exact Mandel factor (2.24). They do so, however,
either when the polariton mode is such that

I uk I
)) Ipk I,

in which case
+2'Qk,„=(e "—1)+5k for Pk =(q&k+~)/2, (2.27a)

Vacu

Leaky Polariton PD

Crys

k Polariton COUNTER

a&

a&
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I

I

I

I

I

I

I

I

P„(T )

FIG. 3. Analysis of a direct-detection experiment. The elec-
tromagnetic field of a bulk polariton propagating inside the
crystal at critical angle (0, ) leaks off the surface X (onset), gen-
erating a running evanescent wave into the vacuum in contact
with it which directly falls on to the photodetector (PD). The
transmission at the beam splitter (BS) accounts for surface losses
and the nonunity quantum efficiency of the photo detector. The
detector D and the beam splitter model the surface-
photodetector system. Practical detection schemes are more
fully discussed in Ref. 33.

non-Poissonian features of the electromagnetic radiation
associated with polaritons. According to the results
above, the main requirement is the extraction of the po-
lariton photon-number mean and variance [Eq. (2.24)].
The simplest attempt consists of a photon-statistical type
of experiment in which the polariton light, carrying a
number distribution P„, falls directly into a photodetec-
tor. This would require a photodetector embedded in the
medium where the bulk polariton is excited. A lumines-
cent impurity center might be used. Here, however, we
examine another scenario.

Any bulk polariton inside a crystal of finite extension
has its counterpart at the surface: It is an evanescent
electromagnetic wave ' associated with a leaking bulk po-
lariton excited in the medium. A suitable photodetec-
tor device (PD) will make it possible to measure the pho-
tocurrent due to this leaking evanescent wave in the sur-
face of the crystal, and schemes for implementing this
can be developed. For the present we assume this can
be done and a possible schematic of the method which
could be used is given in the inset of Fig. 3. Processing of
the photocurrent generated by the leaking polariton radi-
ation just above the surface provides a statistical distribu-
tion, say, P„(T), of the number of photocounts recorded
during repeated periods of time T. P„(T) provides a
record of the photodistribution P„(T). Distortions by
surface sects (dissipations) and nonunity quantum
e+ciency of the photodetector need attention. These
effects can be included in our description phenomenologi-
cally: the losses due to the surface and nonideal detector
can be modeled by the arrangement of Fig. 3 ascribing
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(2.29)

and

(2.30)

with &(bg ~") ) and &1V t'") given as in (2.22). The pho-
ton number appearing in the above expressions should be
interpreted as the Aux, in units of quanta per unit time, of
photons associated with a given polariton mode, multi-
plied by the time T. The Mandel factor following from
(2.29) and (2.30) is then

=y 0(y(1
&mph)

(2.31)

Sub-Poissonian statistics, e.g. , of the electromagnetic ra-
diation associated with a bulk polariton, corresponding
to negative Q's (in the crystal), thus produce sub-
Poissonian statistics of the electromagnetic radiation as-
sociated with the leaking wave of a bulk polariton, indi-
cated by negative 0's (above the surface of the crystal).
However, the magnitude of these nonclassical effects is
attenuated by surface and detector losses. The attenua-
tion is characterized by an effective e%ciency
y =@DE&=—0.7, where yD is the photodetector eKciency
and yz the efficiency for propagation on the surface limit-
ed by dissipations such as, e.g. , absorption, scattering,
diffraction, and other extraneous dissipative effects. High
detection quantum efficiency yD) 0.9 can typically be
obtained, whereas smaller values yz——-0.8 compete to
surface propagation losses. In order to optimize the
"useful" noise reduction in the radiation field associated
with polaritons, one may excite modes with a large
squeeze factor. An analogous discussion holds for the
opposite case of super-Poissonian statistics.

E. Squeezing in the electromagnetic portion of the polariton

Classically, ' an exciton-polariton wave has both the
characteristics of an electromagnetic wave and of an exci-
ton polarization wave. Quantum mechanically recall that
I +k, the Fock space annihilation operator for a physical
exciton-polariton mode k, can be separated to give the

them to the loss of light at a beam splitter, which
transmits only a fraction of the incident amplitude.
Thus, generally speaking, if 8 represents the polariton
radiation field, the destruction operator of the "detected"
field is

~1/2g +( 1 ~ )1/2g

y, the loss in photon units, accounts for both types of
loss. To conserve energy (or preserve unitarity), the beam
splitter must have a second input port into which a free
field propagates. That accounts for the fluctuations asso-
ciated with dissipation. It is assumed to be in a vacuum
state (8„). The field represented by d is then assumed to
be detected with 100%%uo efficiency at the detector D. The
photocount distribution produced by a similar direct
detection scheme yields for the photocount mean and
variance of the polariton leaking radiation

(2.13c)

Q k
= Qg Qk c Qk S

and an analogous expression for the mode —k. This
equation emphasizes that the dressed photon field associ-
ated with the polariton inside the medium differs from
the "bare" free-space photon field. Examining (2.13c)
more closely, one notes that the photonic part of the po-
lariton transformed operator has the form of a (two-
mode) squeeze transformation from the bare photons a+k
to the dressed ones f'~+k. We emphasize once more that
we reserve the term optical polariton squeezing for just the
process converting bare (d+k)~dressed(I +k) photons
according to Eq. (2.13c). The transformation (2.13c) is
perfectly well defined for any value of k, however inspec-
tion of the expressions for Iak I

and Iaj, I
shows that at

the crossover wave vector ko the squeeze transformation
(2.13c) takes on a particularly simple form ( I ak I

=
I ak I

).
0 0

In Fig. 4 we report Iak I
and Iak I

for UPB states in the
vicinity of ko. Below we will illustrate optical polariton
squeezing by referring for simplicity to the particular
wave-vector mode ko.

Keeping in mind the restricted use of the term optical
polariton squeezing, we then proceed to investigate the
photon statistical properties connected with optical
squeezing in exciton-polariton coherent states

I y+k ), .
The results of Sec. II C will then be used: namely, recall
that in the case of high photon intensity one has a non-
Poissonian photocount statistics characterized by [cf. Eq.
(2.22b)]

—0. 00
0.85 0. 58 0. 59

Polaritor) wave vector k ( IO crn )

FICx. 4. Photon partial weights Iak I
and Iak I

in the vicinity
of ko for CuC1 and GaAs exciton-polariton UBP modes. Span-
ning the wave-vector interval from left to right, Iak I, and Ia& I

assume increasing and decreasing values, respectively. A simi-
lar behavior occurs for the exciton partial weights IP„+I and

Ipk I going in the opposite direction.

photon and exciton constituent particle operators [Eqs.
(2.11) and (2.13)]. Its electromagnetic portion, described
by a "dressed" photon of which we now analyze the
quantum-optical properties, is for our purposes rewritten
as

2l tPkI ~+k =—a k Ic„&+k+e "la k Is„a
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((gg ph)2} e 0(g~h } ghi — 0
0 0 0

(2.32)

+ and — respectively refer to a photon phase
4k =( Pk +~)/2 or 0k Pk

If restrictions on the photon intensity instead apply,
one then should use the approximated result (2.22c).
This can be done when

I pk I
is appropriately smaller than

Iak I. This possibility is now investigated in detail and
we begin by rewriting (2.16) as

~+
k =K

p+
( E —

iiicoo)( E+Rck )

&A'ck
(2.33)

ic=
I
A'coo+4irph'coo] is a quantity characteristic of the

dielectric material, while the rest of the ratio is mode
dependent. At k —=kc, (2.33) takes on the form (cf. Fig. 1)

ko

pk,

(A'coLT+ 5 U ) 2(AcoLT+ 5U )+
+4irp, (&coo)' (A'con )

(upper branch) (2.34)

CX ko

pk,

1

+4m.pc

(lower branch) (2.35)

In principle, small oscillator strengths and transverse ex-
citon energies along with large separations 6 are required
to have satisfactorily large ratios. In Fig. 5 we report the
ratio Iak /pk I

when we sweep the wave vector across kc.
Exactly at ko, Iak I

and Ipk I
are practically equal, at

least for the materials here examined: therefore, approxi-
mating (2.22a) with (2.22c) may not be entirely justified
by simply neglecting second- and higher-order of
Ipk /ak I, but in general the values of n at kc and of the
values of the 3's must be also taken into account as dis-

E
D

0.36
O

L
O

0.32

o Q. 28
L
CJ

O
Q

F1Q. 5. Ratio of Ia„+I and I13k I
in the vicinity of the cross-

over ko (arrows) for UBP exciton polaritons in CuC1 and GaAs.

cussed in Sec. IIC. Interestingly enough, however, and
especially in the GaAs sample, a slight detuning to the
right of ko shows a rather fast decrease of the ratio
Ipk /ak I, yet maintaining Ia i+,

I
and Ia k I satisfactorily

close to one. In the LBP the use of the same result
(2.22c) is more appropriate because the ratio IPk /al+,

I
is

slightly bigger than the one for the UBP. This is directly
estimated from Eqs. (2.34) and (2.35).

In summary for arbitrary photon intensity, predictions
on the nonclassical behavior of photons in a polariton
coherent state due to optical squeezing are not in general
as straightforward as for the high-photon-intensity case.
The validity of the approximation (2.22c) must be careful-
ly examined case by case.

Recalling (2.21) and considering that the present model
can be applied to phonon polaritons as well, a bigger or-
der of magnitude for ro can be expected in general be-
cause in this case the ratio b, /A'con takes on values larger
than in the exciton-polariton case. Typical values of ro
can be estimated using (2.21). For (TO-) phonon polari-
tons in ionic crystals such as, e.g., GaP typical values are
nearly one order of magnitude bigger than in the
exciton-polariton case. Optical squeezing in phonon po-
laritons is being studied and will be reported in Ref. 37.
Elsewhere, we have analyzed practical detection
schemes that clearly display any squeezing and non-
Poissonian behavior present in the electromagnetic com-
ponent of a mixed polariton wave.

III. NONCLASSICAL PROPERTIES
OF GENERALIZED POLARITONS

In this section we investigate the quantum-statistical
properties of a microscopic polariton Harniltonian that is
more general than the conventional Hopfield one of Eq.
(2.1). Study of the generalized version is of importance
for several reasons. This Hamiltonian can be shown to be
a more complete version than the approximation of
Hopfield: It is shown to contain additional terms that are
dropped by the Hopfield model. The Hamiltonian does
give a frequency dispersion equation cok for polaritons
which agrees with experiment —as does the previous re-
sult IEq. (2.1)]. The added terms complete the new Ham-
iltonian to be an element in the dynamical algebra
Sp(8,C). Within the framework of this polariton model
Harniltonian we give an interpretation to the origin of
squeezing in polaritons. Indeed, one can show that it is
isomorphic to a standard two-mode squeeze Hamiltonian.
Certain entities —denoted by c—are squeezed, which are
themselves mixtures of exciton and photon. These Bose
quasiparticles are not the physical polaritons: Their rnix-
ing coeKcients are not of the polariton, and their disper-
sion equations also differ. From the mathematical
viewpoint, the c's arise as a first step when the total new
Hamiltonian is diagonalized in two steps. In the second
step an efFective interaction 8,„, between the c's is taken
into account and the completely diagonalized Hamiltoni-
an giving polaritons is achieved by a squeeze transforma-
tion. From the physical point of view, if the eftective in-
teraction is supposed turned ofF', these bosons would be
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the proper normal modes and would be true physical
quasiparticles of that resulting Hamiltonian. They are in
fact the normal modes of the propagating component of
the exciton-polariton field.

Two interpretations of the appearance of squeezing in
polariton states are here presented. One, within
Graham's framework, relates to a sudden transition
from states of the boson c field to states of the physical
polariton field. In this context, the boson c plays the role
of an intermediate quasiparticle in the transient (of time)
it takes to turn on the interaction. The other interpreta-
tion relates to quantum correlations in polariton states
between quasiparticles c of opposite wave vectors. We
finally present results on the magnitude of squeezing in
the exciton polariton for CuC1 and GaAs. These would
be contrasted with the corresponding results in Sec. II for
the conventional truncated Hopfield Harniltonian. We
also examine time-dependent changes in the statistics of
polariton coherent states and we demonstrate a cyclic
reduction and/or increase of the quadratures noise in
those states: Squeezing occurs twice per cycle. A de-
tailed quantitative illustration is given for CuC1.

A. A generalized polariton Hamiltonian

We now introduce a polariton Hamiltonian that can be
obtained by a microscopic theory of the dipolar matter-
radiation interaction, retaining terms in the dipole-dipole
interaction which are dropped in obtaining Eq. (2.1)."'
In the second quantized form we have

corporating bare exciton-exciton interactions are now in-
cluded in Eq. (3.1). Moreover, as mentioned, this Hamil-
tonian realizes the dynamical algebra Sp(8,C); other
dynamical algebraic classifications are also possible.

We proceed by diagonalizing H ", but in two steps.
This will permit us to formally demonstrate the isomor-
phism between the generalized Hamiltonian (3.1) and a
standard two-mode squeezing Hamiltonian. First, per-
form a partial diagonalization so as to introduce new
mixed quasiparticles and their residual interactions: We
represent them by Bose operators c+k ..

c+k ——e ak&+k+e pkb

c+k —= e ak& ~k+e pkb +k,
(3.2)

(3.3)

H,„,=2 g gkc+kc k+H. c.
k &0

(3.6)

H " ' now depends on the six parameters
Ak, gk, ak, pk, gk, gk that are related to the old ones by
the transformations

nkak =fick+2Bk, nkpk =%COO —2C/, ,

The ak's and Pk's are real. After some algebraic manipu-
lations, (3.1) can be transformed to the following form:

H ~"= g IH ~~k+H"'k I+H. c. —:Ho+H, „, , (3.4)
k &0

Ho—= —,
' g Qk(c +kc+k+c kc k+1)+H.c. , (3.5)

k &0

with

A "=g IH/+k+8 ~" I+H. c. ,
k&0

H ~+k hk =Eg"& +—ka+k+Ek"'b +kb

+BkQ+ka k
—Ckb+kb

+)A )k& kb+k+tA2. k +kb+k

(3.1)

(3.7)

'(fk+QJ )
20kakpke /A lk +kakpke /A2k

Here we take gk =0 and gk =7r/2, ak =cosOk, and
pk =—sinOk. The later identification is consistent with the
commutation rules (3.3). The number of parameters in
(3.4) then reduces to Qk, gk, Ok. The next step of our (di-
agonalization) procedure proceeds by introducing a
second Bose quasiparticle,

Eg"= +Bk, 1+k ™kc+k+Nkc+k r ~k Nk = 1 (3.8)

i6C00Eexc
k =

2 k &

i5C00

in terms of which we can rewrite 8 ~" in the fully diago-
nalized form

(3.9)

Ack and Scop are the bare photon and transverse exciton
energies, whereas I A, k, A2k, Bk,Bk, Ck, Ck I are
coefficients that parametrize the Hamiltonian. For the
present we remark that these can be determined in princi-
ple a priori by the microscopic theory. Our approach,
however, is to treat them as phenornenological parame-
ters that we can and do determine by having recourse to
the experimentally measured polariton dispersion curves.
By comparison to Eq. (2.1), note that terms explicitly in-

At this stage we observe that finding the coefficients in
H k" (A, k, A2k, Bk,Bk, Ck, Ck ), so that for every mode:
(1) the eigenenergy sk reproduces the experimentally
measured exciton-polariton energy and (2) the parameters
of 8 P' satisfy consistently the isomorphism (3.7), is

equivalent to showing that H pk" represents a physical po-
lariton Hamiltonian and that 8P' implies squeezing.
Equation (3.4) is indeed the usual form of a two-mode
squeezing Harniltonian, and squeezing occurs with



3748 M. ARTONI AND JOSEPH L. BIRMAN

respect to the c+k's, mixed bosons whose dispersion is
given by Qk, and whose residual interaction is H,„, with
interaction strength measured by gk. In order not to in-
terrupt the continuity of the presentation, we will show in
Appendix C that it is in fact possible to fulfill the points
(1) and (2) above. Thus,

H "(A, k, A 2k, Bk,Bk, Ck, Ck ) =H ' (Qk, gk, Ok ), (3.10)

'g+k = 'g+k (X~y ~Z ~ N ) =X&+k +yb T k +A + k +Wb + k

(3.11)

Now we characterize the amount of squeezing relevant
to a polariton. We exploit the isomorphism (3.10). We
first connect the polariton eigenenergy and eigenvectors
to the parameters of the squeeze Hamiltonian (3.4), e.g.,
by requiring that

and c.k is the energy of the physical polariton normal
mode g+k which we rewrite as [cf. Eq. (3.2)]

['9k ~ 1
=Ek'9k

The resulting secular equation,

(3.12)

(Akcos Ok
—Ek) ——Qksin28k 2gkcos Ok

—i gk sin28k

—0 sin20k

2(kcos Ok

(Qksin Ok
—

Ek )

—igk sin28k

—igksin28k

—(Akcos Ok+Ek)

2(kslB Ok

l——Qksin20
=0,

—igksin28 —2$ksin Ok Qk Sin20k
1 —(Ilksin Ok+Ek )

yields the eigenvalues

Ek =&k 40k— (3.13)

iPk
~ b

p+k =8+k COS0k COShrk +b+k e Sin0k COShrk

2l gk+a + ke cosoksinhrk
and the components (eigenvectors) of rjk as functions of
Qk, gk, Ok, c,k. For our purposes it suffices to give

E[&t+b + k e Sin0k Sinhrk, (3.17)

Ek»n(28. )(&kEk++k 40k )

whereas term by term comparison of (3.17) and (3.11)
provides the components of gk as functions of 0k, cpk, rk,
e.g. ,

(3.14)
~y~ =sinOkcoshrk, ~w~ =sinOksinhrk . (3.18)

=»n(28/, )gkek .
X

Next we diagonalize H 'q by a squeeze canonical trans-
formation, i.e.,

H"=y&k(p„pk+, ), I"+k S(rk, q )c+kS ——(rk, q) .
k

(3.15)

Here,
2l+k~ ~ 2

S(rk, yk )=e"p[rk(e c+kc k
—e c +kc k )]

(3.16)

is a two-mode squeeze unitary operator, ' rk and yk
21,40

being referred to as the squeeze factor and angle, respec-
tively. Evidently, both pk and gk diagonalize the same
Hamiltonian [cf (3.12) to (3.15)] so they are equivalent, '

and the eigenergies are independent of the basis represen-
tation, i.e., c,k =c.k. Using the properties of S and the ex-

plicit definition of c+k in terms of the original vacuum
photon and exciton operators, one can rewrite p+k in

(3.15):

Finally, by eliminating Ok from (3.14) and (3.18), the ex-
pression for the polariton squeeze factor rk follows:

rk =tanh
2(k

~k++k
(3.19)

The amount of intrinsic squeezing can be tuned by chang-
ing the wave-vector —frequency relation of the polariton
mode that is excited. This has been calculated in Fig. 6
for UBP and LBP modes in different semiconductors.

An obvious question may arise about the interpretation
of H ~" in the form given by Eq. (3.4). Accordingly, the
generation of squeezing in polariton states would be by
the action of the interaction Hamiltonian H,„,. The sys-
tem suggested here to generate squeezing in polaritons is
similar to the system of a two-photon laser where two
photons of the same frequency with wave vector +k and
—k can be absorbed in a transition which is of second or-
der in A p. In the present case the counterpropagating
terms are "spontaneously" present in the Hamiltonian,
using a running wave quantization of the bare photons
and excitons. See Ref. 3 for the analogous case of pho-
nons. A degenerate parametric amplifier interpretation
may as well be suitable to 8 "in (3.4): This is in fact the
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CuCI ( LBP) .~—GaAs (LBP)

structure (squeezing) of the vacuum state of the photon-
exeiton system, will be discussed in Sec. III B.

B. Time evolution from coherent to squeezed state
1

0.62O
C3
O

U

f4 0.52
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0.32
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FIG. 6. Magnitude of the squeeze factor in CuCl and GaAs
exciton- polaritons as a function of k calculated within the gen-
eralized polariton model for LBP ( —- —~ —~ ) and UBP
(—..—..—.. —..) modes in vicinity of the crossing wave vector
ko.

Hamiltonian for a typical two-photon device. ' ' '

The analogies are, however, only formal. The physi-
cal scenario here is different, yet the quantum statistics is
the same. The c's are actual quasiparticles of the
photon-exciton system, namely, they are the quanta of
the propagating component of the polariton field. They
have been studied in a different context. Thus, 8' "
given in Eq. (3.4) can be physically interpreted. A'o is the
free evolution of the quasiparticle c that is being
squeezed. 8,„„giving the squeezing, is the interaction
that originates from mixing c s with opposite wave vec-
tors. This type of interaction is intrinsic to the polariton
"construction" and it does produce correlations between
counterpropagating c's in a polariton state. Specifically,
this correlation causes pairs (c+k, c k) to be created or
annihilated: That is apparent in the interaction part of
the Hamiltonian, which contains terms that are purely
quadratic in the creation and annihilation operators. The
connection between wave-vector mode correlations and
squeezing will be discussed later. Since the interaction
that produces squeezing in the propagating component of
the polariton field is built in 8 i'", polariton squeezing
will be referred to as intrinsic squeezing.

A time-dependent analysis can be implemented, in
which one considers the finite time (transient) it takes to
turn on the effective interaction (3.6). Thus, the boson c
is the actual physical quasiparticle that describes the
photon-exciton system during the transient. Since the
latter constitutes only an intermediate stage during the
process of formation of a polariton state, the c's can be
referred to as intermediate uasiparticles. It is
worthwhile stressing that before &„, is turned on, the
bare photon and bare exciton fields and the propagating c
field of the polariton share the same vacuum state l0);
this implies that during this intermediate stage no change
of the quantum statistics occurs. The connection be-
tween the turning on of the interaction P,„„with the
subsequent energy change Qk —+ok and change in the

Here, continuing with the two-mode squeeze frame-
work, we take advantage of the structure of polariton
states as squeezed with respect to the states of the boson c
field of the polariton to explore an interesting time-
development scenario. In turn this will permit us to dis-
cuss some of the nonclassical statistical properties associ-
ated with exciton polaritons. Again, as in Sec. II, we will
consider the polariton system in a coherent state. We in-
troduce such a state and the properties which we will
need by first recalling the separation of the generalized
polariton Hamiltonian into H0 and H,„,. Coherent states
of the diagonal part H0 are defined either as the eigen-
states of the (mixed) destruction operators c+k,

c+k lc+k ) c+k lc+k & (3.20)

or by displacing the vacuum state l0) of the bare photon
and bare exciton system,

(&~2)(le+) I
+ lc k I ) c kc k c+~c+ke elc+k &=e

(3.21)
It is precisely the state vector lc+k ) so constructed that
is a two-mode coherent state ' for the free Hamiltonian
H0.

Next we introduce the squeezed state that one obtains
by applying s on the l c+k ) 's.

g ) lc+k &
= l p+k(rk 'p—) ) =

l p'+k ). (3.22)

where

n+, n =0

(P+k ) (P k)—
n+k'n —k

y+k ), , (3.23)

&"'ll +k &. —sk(tl+k+-,')lx*k &.
(3.24)&"'—=Xek(P krak+-,' ) .

k

The p+'s are complex numbers. Since the ly+k ),'s are
polariton energy eigenstates, from (3.23), l p+k ),
represents a polariton coherent state.

Let us now assume it is possible to prepare a polariton
cavity where the photon-exciton system inside be de-
scribed for t (0 by the Hamiltonian 80. Let the initial
state of this system be the coherent state (3.20). If at
t =0, H&„, is turned on, the system develops for t )0
under the total Hamiltonian Ao plus Hi„„ i.e., 8 ~ '.
Conversely, if 8,„, were always absent, the state of the
system will remain (3.20) for all time. A plausible physi-
cal mechanism accounting for the switching on of this in-
teraction is a sudden frequency change ' during a
Frank-Condon transition

Using the properties of S and those of the displacernent
operator D yields

—( Ip I'I+p „I') ~2
~p+k ~z =e
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, .& peak 1~k I'I)ttgk &,.—= I $(t)
—2Tk

,.&p .I~fl'lI ~ &,.=—Ii(t)
+2Tk

e

sinh(2rk )
sin (cok t )

(3.31)

femto seconds.
In conclusion, we have shown that the probability den-

sity distribution for a polariton coherent state changes re-
markably over the polariton cycle. In particular, in this
state the strength of the propagating field c of the polari-
ton exhibits an uncertainty envelope (fluctuations) that is
periodically reduced far below the classical value —„' asso-
ciated with the vacuum state: This reduction, that is,
squeezing, occurs during a time interva1 hT, and, within
it, takes on different amounts depending on the polariton
mode that is populated.

sinh(2rk )
sin'(~„t) . (3.32) C. Polariton squeezing and wave-vector correlations

With respect to the Heisenberg uncertainty relations, the
inequality holds at each time also for these states, yet
note that here the equality only holds when
cos(2cokt)=1. As time evolves these states do not con-
stantly remain minimum-uncertainty states. This has
been analyzed in detail over a time interval correspond-
ing to a polariton cycle and for different modes: Results
are reported in Figs. 7 and 8. For a certain interval of
time (hT, ), twice in a cycle, one of the variances be-
comes smaller than I t, (coherent or vacuum value), while
the conjugate one becomes larger than I k in order to en-
force the Heisenberg principle. ET,„can be evaluated
for each energy —wave vector polariton mode, as well as
the variable amount of squeezing during AT, . The nu-
merical evaluation of ET,„with relative squeezing is dis-
cussed in Appendix D: Results are reported in Fig. 9 for
an illustrative example of CuC1 UBP exciton polaritons,
for which the typical AT, is approximately a fraction of

0.45

In this section we examine quantum correlations as a
different mechanism to implement squeezing in polari-
tons. The definition of correlation to be used is briefly in-
troduced. Let us consider two subsystems associated
with opposite directions of propagation i.e., +k and —k.
Quantum correlations between this pair of subsystems
can give rise to squeezeed fluctuations in the quadratures
(3.27) and (3.28). If the state in which the pair of sybsys-
tems is prepared can be described by a density matrix p,
then the reduced density matrices that describe the prop-
erties of the subsystems relevant to each direction of
propagation are p+k =tr+kp. A standard approach can
then be used to analyze these correlations, namely, if
p=p+k(3)p k, the subsystems under consideration are
uncorrelated, while if pAp+kcgip k, then they are corre-
lated. In order to develop the discussion to the (squeez-
ing) properties of observables, we consider the two sets of
operators Ic+k, c +k I aild Ic „,c k I defined ill each of
the two subsystems and acting on the space of the +k
subsystem and —k subsystem, respectively. A measure
of the quantum Auctuations of c+k or c k using the
mean-square uncertainty gives

0.37
&Ihc'„I&=tr(p „c'„)—ltr(p „c „)] (3.33)

p 17 Cu CI
upper branch

I

0.31
I

0.35

p p5 ""+""+""+"-+""*-"*... .»

I I

0.39
I

0.47

'' 0,
'* ~ . ''C, .

*.. . "4 ...

Depending only on the reduced densities p+k, & I
hc +t, I &

are independent of whether or not in the state
I & c+k

and c k are correlated. The variances above do not tell
us anything about the correlations between the two sub-
systems. The latter can instead be studied by investigat-
ing the properties of operators acting on "both" subsys-
tems. Consider, for instance, the operator 0'—=c+k+c
whose variance is

k (lO c~ ) & l~f'I'&= y & l~c, l'&+c,
l=kk

(3.34)

FIG. 9. Variation of the amount of squeezing in a UBP CuC1
exciton polariton during ETsq 0 refers to the case of no
squeezing, i.e., I g(t) = I 1„40 (star) refers to the case in which
I g(t) ~0.61 k, while 60 (triangle) refers to the case in which
I g(t) ~0.41 „. Proceeding downwards, the above explanation
repeats itself. Twice the vertical distance between, e.g., two
given triangles yields the time interval during which the width
of the envelope of fluctuations falls below nearly 3

of the
coherent vacuum value, whereas twice the vertical distance be-
tween the solid lines gives ET,q" '. Here ( ———) represents
the quarter period: t = T~,&!4 (cf. Figs. 7 and 8).

with

and

&I&c .I'&= ,'&" '+.c"* c+"k~.
"—c+—c&—kl&c .&I'

l, m =Ek
& I &m &I &m

(real). In principle, the variance of such an operator indi-
cates whether or not in the state

I & the two subsystems
are correlated.
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For the purpose of the present paper let us recall the
quadratures 2 P by which we characterized the polari-
ton squeezing in Sec. III B. X'

$ is the sum of two opera-
tors, one acting on each of the two subsystems +k and
—k, and it is related to f. The relevant variance is

& l~& g I'& =-'(& l~e+k I'&+ & l~e k I'&

Dnk=(8+k& —k ) (8+k )(0—k ) ~ 8+k =C +ke +k ~

(3.40)

This can be evaluated noting that

4D„„=& ~Bo I'& —
& Itt

+2 Redk+c+Re5)
=—'( ( I

b, O'I ) +2 Redk +Re5),

where 5=yk(c '„)=(ck)'.
(3.35)

The number difference is a constant of motion with
respect to 8 "and vanishes if we take the initial number
of quasiparticles c to be equal in the two modes of oppo-
site wave vector. The other term can be calculated, and
in a polariton coherent state one has (p+k real)

dk =(C+kC k ) —(C+k)(C k )

is a measure of the correlation between the quasiparticles
c+k and c k. Squeezing, that is, the reduction of the
variance (3.35) below —,', can now be investigated in terms
of correlations. For a polariton coherent state (3.23) it is
easy to show that c and 5 vanish, leaving

& l~g 'I &=-,'[& l~c+kl'&+& l~c kl'&]+-,' Redk .

8+k+8 —k sinh (2rk )D„= cosh(2rk )—
8+k+V —I

2p+kp ksinh(2rk )cos(2/k )
+

2 2P+a+P —k

(3.41)

Further,

and

Red„= —cos(2pk )coshr„sinhr„

( I b,c+k I ) + ( I
hc k I ) =cosh(2rk ) ~ 1,

(3.36)

(3.37)

(3.38)

D„depends in a complicated way in general not only
k

on the squeeze parameters, but also on the displacements
lp+k I, and it is not simply related to squeezing as d is.

SUMMARY AND CONCLUSIONS

so that squeezing in the q quadrature depends in general
on the relative magnitude of the terms on the right-hand
side of Eq. (3.36). In the range of polariton modes exam-
ined in this paper, correlations contribute to the Auctua-
tions in the quadrature X'q in CuC1 and GaAs exciton po-
laritons, respectively, with (maximum) amounts of 0.6
and 0.66 for UBP modes, and slightly higher amounts,
i.e., 0.95 and 1.18, for LBP modes. An analogous discus-
sion holds for the conjugate quadrature X'g. Squeezing is
achieved provided that

ctgh2rk —sech2rk & cos2yk, (3.39)

which is satisfied for phases such that I2yk I
(vr/2, with

rk ~0 in the present treatment (cf. Fig. 1). However, the
main result of this section is indeed (3.37): It connects
the correlations in a polariton coherent state between c's
with opposite wave vectors to squeezing. Absence of
correlations dk =0, i.e., rk =0 from Eq. (3.37), implies an
equal sign in (Eq. (3.38) and ( IbXgl )~—„', i.e., no

squeezing. The converse is also true. In order to have
correlations between c+k and c k, the requirement of
squeezing is necessary and suf5cient.

In our polariton system is the polarization of the exci-
ton that produces the correlation between the c's. In ad-
dition to our exciton-polariton system, the viewpoint that
correlations can give rise to squeezing has been shown to
be true for multimode squeezed states of light, and for
dipole fluctuations in multiatom squeezed states.

Another parameter one could analyze in the present
context is the number correlation

There has been deep interest in nonclassical aspects of
the electromagnetic field. Squeezing of light has been
demonstrated, following theoretical predictions. ' '
These new effects found in optics have a certain generali-
ty and it seems certain that many important ideas are
likewise applicable to the phenomenology of condensed
matter, and are yet to be discovered. In this paper we ex-
tended the effects of squeezing to the condensed-matter
system of an exciton polariton, a coupled mixed mode of
photon and exciton. Among the interesting conclusions
that we obtain, one certainly concerns the intrinsic
squeezed structure of the polariton. Precisely, exciton-
polariton quantum states are found to be squeezed (polar
iton intrinsic squeezing) with respect to states of certain
intrinsic photon-exciton mixed bosons, yet not polaritons.
Squeezing is time periodic during a polariton period. The
polariton problem has been analyzed within a Hamiltoni-
an formulation. Two different Hamiltonians were investi-
gated: One is the well-known conventional Hopfield
Hamiltonian 8 'i'"", whereas the generalized H i' ' is an
enlarged version of the previous one, mainly because it
includes the exciton-exciton interaction term. The former
has been derived within a macroscopic approach where
the macroscopic electromagnetic and exciton polariza-
tion fields were quantized. ' The latter is a polariton
Hamiltonian depending upon parameters which are de-
rived from fitting of the experimentally measured
exciton-polariton energies. The amount of squeezing is
measured by a squeeze factor that depends on the model
Hamiltonian that one uses, and within each model it de-
pends on the frequency of the polariton that is excited.



QUANTUM-OPTICAL PROPERTIES OF POLARITON WAVES 3753

The parametrization of H"" which we considered yields
a considerably bigger squeezing than that relevant to
~ HOPfield

These nonclassical effects in polaritons are studied us-
ing a representation through which a physical photon in-
side a dielectric is dressed, as a certain linear combination
of vacuum annihilation and creation operators, and simi-
larly for the exciton. This gives us straightforward means
to analyze the interaction of coherent electromagnetic ra-
diation with a resonant polarization (exciton) and to
study the infIuence of this resonant medium on the pho-
ton statistics of the radiation field. Squeezing in the elec-
tromagnetic component associated with a polariton is
found (polari ton optical squeezing) as well as non-
Poissonian photon statistics. Since this entails the reduc-
tion of the fluctuations of the polariton electromagnetic
field component below the limit set by the vacuum Quc-
tuations, our predictions would be most likely of great in-
terest to demonstrate that the electromagnetic field may
be driven into a nonclassical state through the resonant
coupling with another boson, i.e., the exciton, as occurs
in a polariton. Recently, the problem of examining
squeezing effects in a homogeneous dielectric medium has
independently been studied by Abram' and Glauber and
Lewenstein. ' However, to our knowledge, nonclassical
optical effects in resonant dielectrics in interaction with
the electromagnetic field are for the first time studied and
proposed here. The question of measurability of these
effects in polaritons is therefore of considerable impor-
tance and elsewhere we analyzed certain proposed novel
experiments to examine this effect.

Two interpretations of the origin of squeezing in polar-
iton states are here presented, one within the framework
of a sudden transition and the other relating to quantum
correlations in polariton states between intrinsic photon-

I
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APPENDIX A: PHOTON FLUCTUATIONS (VARIANCE)

We start from the result (1.26). We rewrite variance
and mean for 8& ~y+ky+k in terms of the bare opera-
tors 8+k and b+k [cf. Eq. (1.4)]

& y+ky+k &
= lak I'& & +kd+k )

+Ia„+P„+I(. ' "&b'„~,„&

r+k(~t~ b ) )

+Ipk I'&b' kb+k & (A 1)

&(bP, )'& ([b,(y t „y „))')
/t wf w wf + w / +t

y +kg+kg +kf+k / X 7+kF+k ~

The expectation values ( ) are all evaluated on the po»r-
iton coherent states

I y+k ), . Thus,

exciton mixed bosons of opposite wave vectors. This
correlation approach to polariton squeezing seems to be
quite attractive in that as a possible mechanism that
justifies the intrinsic squeezed structure of polaritons, it
may also lead to further understanding of basic processes
in the dynamics of radiation and matter mixing as in a
polariton.

&y kyky kyk &= ak I &a k&kD kctk &+Ipk„l &b kbkb kbk &+lak I Ipk l[(&tie b k &+2&d kftk~kb k &)e "+c c ]

+la;Ilp:I'[(&&kb'+2&b:b;bk~k &)e "+"]

+ lak I Ipk I [(2&& k/tkb kbk &+e "& dkftkb kb / & )+c c ]

and from (Al),

(y', y, )'=la, '&~'k-. k &'+lp, I'&b', b, &'+2la;I'Ip:I(&-'&k &&~kb'& "+")
+2la„+llpk I'((b „b„)(a„b„)e "+c.c. )

+ la/+, I' pk I'( & d / ~k & & b / b/, &+ & ftkb k & & bkd k &+ & & kb k &'e "+ .c ) .

Therefore,

&[~(y'„y„)]')=la,+I'&[&(~k+~k))'&+Iak I'Ipk ill:«k&+2«&k" k)] "+c']
+la+I2lpk I2[e

' "((bd ) )+c(gg" g'"')+c(dk, d k) —(gk"')+c.c. ]

where we have set

+k =~k~k

and

+
I ak I I

pk+
I

3
t [ —( dk ) +2c(8 k"', dk ) ]e ""+c.c. ] +

I
pk+

I

'& ( ~A k
')' &, (A2)
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C(X', P) —= (X'$') —(X') ( f'), ((W)'):—(X') —(X')' .

Substituting Eqs. (Al) and (A2) in (1.26) and using Eq. (2.1S), the exact expression follows:

&(~A ~")')=. ""&8~" &
—la„+p„+l~, „+Ip„' '[&(~E(")'&—~ ]

(A3)

+ « "~'—i, /, lpk I
~ —i, klpk I')

ak

+ [sinh rk[1+sinh(2rk)]+e "P/+,
I

(Rk"') & 2, k P—k I I . (A4)

Here we defined

~ —,k = & (~& k"')'
&

, k:—[—(d„) +2C(S''„"',d„)]e "+cc.
&' i/, —= (d/, )e "+(d/, )e

+k ( (gd )2) +C(g [h g exc)

+C(dk, d /t, ) —(8 '"'/)+c. c. ,

Aok—=e

A, k
——[(d/, ) +2C(A'f", dk )]e "+c.c.

(AS)

APPENDIX B: PHOTO NUMBER (MEAN)

We evaluate the expectation value of the number of
photons in a polariton coherent state. We start from Eq.
(1.23) where we substitute the expression (Al) on the
left-hand side and the expression (1.24) on the right-hand
side:

APPENDIX C: POLARITON —TWO-MODE SQUEEZE
ISOMORPHISM

The polariton Hamiltonian 8 " in Eq. (3.1) is charac-
terized by the six pa~a~ete~s A&p 32k Bk Bk Ck Ck,
whereas H~" in Eq. (3.4), a two-mode squeeze Hamil-
tonian in form, is characterized by the six parameters
Qk, gk, ak, Pk, %'/„iI/k. The isomorphism between these
two Hamiltonians is e6'ective provided the transforma-
tions in Eq. (3.7) are fulfilled. Consistency of Eqs. (3.7)
results in a functional relation, e.g., of the kind
8k =8k(Bk, Ck, Ck) (first four equations), and again al-
lows A, k and A 2k to be expressed in terms of
Bk,Bk, Ck, Ck (last two Equations). At last, only the
three parameters Bk, Ck, Ck are left free in the Hamiltoni-
an of Eq. (3.1). On the other hand, by taking q/k =0 and
0/k =m'l2, ak —=cos8/„and Pk

—=sin8/, as done in Sec.
III A, only the parameters Ok, Ilk, gk are left free in the
Hamiltonian of Eq. (3.4). The former and the latter sets
of three parameters are connected by

(&, & ~ & y /, y/, & =»»'r/, +
I y/, I' (B1) $„=8k+Ct,

or

I
akl' &~'& k&+I a/ pk(«k &e '"+c.c.)+lp'I'&b'b/, &

Ok =Sin
1/2

k

Bk+ Ck
(Cl)

=»»'rk+ la/, I'la/+, I'+ Ib/, I'I p/', I' Qk =(Pick+28k )+(fico —2C )=2(Ef"+E'"')

All expectation values are evaluated on the states Iy+k ),.
Dividing by Iak I

and ordering in the powers of pk+ I~,

one gets

&E~"&=&a ta„&

—
I /,

I'+ + I2

+ Ipk I + (a/, b/,
*—

&d/, ) )+c.c.

+lp, I'(lb, l' —&b', b, & . (B2)

Within the context of the detection experiment of Sec.
IIC lakl is interpreted as the coherent photon fiux

(coherent intensity) multiplied by the integration time
period I .

Now, using these expressions for Qk and g„and taking

Ek as the experimental polariton energy (see Sec. III A), it
is possible, with a three-parameter fitting of the disper-
sion relation (3.13), to reproduce the energy dispersion
branches (UBP and LBP) of a measured exciton-polariton
spectrum. Next, substituting back the numerical evalua-
tions for 8/„Ck, Ck in (Cl), the energies for the inter-
mediate quasiparticles c and the squeeze factor rk, given

by Eq. (3.19), can be derived. It is a self-consistent pro-
cedure in which the fitting of experimental polariton en-

ergies for each branch is optimized through the use of
Eqs. (Cl) and (3.19). The existence of parameters that
consistently satisfy the transformation (3.7) and repro-
duce the experimental polariton energies for dielectric
materials such as, e.g. , CuCl and GaAs settles the iso-
morphism between the squeeze Hamiltonian (3.4) and a
Hamiltonian that represents a "physical" polariton sys-
tem.
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APPENDIX D. TIME-DEPENDENT
SQUEEZED FLUCTUATIONS

What follows is relevant to the quadrature 2 tk

First, define the ratio

and use Eq. (3.32) to obtain the squeeze time interval
AT, as a solution of

Rk(t)~q for q=l
or (D2)

cos(2a2k t ) & sech(2rk )
—coth(2rk ) .

For exciton-polaritons in CuCl we evaluate in Fig. 9
Leek Tsq

' for a spectrum of wave vectors in the vicinity of
ko. AT, " ' for a given k is precisely twice the vertical

distance between the two solid lines. This figure also
shows how t e amoun of squeezing varies during hT, " '

(dotted lines); intermediate values of the squeezing with
their respective durations are here explicitly reported.

The maximum squeezing I ke occurs twice during
the period (T ") of the polariton. Its value depends on
the mode that is excited: approaching ko, the squeezing
becomes more pronounced.

According to Eq. (D2) the results of Fig. 9 are mainly
determined by the magnitude of rk and the polariton fre-
quency cok. Since rk in the range of wave vectors of
relevance to us takes only slightly different values on the
two materials examined (cf. Fig. 6) and since their cross-
over frequencies are not significantly apart, we may ex-
pect that for exciton polaritons in GaAs AT, ' ' is quan-
titatively similar to that for CuC1 for the spectrum of
wave vectors we examined. The same is true for the re-
sults on the envelope of fIuctuations presented in Figs. 7
and 8.
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