
A MINIMUM PRINCIPLE FOR THE QUASI-STATIC PROBLEM
IN LINEAR VISCOELASTICITY

C. Giorgi (1) and A. Marzocchi (2)

Abstract. A minimum principle is set up for the quasi-static boundary-value problem (QSP)
in linear viscoelasticity. A linear homogeneous and isotropic viscoelastic solid under unidi-
mensional displacements is considered along with the complete set of thermodynamic restric-
tions on the relaxation function. It is assumed that boundary conditions are of Dirichlet type
and initial history data are not given. The variational formulation of QSP is set up through a
convex functional based on a ”weighted” L2 inner product as the bilinear form and is strictly
related to the thermodynamic restrictions on the relaxation function. As an aside, the same
technique is proved to be applicable to analogous physical problems such as the quasi-static
heat flux equation.

0. Introduction

The connection between thermodynamic restrictions and variational formulations or,
possibly, extremum principles in linear viscoelasticity was investigated in a number of recent
papers (see [1] for an up-to-date survey). Because of the convolution which occurs in the
stress-strain relation, very often variational formulations of linear viscoelasticity are expressed
by functionals based on bilinear forms of convolution type. Quite rarely an extremum property
holds for the functional under consideration. If so, however, the extremum property proves
to be a direct consequence of the restrictions imposed by thermodynamics on the relaxation
function [2][3][4].

Things are even more difficult when the quasi stationary approximation is concerned,
i.e. when the inertia term is disregarded and solutions are defined on the whole time axis.

A minimum principle for the quasi-static problem (QSP) was established by CHRISTEN-

SEN [5] through a convex bilinear functional that becomes also stationary if an appropriate
class is considered for the displacement fields. Roughly speaking, it states that a factorized
quasi-static solution u0(x, t) = h(t)k(x) minimizes a suitable functional with respect to per-
turbations of the spatial part k(x) only. Such a functional is built up by considering the L2

inner product as the bilinear form. As noticed in [3], the convexity follows from thermody-
namic restrictions, but the functional does not turn out to be stationary unless we assume
the same time dependence for all displacement fields. Hence the whole quasi-static solution
cannot be characterized as a minimum.
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To avoid this objection a “maximum-minimum” principle was built up in [6] by con-
structing a suitable family of convolution type functionals involving Fourier transformation.
Thereby a solution to QSP can be characterized as a saddle point relative to the additive
decomposition (with respect to time) of the displacement field into its even and odd parts.
What is more, this property is crucially related to the thermodynamic restrictions.

Unfortunately, there is no possibility of getting a minimum principle by considering
variational formulations of this kind. Nevertheless, on the basis of the thermodynamic re-
strictions, we are able to get a minimum principle for QSP in a general class of displacement
fields through a single functional.

In order to keep up the convexity property we search for extremum principle via a
“weighted” L2 inner product as the bilinear form. However, since a convolution inescapably
occurs through the stress-strain relation, the stationary property should involve appropriate
and shrinking assumptions. Indeed, unidimensional displacements only are allowed as well as
homogeneity and isotropy of the relaxation function are required.

Since our approach rests heavily upon the special structure of the bilinear form, it cannot
be generalized to two- and three-dimensional displacements, apparently. Nevertheless it is
applicable without restrictions to other analogous physical problems such as the quasi-static
heat flux equation.

1. Setting of the problem

Let us consider a linear viscoelastic homogeneous isotropic body which occupies a
bounded regular domain Ω of IR3. Moreover, we consider unidimensional displacements
u : Ω× IR → IR, so that the constitutive stress-strain relation takes the form

T(u)(x, t) = G0∇u(x, t) +
∫ ∞

0

G′(s)∇u(x, t− s) ds, (1.1)

where G0 is the istantaneous elastic modulus and G′ is the Boltzmann memory function.
For example, an equation of type (1.1) can be found in the study of vibrations of a

spatially homogeneous viscoelastic membrane and in the case of a simple extension (or torsion)
of a viscoelastic wire with one extremity fixed and the other subjected to the traction (or
torque) T.

As usual in materials with memory, the Boltzmann function is required to comply with
a fading memory principle. Following DAY [7], we may state it as follows:

G′ ∈ L1(IR+). (1.2)

Finally, we may account for the body being a solid by letting

G∞
def
= G0 +

∫ ∞

0

G′(s) ds > 0. (1.3)
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Substituting (1.1) into the equation of motion in the quasi-static approximation and
assuming homogeneous Dirichlet boundary conditions we have

G0∆u(x, t) +
∞∫
0

G′(s)∆u(x, t− s) ds + f(x, t) = 0 (x, t) ∈ Ω× IR

u|∂Ω = 0 t ∈ IR.

(1.4)

We shall refer to (1.4), where G0 and G′ comply with (1.2)-(1.3) as quasi-static problem in
linear viscoelasticity (QSP).

Taking into account that G′ can be defined on the whole real line by assuming

G′(s) = 0 ∀s ∈ (−∞, 0),

we can get ∫ ∞

0

G′(s)∆u(x, t− s) ds = (G′ ∗∆u)(x, t),

where ∗ denotes convolution on IR. Using the Dirac δ-function , we introduce

Γ
def
= G0δ + G′, (1.5)

so that (1.4) may be rewritten in the following compact form
Γ ∗∆u + f = 0

u|∂Ω = 0.
(1.6)

In view of the variational formulation we introduce the following

Definition. A function u is called a strict solution to QSP (1.4) with source function f
belonging to L2(IR, L2(Ω)) if u belongs to L2(IR,H1

0 (Ω)) and satisfies∫
IR

∫
Ω

[
(Γ ∗ ∇u)(x, t) · ∇v(x, t)− f(x, t) · v(x, t)

]
dx dt = 0

for any v ∈ L2(IR,H1
0 (Ω)).

For later convenience we denote by f̂ the (formal) Fourier transform of any function f
defined on Ω× IR, namely

f̂(x, ω)
def
=

∫
IR

f(x, t) exp (−iωt) dt ;

similarly, letting the subscript s (c) denote the half-range Fourier sine (cosine) transform, for
any function g defined on Ω× IR+ we have

ĝs(x, ω) =
∫ ∞

0

g(x, t) sinωt dt , ĝc(x, ω) =
∫ ∞

0

g(x, t) cos ωt dt.
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2. Thermodynamic restrictions

In the sequel we shall assume further conditions on G0 and G′ that are derived from
Thermodynamics. Mainly, we recall here the so called Graffi’s inequality

ωĜ′
s(ω) ≤ 0 ∀ω ∈ IR (2.1)

which is a necessary and sufficient condition that the work in sinusoidal processes is non-
negative. As proved by FABRIZIO & MORRO [8], (2.1) is quite equivalent to the Second Law
of Thermodynamics in the form of the Clausius property for isothermal processes relative to
isotropic and homogeneous viscoelastic materials. In the same work it is proved that from
(2.1) it follows

G0 ≥ G∞. (2.2)

It is worth remarking that, according to [9], a stronger version of the Second Law can be
given so that the Clausius inequality reduces to an equality if and only if “reversible” cycles
are considered. If such is the case, then (2.1) is replaced by

ωĜ′
s(ω) < 0 ∀ω ∈ IR \ {0}. (2.3)

and (2.2) holds with the strict inequality sign. Therefore we have the following

Proposition 2.1. Under assumptions (1.2)-(1.3) and (2.3), there exists δ such that

|Γ̂(ω)| = |G0 + Ĝ′(ω)| ≥ δ > 0 ∀ω ∈ IR. (2.4)

As to the link between the solvability of QSP and thermodynamic restrictions, we recall
the following result proved by FABRIZIO in [8].

Proposition 2.2. If the viscoelastic material is a solid, i.e. (1.3) holds, then QSP has one
and only one strict solution provided that (2.3) is satisfied.

Remark . In the previous Proposition 2.2, the inequality (2.3) cannot be weakened into (2.1)
(see [10]). Nevertheless, it is a sufficient but not necessary condition (see [11]).

3. Preliminaries on the variational formulation

A systematic method for the derivation of variational formulations is that pertaining to
the theory of inverse problems of the Calculus of Variations. Here we state the main results
of this theory (see [13]) which are relevant to our purpose.

Let X be a Banach space over IR and X∗ denote the conjugate (dual) space of X. Letting
v ∈ X∗ and z ∈ X, 〈v, z〉 represents a non-degenerate bilinear form whereby if 〈v, z〉 = 0 for
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every v ∈ X∗ (resp. z ∈ X) then z (resp. v) is the null element of X (resp. X∗). Suppose
that U ⊂ X is an open set and let N be an operator U → X∗. Let u + νh ∈ U, ν ∈ [O, ν], for
some ν > 0. If N is Gâteaux differentiable we denote by

dN(u|h) =
dN(u + νh)

dν

∣∣∣
ν=0

the (Gâteaux) differential of N at u ∈ U in the direction h. If there exists N ′(u) such that

dN(u|h) = 〈N ′(u), h〉

we regard N ′(u) as the derivative of N with respect to the bilinear form. Similarly, in the
case of functionals f : X → IR we write df(u|h) = 〈f ′(u), h〉. If there exists a functional f
such that N = f ′ then we say that N is a potential operator.

The existence of a potential for the given operator is crucially related to the choice of the
bilinear form, as it is expressed by the following theorem whose proof is given by VAINBERG

[12]:

Theorem 3.1. Let 〈·, ·〉 be a non-degenerate bilinear form on X. Suppose that

(i) N is an operator from X into X∗,
(ii) N has a linear Gâteaux differential dN(u|h) at every point of the open convex set
D ⊂ X,
(iii) the bilinear form 〈dN(u|h), k〉 on h, k ∈ X is continuous at every point of D.

Then a necessary and sufficient condition for N to be a potential operator in D is that

〈dN(u|h), k〉 = 〈dN(u|k), h〉 (3.1)

for every h, k ∈ X and every u ∈ D. Moreover, if (3.1) holds then N = f ′ with

f(u) = f(u0) +
∫ 1

0

〈N(u0 + ν(u− u0)), u− u0〉 dν (3.2)

u0 being any point of D.

For any linear operator L which is symmetric with respect to the chosen bilinear form
Theorem 3.1 yields a functional f , given by (3.2), which is a potential for L ; that is, in such
a case, the potentialness condition (3.1) reads

〈Lu,w〉 = 〈Lw, u〉. (3.3)

The application of this theorem to a given differential problem requires, as a preliminary
step, the choice of a bilinear form. Most often variational formulations are established by
letting X be the Hilbert space L2(IR, L2(Ω)), and 〈·, ·〉 be the scalar product in that space.
In connection with viscoelasticity, and more generally in the case of constitutive functionals
expressed by convolutions, this choice is unsuccessful.

Since the bilinear form is required to be non-degenerate, an alternative choice for 〈·, ·〉
in the case of space-time dependent functions could be the L2 scalar product with respect



6 C.GIORGI-A.MARZOCCHI

to space and the convolution with respect to time, as made in [12]. This approach leads to
variational formulations with minimum properties in dynamical viscoelasticity [2][3][4] but
with saddle-point property in the quasi-static approximation [6].

In order to reach a minimum principle for QSP, in the next section we shall introduce a
”weighted” L2 scalar product with respect to space and time . It is worth noting that although
this choice leads to a non-degenerate bilinear form which is non symmetric, nevertheless the
potentialness condition (3.3) is satisfied when L is the QSP operator.

4. Minimum principle

For any pair (p,q) of vector- or scalar-valued functions on Ω × IR we introduce the
following bilinear form

〈p,q〉Γ
def
=

∫
IR

∫
Ω

p(x, t) ·
(
Γ ∗ q

)
(x, t) dx dt

=
∫

IR

∫ ∞

0

∫
Ω

p(x, t) ·
[
G0q(x, t) + G′(t− s)q(x, s)

]
dx ds dt. (4.1)

where Γ is defined by (1.5).
Thanks to (1.2), this bilinear form is well-defined on L2(IR, L2(Ω)) but it is easily seen

to be non symmetric. Nevertheless, by virtue of the thermodynamic restriction (2.3), it is
non-degenerate: i.e. if 〈p,q〉Γ = 0 for every q ∈ L2(IR, L2(Ω)), then p = 0 a.e.. In order to
prove this property, we apply Plancherel’s formula to (4.1) and we obtain

〈p,q〉Γ =
1
2π

∫
IR

∫
Ω

Γ̂(ω)p̂(x, ω) · q̂∗(x, ω) dx dω (4.2)

where z∗ denotes the complex conjugate of z. Hence, if

〈p,q〉Γ = 0 ∀q ∈ L2(IR, L2(Ω)) (4.3)

then we have

0 = 2
∫ ∞

0

∫
Ω

{
Re

[
Γ̂(ω)p̂(x, ω)

]
· q̂+(x, ω)− Im

[
Γ̂(ω)p̂(x, ω)

]
· iq̂−(x, ω)

}
dx dω

where q+ and q− are respectively the even and odd parts of q, i.e.

q+(t) =
1
2
(
q(t) + q(−t)

)
, q−(t) =

1
2
(
q(t)− q(−t)

)
,

so that the following relations hold

Re q̂∗(ω) = q̂+(ω) , Im q̂∗(ω) = iq̂−(ω).
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Because of the bijectivity of the Fourier transform from L2 into L2, q̂+ and iq̂− are arbi-
trary and independent functions of L2(IR+, L2(Ω)) when q runs over L2(IR, L2(Ω)). Therefore
(4.3) leads to

Re
[
Γ̂(ω)p̂(x, ω)

]
= 0

Im
[
Γ̂(ω)p̂(x, ω)

]
= 0

almost everywhere on Ω× IR in the sense of L2(IR, L2(Ω)), that is∫
IR

∫
Ω

∣∣Γ̂(ω)
∣∣2|p̂(x, ω)|2 dx dω = 0. (4.4)

Now, since Γ̂(ω) = G0 + Ĝ′(ω) is a continuous and bounded complex-valued scalar function
that does not vanish for any ω ∈ IR by virtue of (2.4), it must be p̂ = 0 and then p = 0 in
L2(IR, L2(Ω)).

Remark. The inequality (2.4) implies that

|||f |||Γ =
∫

IR

∫
Ω

∣∣Γ̂(ω)
∣∣2|f̂(x, ω)|2 dx dω

is a norm in L2(IR, L2(Ω)) equivalent to the natural one.

Finally, to apply Theorem 3.1 we have to prove the potentialness condition (3.3) for the
problem (1.6) with respect to 〈·, ·〉Γ, which reads

〈Γ ∗∆u, w〉Γ = 〈Γ ∗∆w, u〉Γ for any u, w in L2(IR,H1
0 (Ω)).

Denoting by (·, ·) the usual inner product on L2(IR, L2(Ω)), we have

〈Γ ∗∆u, w〉Γ = (Γ ∗∆u, Γ ∗ w). (4.5)

Then, using the fact that Γ is independent of x and integrating by parts with respect to the
space variables, we find

(Γ ∗∆u, Γ ∗ w) = (Γ ∗ u, Γ ∗∆w) = (Γ ∗∆w,Γ ∗ u) = 〈Γ ∗∆w, u〉Γ

which leads to the required result.
The straightforward application of Theorem 3.1 gives

Theorem 4.1. If the relaxation function G satisfies conditions (1.2),(1.3) and (2.3) then
u is a strict solution to QSP if and only if it is a strict minimum on L2(IR,H1

0 (Ω)) of the
functional

Φ(u) =
1
2
〈Γ ∗ ∇u,∇u〉Γ − 〈f, u〉Γ. (4.6)

The minimum property follows easily from the convexity of Φ with respect to the usual
L2 norm, in fact
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Φ(u) =
1
2
(
Γ ∗ ∇u, Γ ∗ ∇u

)
−

(
u, Γ ∗ f

)
. (4.6)

It is worth remarking that, in this case, thermodynamic restrictions are intimately
related to the non degeneracy of the chosen bilinear form, instead of convexity of the functional
Φ.

5. Other applications

It is easily seen that the potentialness condition (3.3) for the problem (1.6) is not satisfied
if the material is not homogeneous or not isotropic. What is more, condition (3.3) fails for
three-dimensional displacements even in the homogeneous and isotropic case.

The previous technique, however, applies successfully to other quasi-static problems in
mathematical physics when constitutive equations like (1.1) are concerned. For example,
we take under consideration a homogeneous and isotropic rigid heat conductor with linear
memory occupying a fixed bounded domain Ω ⊂ IR3.

If we consider only small variations of the temperature θ(x, t) from a reference tem-
perature θ0 and small temperature gradients g(x, t), we may suppose that internal energy
ε(x, t) and heat flux q(x, t) are described by the following linearized constitutive equations
(see [14]):

ε(x, t) = ε0 + α0u(x, t) +
∫ ∞

0

α′(s)u(x, t− s) ds, (5.1)

q(x, t) = −k0∇u(x, t) +
∫ ∞

0

k′(s)∇u(x, t− s) ds (5.2)

where u(x, t) = θ(x, t)− θ0 and α′, k′ ∈ L1(IR+).
The ensuing evolution problem, with homogeneous Dirichlet boundary conditions, is

given by

 α0ut(x, t) +
∫∞
0

α′(s)ut(x, t− s) ds− k0∆u(x, t)−
∫∞
0

k′(s)∆u(x, t− s) ds = r(x, t)

u|∂Ω = 0

so that in the quasi-static approximation we have k0∆u(x, t) +
∫∞
0

k′(s)∆u(x, t− s) ds + r(x, t) = 0

u|∂Ω = 0
(5.3)

or, in a more compact form,
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Γ ∗∆u + r = 0

u|∂Ω = 0
(5.4)

where

Γ
def
= K0δ + k′. (5.5)

The only considerable difference between (5.4) and (1.6) is that concerning thermody-
namic restrictions. In fact, as proved by G.GENTILI (see [14]), in a rigid heat conductor
satisfying (5.2) the Second Law of Thermodynamics holds if and only if

k0 + k̂′c(ω) > 0 ∀ω ∈ IR. (5.6)

Nevertheless, it is easily seen that the bilinear form

〈p,q〉Γ
def
=

∫
IR

∫
Ω

p(x, t) ·
(
Γ ∗ q

)
(x, t) dx dt (5.7)

is non-degenerate since (5.6) implies∣∣Γ̂(ω)
∣∣ ≥ Re Γ̂(ω) = k0 + k̂′c(ω) > 0 ∀ω ∈ IR.

Moreover, if k0 6= 0 (and then k0 > 0 by virtue of (5.6)), the norm

|||f |||2Γ =
∫

IR

∫
Ω

∣∣Γ̂(ω)
∣∣2∣∣f̂(x, t)

∣∣2 dx dω

is equivalent to the natural one in L2(IR, L2(Ω)).
Hence, by using the same procedure as in the previous section, a minimum principle for

the quasi-static problem (5.4) in heat conduction with memory can be established through
the functional

Ψ(u) =
1
2
〈Γ ∗ ∇u,∇u〉Γ − 〈r, u〉Γ.
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