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ABSTRACT

In this paper, we present a new upper bound on the
probability of error in PAM systems. The main feature
of this bound is that it depends on the variance and
fourth-order cumulant of the measurable equalizer
output and on the a-priori known statistics of the
channel input. It can therefore be useful for an a-
posteriori evaluation of the equalization accuracy in a
blind equalization context.

1. INTRODUCTION

An important feaure in the analysis of a digital linea
transmisson system is the evaluation of its intersymbol
interference phenomenon. A suitable measure of
performance is represented by the probability of error
([1]), i.e. the probability that an individual recovered
symbad is different from the crresponding transmitted
symbol.

Most of the literature on the estimation of the
probability of error requires that the wefficients of the
channel-equalizer cascade ae known ([2]-[5]). In most
red applicaions, unfortunately, such coefficients are not
available so that the gproach presented in the aove
mentioned references is not diredly applicable. An
aternative gproach based on correlation measures on the
output of the euaizer has been introduced in [6].
However this approach is applicable only when the

channel has a finite impulse response of known length.

In this paper, we @nsider the cae of PAM transmisgon
systems and derive an upper bound on the probability of
error which can be etimated from the egualizer output
and only the known channel input statistics. Such a bound
can be used as an aposteriori test to dedde if an
equalization algorithm has converged to a satisfactory
solution.

The paper is organized as follows. In Sedion 2 besic
concepts on PAM transmisson systems are introduced.
Then, a preliminary expresson for the probability of error
for such systems is derived in Sedion 3. An upper bound
on the probability of error isthen determined in Sedion 4,
while some simulations are presented in Section 5.

2. SYSTEM DESCRIPTION
Consider a transmisson system where the distortion
caused by the channel between the information source and
the recaver is represented by a linea, causa time-
invariant and (passbly) non-minimum phase system with
transfer function:

H(Z)= 3 h(k)z*-

The signa d(t) transmitted through the danne is
asaumed to be ani.i.d. sequence of symboals belongingto a
finite dphabet A with an even number M of equiprobable
levels. Precisely:

d(t)0 A={-(M-1), -(M-3), ..., M-3, M-}
Pr(d(t)=2i-M-1)=1/M, i=1,2,...,M.

Thisisatypicd communication system known urder the
aconym PAM (pulse-amplitude-modulation) (see eg.

[1]). The recéved sigral v(t):z::()h(k)d(t—k) is

processed by a linea equalizer. The linea filter usually
adopted for the equalization purpose is a tapped-delay line

with n parametersg(z) = Zz;ze(k)z‘k .

Denote by X its output.

The equalizer is used to cancd the channel distortion, so
as to reoonstruct the input d(0). In PAM systems, optimal
detedion is often achieved by adding at the output of the
equalizer E(z) a neaest-neighbour M-ary quantizer
(Fig.1). This threshold device is introduced to cancd the
residual distortion to which the egualized signal x(t) can
still be subject.

d(t) v(t) X(t) Xq(t)
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Figure 1. Complete block schemefor the PAM system

Spedficdly, the quantizer output x4(t) corresponds to
the nearest value in the dphabet A of the egualized signal
X(t), i.e.

M/2-1

sgn(x +2j) *

j=tMi2

Xq(X) =

where
01, x>0
sgn(x) = EO, x=0"
H1 x<0

3. PROBABILITY OF ERROR IN PAM SYSTEMS

Let us define the equalization delay k as the index of the
dominant coefficient of the dannel-equalizer cascade

impulse responsgk)=h(k)(K),
k =arg mkax{|s(k)|} .

We say that an error occurs when X(t)zsgn(s(k ))

d(t-k ), and consequently a meaningful measure of the
overall PAM system performance is provided by the



probability R of the event xt)#sgn&(k ))d(t-k ).
Applying the theorem of total probability, P, can be
computed as follows:

P.= % Pr{xq(t) # sgn(s(K))d(t - k) / d(t- k) = 2i - M _1}
1=1
P{d(t-k)=2i-M-3)
1Y ~ ) -
= > Pr{Xq(t) z sgn(s(k))d(t-K) /d(t-k)=2i-M _1}

The expresson of P, can be simplified by observing that
x(t) is given by:

x(t) = s(k)d(t - k) + Zs(k)d(t -Kk)

k#zk
where E(t):=zk¢|zs(k)d(t-k) is the intersymbol

interference. &(t) is independent of s(k )d(t-k ) and it is

eally shown that it is gymmetricdly distributed. This
implies that:

Pr{x, () # sgn(s(K))d(t - k) / d(t— k) =2 -M -1} =
= Pr{x, (1) # son(s(k))d(t - k) /d(t ~ k) = ~(2i - M - 1)}
M

i=12,...,—
2

from which it follows:

2 o - o Y = i
P, :Wi:’%iﬁ'{xq(t) # sgn(s(K))dl(t =K) /it - K) = 2i - M -1}
1)

We now introduce the following two technicd
assumptions:

AL (M=-3)s(k) <M -2
A2 (M-1)s(k)>M -2,

which are both satisfied if |s(k)| is close eoughto L

Under these hypotheses, an error occurs if (t) makes x(t)
overcome the boundaries of the quantizaion interval in

whichs(k )d(t-k ) falls. R, can then be calculated as

M-1

1
F)e M [ ;ﬂ
+Pr{€0)]2 (2 - M)- (2 - M -1)\s(|2)\}]
+Pr{\§(t)\ 2 (M - 1|s(Kk)| - (M —2))} ]. )

{\5(0\ 2 (2 - M - D|s(k)| - (2i =M - 2)}

The rigorous evaluation of the different terms in
equation (2) would require the knowledge of s(k ) and of
the statisticd properties of &(t), but these quantities

cannot solely be estimated from the output measurements.
However, it is possble to seethat one can first determine
an wper bound on P, depending only on the wefficient

s(k), and then exploit a theoreticd result so as to

establish the possble values of s(k ) in order to compute
the final bound for Pe. This task is acaomplished in the
next section.

4. THE UPPER BOUND ON THE PROBABILITY
OF ERROR
Let us denote by a the normalized fourth-order cumulant
of the equalizer output x(t), i.e.

_ (0,00
" ¢¥(0,0,0

It can be shown, [7], that a can be expressed in terms of
the wefficients of the cacade danne-equalizer as

follows: o = zks“ k

o can be omputed from the output messurements and can

be used to define an admissble range for s(k ). In fad,

under the condition: stz(k) =1 diredly imposed by

most equalizaion techniques ([8]-[11]), we have that if

a =1, s(k) can only have unitary modulus (and s(k) =0

Ok # k), while if a <1 the following proposition holds.

Proposition

Let {s(k)} be subject to the conditions
dYSk=1 Hs'(k=a- 3)
k k

Then, for a>1/2 SZ(IZ)ZZmElX{SZ(k)} is unique and

satisfies the inequality (for a proof see the appendix):
%(1+\/Za—1)ssz(lz)s\/a. @)

Remark It is easy to show that the lower and upper
bounds in (4) cannot be improved. |

Thanks to the &wove propcsition, once we have
determined the upper bound on P, as a function of s(k ), it
can be successvely converted into afunction of a only, by
means of (4).

We seefrom (2) that P, is the sum of terms all of the form:
Pr(& ()= A), where Ais a function ai(k ).

In order to compute the upper bound for such a
probability, one ca resort to one of the following three
well-known inequaliti es (the convenience of using one of
the threeinequaliti es depends on the adual value of §( IZ)
anda, see below):

Pr(Em) 2 A) < 22 5 (1) (Tchebycheff, [12]),(5)
Pr(&®|zA) < 2exp( = T) (Chernoff, [3]), (6)
Pré(t)]=A) < E th) (Markov, [12]). (7

The right-hand sides of inequalities (5)-(7) can be



expressed in terms of s(k ) and a. This is obvious for (5)
and (6), since varé(t) = (1-s°(k))o2, while, as far as
equation (7) is concerned, we have

E[E"(t)] = Zs“(k) c2(0,00) +3(var &(1))° and
k#
Zs“(k):a—s“(R)- (8)

k#

The upper bound for the probability (6) is then
determined as:

1 A
2 (1-52(|Z))a

Pr("f(t)\ > A) = minéL(l-szA(lz))ai, 2exp§L
(a-s'(k))c000) + 3 s (k))

A4

DDI:I IZI I:I]:II:H:I

By pluggng (8) in (2) and using bounds (4), a simple
but cumbersome mmputation leals to the following final
upper bound onP

1 M
RSt YL ©)

(a— f Z(a))ci“(o,o,o +3(1—f or) o

+mm§, b 2exp§~2 s lz))a @
(a - f2(a))c(000) +31- f ()0

o’

an

for j =%+l...,M -1 and

A 1@ :
L —mlngl, 2 2exp§~2 - f(a))a %

(a - £2(a))c*(0.00)+ 31~ f(a)) 0}

aly

H
a
B
with

a =((@i-M-1)(@)-(2-M-2)) "
((@i-m)-(2i-m-1)oa)) "
f(a):%(um) and g(a)=a .

b;

The upper bound for P, is displayed for different values
of M in Fig.2. It can be shown that for a close to 1 the
tighter bound is obtained by means of the Chernoff
inequality which corresponds to the second element under

the sign of min in the expresgon for L;. The Markov and
Tchebycheff inequalities give better bounds for lower
values of a. Thejoint use of the threeinequaliti es provides
a tight bound for a wide range of valuesof

i

09

upper bound on Pe
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Figure 2. Upper bound on the probability of error P,

5. SIMULATIONS

In our simulations, the fourth-order cumulant of the
equalizer and channel cascade output has been computed
from the theoreticd probability density function of the
source and the dhannel-equalizer impulse response, rather
than from data samples. The obtained value of o is used to
determine the upper bound on the probability of error.

The tightness of the bound has been tested by
simulation. 10 reaords of 10000 samples eat have been
considered in each example.

Example 1
Consider a channel with transfer function

H(z) = z°+3,5"+1,5

fed by an i.i.d. equiprobable 4-ary input with values in
{-3,-1,1,3}, and the FIR equaizer with 6 coefficients
identified with the blind equalization procedure described
in [13]. The impulse response of the danne-equalizer
cascade is represented in Fig.3.

0,949

0,312

0,031
1

0,004 0,004

—0,003

—0,011 —0,007

Figure 3. Impulse response of the channel-equalizer cascade

The normalized fourth-order cumulant of the equalizer
output is: 0=0,8216 The mrresponding yoper bound for
the probability of error computed by means of eqg.(9) is:
0,3793.

Example 2
Consider the channel with transfer function

H(2) = 0,227z*+ 0,460z°%+ 0,688z%+ 0,460z" + 0,227
described in [1], fed by an i.i.d. equiprobable 4-ary input



with values in {-3,-1,1,3}, and the FIR equalizer with 31
coefficients identified with the blind equalizaion
procedure in [13]. The impulse response of the channel-
equalizer cascade is represented in Fig.4.
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Figure 4. Impulse response of the channel-equalizer cascade

The normalized fourth-order cumulant of the equalizer
output is: 0=0,88092 The wrresponding wper bound for
the probability of error is: 0,1463.

The table below displays the number of errors for eat
simulation.

Number of errors
Simulation Example 1 Example 2
1 1690 734
2 1751 597
3 1635 533
4 1706 705
5 1658 550
6 1729 645
7 1736 644
8 1693 521
9 1719 553
10 1707 686

In these examples, bound (9) gives results which are
conservative by approximately a fador 2 with resped to
simulations. Discrepancy between the theoreticd bound
and pradicd experiments is expeded since the bound in
eq.(9) must obviously hold true for any channel-equalizer
cascade and not only for the atual one cnsidered in the
simulations.

APPENDI X:
Proof of the Proposition in Section 4
The following equation is easily derived from (3):

5. SWY Si)=1-a-

By extracting the terns® (k) , it can be rewritten as:

22 LN+ Y £k S £(j)=1-a (10)
(); ) kZE ()j¢ )

'k

Obviously Zsz(j)zl—ZSz(IZ), Ok- (11)
j#£kk
So (10) and (11) entail the inequality:
22 (K)S () + Y S(k)(1-25°(k))s1-a
3 S+ 3 S0 )

which can be reduced to
Sfk)=za. (12)

If a>1/2, it is then evident that no ather coefficients than

s(k) have square greaer than a and consequently s?(k)
is the only maximum value of the sequence {sz(k)}.

Moreover
Zsz(j)20>l—252(IZ), Ok, (13)
j#£kk

therefore (10) and (13) lead to the condition:
sZ(E)s%(l—\/T—l) 0 SZ(IZ)Z%(1+\/T—1). (14)
Both (12) and (14) have to be satisfied, consequently we
get the lower bound: SZ(IZ)Z%(1+M), while the
upper bound simply follows from condition (3).
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