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DETERMINING THE OPTICAL FLOW USING WAVELET COEFFICIENTS
A. Corghi & R. Leonpardi,

Sigpals & Communications Lab., Dept. of Electronics for Automation,
University of Bresda, [-25123, E-mail: leon@bsing.ing.unibs.it

J.M. Corridoni & A. Delbimbo,

Dept. of Systems and Computer Science,
University of Florence, I-50139, E~mail:delbimbo@aguirre.ing.unifi.it

ABSTRACT

The optical flow (OF) can be used to perform motion-based segmentation or 3-D reconstruction. Many tech-
nigques have been developed to estimate the OF. Some approaches are based on global assumptions; others deal with
local information. Although OF has been studied for more then one decade, reducing the estimation error is still
o difficult problem. Generolly, algorithms to determine the OF ore based on an equation, which links the gradient
components of the lumninance signal, so as to impose its smuvarince over time.! Therefore, to determine the OF, it
is usually necessary to calculote the gradient components in spoce and time. A new woy to opprozimate this gra-
dient information from a spatio-temporal wavele! decomposition is proposed here. In other words, assuming that
the luminance information of the video sequences be represented in o multiresolution structure for compression or
transmission purposes, we propose to estimote the luminance gradient components directly from the coefficients
of the wavelet transform. Using o multiresolution formalism, we provide a waoy to estimate the motion field at
different resolution levels. OF estimates obtained at low resolution can be projected at higher resolution levels 5o as
to improve the robustness of the estimation to nowse and to better locate the flow discontinuities, while remaining
computationally efficient. Results are shoun for both synthetic and real-world sequences, comparing & with ¢ non
multiresolution approach.

Keywords: Motion Estimation, Multiresolution, Optical Flow, Sequence of Images, Video, Wavelets.

1. INTRODUCTION

While motion apalysis plays a dominant role in the computer vision area, it also becomes of significant interest
to the video coding community. Motion analysis is typically performed in two stages: in the first one, an estimation
of a 2-D motion field is performed; then, this estimate is generally used to infer information about 3-D motion
and scene segmentation.” Various approaches exist to estimate the motion field: some techniques calculate a
sparse motion field (i.e. block matching) by detecting correspondences between blocks in consecutive frames. On
the contrary others determine an apparent dense motion field, i.e. a velocity vector for each pixel in a sequence of
images, usually referred as OF. The main drawback of obtaining a sparse motion field lies in the fact that it does

This research has been supported in part by the [talian Ministery of the University and of the Sciemtific and Technological
Research (MURST) and by the Italian National Council for Research (CNR).
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Figure 1: Single stage wavelet spatial decomposition filterbank; the first sub-stage operates along rows, while the
second sub-stage operates along columns.

not provide enough information for any subsequent segmentation task. Besides techniques such as block matching
often impose a constaat velocity for all pixels within the boundary of the block of interest. Unfortunately, the
evaluation of the OF at boundaries of moving objects is also a very difficult task; at these locations, the fow
estirmates are often very noisy or incorrect.

In what follows, section 2 provides a brief description of wavelet theory; section 3 then describes the most
traditional ways of estimating an OF; in section 4, 2 new multiresolution OF estimation method is proposed.
Finally some simulation results are provided in secticn 5.

2. SPATIO-TEMPORAL WAVELET REPRESENTATION OF A VIDEQO
SEQUENCE

In what follows, we assume without loss of generality, that a video sequence is simply characterized by
its luminance component. A video sequence can be described by a multiresclution pyramid obtained from 3
spatio-temporal wavelet representation of the luminance signal? This way, it is possible to transfer the signal
domain” space representation using a dyadic wavelet transform 5o as to segment the information in roughly
octave frequency bands over space and time, A spatio-temporal wavelet representation of a video-sequence
can be obtained by constructing a separable multiresolution description of the luminance function along every
dimension (space/time). The decomposition at each stage is performed in two steps: a two dimensional spatial
decomposition followed by a one dimensional temporal decomposition. Figure 1 shows the stepof a single stage
spatial decomposition process (a) and the possible reorganization of the output coefficients (b). A recursive
application of the spatial decompeosition scheme, applying the filterbank in cascade on the coarse signal, leads to 3
multiresolution description of each frame. In order to distinguish the resolution level of the transform coefficients
we will indicate it explicitly. After the spatial analysis, the information of each frame can be reorganized in
frequency bands. It is important to note that the output coefficients do not belong solely to the frequency domais,
but also to the space-time domain. The subsequent temporal decomposition stage operates on the one-dimensional
signals formed by the pixels located at the same spatial positions in successive frames. This step splits the original
sequence in different sub-sequences. Each one of them describes the corresponding signal as a function of time
and frequency. The final coefficdent reorganization after 2 single stage spatio-temporal wavelet representation 15
shown in Figure 2. A multiresolution representation can be further obtained by applying recursively the temporal
decomposition to the low temporal frequency sub-sequence.

The spatial and temporal stages of a separable wavelet representation for a video sequence are totally independent.
and so they can be performed in any order. For our purpose, a single temporal stage will be computed. Effectivelys
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Figure 2: Data reorganization of a video sequence after one stage of a three-dimensional wavelet transform, with
one spatial stage and one temporal stage.

it would be inappropriate for the purpose of estimating a proper temporal gradient (necessary to compute the
OF) to substaatially decimate in time any filtered version of the original sequence.

3. OPTICAL FLOW BASED MOTION ESTIMATION

The OF of a video sequence represents the distribution of the apparent velocties of brightness patterns in an
image. It arises from the projection on the image plane of the objects present in a scene.

3.1. Problem statement

OF estimation is based on assuming temporal constancy of the luminance signal over time, as it is postulated
by the optical flow constraint equation (OFCE):

%Y{z'. t) = VYT(£,1)-5(Z1) =0 (1)

where ¥'(Z,t) represents the luminance of the video sequence at the point (z,y) and time ¢, and 4 represents the
velocity vector at coordinates (Z,¢). Equation (1) can be rewritten as:

Yeu: + Yyu, + Yo = (¥5,Y)) - (v, uy) + Yo =0 (2)

Therefore, the components of the motion vector in the direction of the gradient (¥, ¥,) can be determined, while
the component in the orthogonal direction cannot: this constrains 7 to belong to a line in the velocity space,
usually referred as the constraint lige (see Figure 3). Only a linear relationship between the two components can
be calculated at every pixel location. The OFCE brings just a single constraint to the two unknowns u. and u,.
It is an underconstrained problem: thus, it has to be supplemented with an additional constraint.

4.3. Additional constraints

Many different approaches exist to add an additional constraint to the OF estimation problem so as to cope
with the underconstraint. We may distinguish mainly two classes: the local techniques and the global ones.
If every pixel were to move independently, the solution of the estimation problem would be impessible. Usually,
the scene consists of opaque objects moving in front of a fixed background. Apart from partially occluded objects
and some artificial image sequences, the image of a projected scene surface does not change abruptly with time,
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Figure 3: Optical flow constraint line: it is orthogonal to the gradient direction

if the relative motion betwesn the scene and the image plane is not too large, or, equivalently, if the frame rate is
high enough. Except at moving object boundaries, neighboring pixels have similar velogties. Therefore, Equation
(1) can be retained as valid for a local neighborhood (z + 8z, y +&y) of the actual pixel location. The OFCE can
thus be extended as‘: p3

TYT(Z+65,8) -G +85.0) =0 (3)
The main drawback of this kind of approach (i.e. a local technique) is that it is ill-conditioned on pacticular regions
of the image plane, i.e. regions of appreximately uniform brightness and regions containing flow discontinuities.
On the contrary it is possible to formulate a global technique. Horn and Schunck suggest to minimize a functional
that includes two terms: a distance measure to the solution from the constraint line, and a measure to establich the
departure from a smoothness condition. Impoesing 2 smoothness criterion to the entire image domain introduces
however a correlation among the field vectors that bas no physical reason,
In what follows we will limit ourselves to the usage of local techniques.

3.3. A least square solution

Based oa the local approach described in the previous paragraph, Otte and Nagel! propose to assume that
the OF either varies linearly (linear assumption) or is constant in the neighborhood of any gives pixel Zo. In
both cases, equation (3) becomes by Taylor series expansion of the motion vector components:

VYT(£,9) - [@(Fo.t) + VEua(To, 1) - (F = Zo) + VEuy(Zo,) - (F - 20)] =0 “)

Under the constant hypothesis the terms correspondmg %o the gradient of each vector component is zero and the
the OFCE simply becomes equivalent to:

TYT(£,)- 6,1 =0 (5)

Now, considering 2 square (spatial) region around the actual point % and sampling the gradient in n® points,
it is possible to define, using equation (4)—(5), an overconstrained system of n” equations and 6—2 unknowas,
respectively. This linear system can be solved using the least square method.*® In both cases, the computatioaal
complexity of the pseudo-inverse solution, varies linearly with respect o the number of pixels in the neighbor!

(i.e. the oumber of equations in the system). Under the linear assumption, the formulation allows to estimate '-hﬂ
spatial variations of the OF too,” but it requires a greater computational load. Moreover the linear hypothess
must hold true over a larger neighborhood, as there are six unknowns to the problem rather thaa two. AItbO‘fSh
quite insensitive to noise, this technique brings artifacts when the examined neighborbood is crossing 2 moving
object boundary, e.g. it comprises two different objects, moving in different directions so that they identify m
different copstraint lines. As we will show later, the new multiresolution strategy has the advantage of decreast§
this type of artifact.
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4. MULTIRESOLUTION STRATEGY FOR OPTICAL FLOW ESTIMATION

Generally, a multiresolution representation of signals is constructed by successive appraximations. For exam-
ple, using a Laplacian pyramid, & signal is divided into a coarse version and a series of difference signals between
this coarse version and versions of itself at higher resclution.’ Using a multiresolution strategy a given task is
typically performed by successive approximation steps, starting from the coarse version of the information, thes
using recursively an initial estimate at a given resolution level to obtain an estimate at the next higher resolution
lewel till the full resolution is reached.

For the task of interest here, a wavelet decomposition of the video sequence will be used mainly for two purposes:
a rough estimation of the luminance gradient at different resolution levels and a pyramidal structure to implement
the task at hand.

4.1. Gradient estimation using wavelet coefficients

Both equations (4) and (5) require, to be solved, the gradient information of the luminance component both
along the space and time dimepsions. Suppose that the luminance information be represented for compression
purposes using a wavelet decomposition: we claim that the luminance gradient can be estimated directly from
wavelet coefficients. For simplicity let us assume that a single stage spatio-temporal wavelet decomposition
has been applied to an image sequence: this leads to two groups of sub-sequences whose length is half the
original one. Each group of sub-sequences is composed of four sub-sequences with spatial information erganized
as shown in Figure 2. Using this signal representation it is possible to build a downsampled estimate (by a
factor 2 in time and space) of the motion field at full resolution. An appresdmation of the gradient mformation
used i the overconstrained system represented either by equation (4) or (5), can be directly obtained from the
wavelet decomposition: the luminance gradient component along the z—y direction is estimated from the detail
z-—y image at resolution -1 contained in the low temporal frequency sub-sequence; while the temporal gradient
component of the luminance is estimated from the coarse image at resolution -1 in the high tempaoral frequency
sub-sequence.,

Now, if K spatial stages of the wavelet transform are applied to construct the multiresolution representation, the
spatial gradient information is extracted first from the signals at spatial resolution —K. All gradient information
is downsampled by a factor 2K along the spatial directions and by a factor 2 in the time direction.
In order to show the relationship betwesn the luminance gradient and the results of the wavelet decompaosition,
let us consider for simplicity, a one-dimensional case. Suppose z{n] € La(Z) is the input signal whose gradient
information has to be estimated. The ideal bandlimited differentiacor for discrete-time signals has a frequeacy
response of the type:

Hae™) =j2rf,  Ifi<3. (6

In order to take into account the decimation factor of the tree structured filterbank mmplementing the wavelet
transform, it is necessary to identify the aliasing band, that is the frequency interval that could generate aliasing
as a result of the decimation. The aliasing bandwidth is directly proportional to the resolution level, ie.:

resolution —K = aliasing bandwidth 2—-.; ;

The horizontal and vertical detail information provided by the wavelet transform at a given resolution level must
be compared with the output of an ideal differentiator applied to a decimated version of the original signal. The
corresponding ideal frequency response of the decimation and ideal differentiator cascade becomes:

j2=f for |fl < T~

0 forEclifi<) M

Ha(e) ={
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Figure 4: Multiresolution filterbank using the wavelet transform.
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Figure 5: Equivalent multiresolution flterbank using the wavelet transform.
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The multiresolution analysis filterbank, used for the wavelet transform is shown in Figure 4. Consider the
input/output path that links z[n] to v2x(n]. On the basis of the previous discussion, the output signal to this
path represents an approximation of the gradient information at resolution —K. Morcover the equivalent filter
along this path can be obtained as a product of matrices whese rows contain the impulse responses h;[n] and
ho[n] of all analysis filters along the path®:

g% = gX-1. g, (8)

All other paths can be analyzed in the same way. An equivalent system can be designed as indicated in Figure 5.
Since FIR filters are generally used in the wavelet transform, it is not possible to guarantee that the frequency
response of the equivalent filters is linear and not aliased like the ideal model described by the equation (7).
Figure 6 shows the magnitude of the frequency response for the equivalent filters of a biorthogonal wavelet basis
for resolutions -1 to 4. Since these functions are continuous in the frequency domain, it is not possible to avoid
aliasing. Besides, the more the frequency response has a linear behavior in the band of interest, the more aliasing
is produced, as the decreasing part of the frequency response is shifted to higher frequencies. Different wavelet
bases produce different equivaleat multiresolution filters and thus different gradient approximations. There are
three critical parameters, referred to the frequency response of the equivalent filters, to evaluate the wavelet
transform performance: 1) the energy fraction contained in the aliasing band; 2) the linearity of the response
magnitude in the band of interest; 3) the phase linearity.

In tables 4.1. and 4.1, the simulation results for a set of wavelet basis at different resolutions levels are reported.
While in the band of interest, the behavior of all flters is quite similar, in the aliasing band there are large
differences which do ot significantly affect however the corresponding motion fields. In practical systems there
is no possibility to design a FIR filter with the features of the ideal bandlimited differentiator. Any FIR Slter
for the gradient estimation at different resolution levels cannot aveid aliasing and, at the same time, be lineas
in the interest band. A compromise must thus be accepted; however, we have experimented that this does oot
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Figure 6: Equivalent filters frequency magmitude for the biorthogonal wavelet (resolution -1 to 4).

significantly affect the performance of the OF estimation approach we will describe in the next paragraph.

4.2, Moultiresolution Optical Flow Estimation

The multiresolution approach used for the evaluation of the OF comprises of two main steps: a rough estima-
tion of the motion field at low spatial resolution and subsequent refinements obtained by using higher resolution
wavelet coefficients.

From the wavelet representation of the luminance signal, we can recover an estimate of the gradient information
directly from the spatial detail information coefficients. Let us assume that the luminance component is stored
using a wavelet transform with K spatial stages and 1 temporal stage The first OF estimation is computed

at spatial resolution —K, by solving in the least square sense equation (4) or (3). The obtained motion field is

[ Resolution level | Haar | Lind | DaubechiesD8 |
-1 0.6718 | 0.3925 0.8580
-2 0.6803 | 0.2649 0.8626
-3 0.6665 | 0.2286 0.8513
4 0.6524 | 0.2065 | __ 0.8219

Table 1: Aliasing energy for different wavelet bases normalized with respect to the total signal energy.
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[Resolution level | Haar | Lind | DaubechiesD8 |
-1 0.0140 | 0.0821 0.1397
2 0.0271 | 0.1374 0.1400
3 0.0286 | 01359 0.1428
3 0.0299 | 0.1447 0.1447

Table 2: Euclidean distance from the linear behavior in the band with no-aliasing.

downsampled by a factor 2X in space and by a factor 2 in time. By back-projecting this initial guess to higher”
resolution levels only the velodity vector at moving object boundaries are improperly estimated. These can be
refined using the information available at higher resclution. For this purpese, we first must identify the OF
discontinuities, which are the most likely to occur in the neighborhood of moving object boundaries. An iterative
refinement procedure of the OF dlose to these discontinuities is provided. Let us consider the refinement step
from resolution —j — 1 to resolution —j assuming that the OF at resolution —j — 1 is known. The flow disconti-
nuities extraction is based upon a magnitude information and a phase information. These two contributions are
considered separately so as not to influence one another. The difference betwesn the actual vector components
and the average components on 2 small neighborhood are used as discontinuity indicators®:

_ 1@
AM = y ()
Bp=arg(®) - 3 (arg(&)) (10)
s

Once areas of discontinuity have been detected, the OF at the corresponding locations is initialized by a bilinear
interpolation of the surrounding neighborhood. Then the whole OF is spatially upsampled by a factor 2 using
again a bilinear interpolation. The corresponding motion field is then averaged for discontinuity areas, with the
estimate 1™ that can be obtained at resolution level ~j, as follows®:

E{-i*ﬂ + .,Ig‘f]
2 1]
To obtain an estimate of gradient information at resolution —7, the coarse signal representation at that level
is reconstructed in the discontinuity areas, by feeding the lower resolution information into the synthesis filter
pair associated to the inverse wavelet transform. This procedure is iterated from resolution level —K + 1 to —1.
Unfortunately, once we reach the full spatial resolution, no more spatial gradient information is readily available
from the wavelet coeficients. Estimation of the luminance gradient along the discontinuity areas is then provided
by using the low temporal frequency sub-sequence. Remember that the wavelet decomposition with 2o spatial
stages and 2 single temporal stage produce just two sub-sequences relzted to the temporal frequency, 0o spatial
operations being performed on the sequence itself.
4 full spatial resolution OF has thus been obtained. However it has been decimated by a factor 2 in time._ To
recover the missing samples, we can just use a shifted-by-one wavelet decomposition, the wavelet transform X in]
associated with the original signal shifted by one position in time, z[n — 1]. It can be proved that it is possible to
obtain the coefficients of X [n] from those of X[n], the wavelet transform of z[n], using two couples of translation
filters. Once again, for simplicity, assume that z[n] is a one-dimensional signal with N samples; X[n] is its wavelet
trapsform and contains in the first N/2 coefficients the coarse type information, while the last N/2 coefficients
represent the detail information. X[n], can be written in function of X[n] as:

- = (11)

o n] = X[n] + p1ln] = X[n + N/2] V] < n<Nf2
X[ﬂ}_{i[[n]sx[:‘xl+iinlaXﬁz+Nf2] N2 € n<hN )

b . A




with
woln] = f(holn] * gofn + 1]}

] = Sflholn] = qfn+1])
eafn] = f(haln] = 90fn + 1)
wslr]l = flln]=qn+1) (13)

where ho[n] and A;[n] are the analysis filter pair impulse respoases while go[n] and g1[n] are the synthesis filter
pair impulse responses, for 8 single stage wavelet decomposition.

By computing the shifted decomposition just for the points of interest, it is possible to determine 2 new OF which
is temporally interleaved with the old one, obtaining this way the OF at full spatio-temporal resclution associated
to the sequence of images.

5. EXPERIMENTAL SIMULATIONS

In the experimental simulations a comparison between the multiresolution strategy and the traditional method
has been performed. Io the traditional approach the OF has been estimated directly at the full resolution by
solving in the least square semse equations (4) and (5). In the multiresolution approach, the OF has been
calculated from a video sequence to which a wavelet decomposition with 3 spatial stages and 1 temporal stage
has been applied. The neighborhood size to compute the least square solution of the OF been set to T x 7 for all
resolution levels. This allows to consider large areas at lower resolution levels so as to properly mitialize the OF
estimation for the macroscopic objects. By incaeasing the resolution while maintaining fixed the neighborhood
size, the algorithm pradually focuses on smaller and smaller areas, so that the OF estimation is improved next to
its discontinuities. Such discontinuities are extracted using the simple metric described in the previous section.
Threshold values have been set to 5 for the vector magnitude variation and = /9 for its phase variation.

Two series of tests have been carmied out to evaluate on one hand the computational Joad and on the other the
quality of multiresolution OF.

In Figures 7 (constant assumption) and 8 (linear assumption) a comparison between the theoretical number of
operations required by the two approaches is presented. In all experiments a spatio-temporal decompesition using
the Haar basis was selected for simplicity. Other simulation have demonstrated that the filter length does net
substantially influence the overall computational efficiency. The number of operations was estimated while varying
the size of the square neighborhood for which the least square solution to the OF was computed. As pointed
out by the graphs of Figures 7 and 8, the multiresolution approach is more efficent when the neighborheod size
is increased. For little neighborhood sizes in the constant assumption case, the number of operations is quite
gimilar, while in the linear case the multiresclution strategy is always more efficient.

The algorithm performance are compared in Figures 9 to 10. The PSNR between the original sequence and the
compensated sequence has been chosen as an evaluation parameter.!® The motion compensated error sequence
is generated from the OF to the original sequence. The PSNR {measured in dB) is defined for each frame as
the ratio between the peak signal power (255%) and the mean square error, ie. the power of the displaced frame
difference signal f[m,n] - f.[m,n]):

2557

B e T 1fimyn) - flm,n)?

PSNR= % = 10logy, { (14)

Al experiments were carried out on standard sequences for the evaluation of the OF. In this paper the results
about a natural sequence (taxi) and an artificial sequence (sine) are shown. Moreover Figure 11 provides 2 needle
diagram for one frame of the sequence tax, while in Figure 12 the result of 2 motion compensation process is
shown for a frame of the same sequence. Finally Table 6. summarizes the execution time in seconds on a Silicon
Graphics Indigo 200 MHEz workstation for the corsputation of the OF assocated with a sequence of 10 fames at
a spatial resolution 128 x 160.

323



Constant Assumption | Linear Assumption

Sequence Name | Wavelet | Traditional | Wavelet Traditional
Tax 18.9 26.54 .79 140.75
Sine 22.45 26.82 36.98 140.15

Table 3: Execution times.

6. CONCLUSIONS AND FUTURE WORK

B

Tn this paper a new multiresolution approach to estimate the OF of a video sequence has been proposed. If

the video information has been represented for cormpression or transmission purposes in a multiresolution wavelet
structure, it is possible to obtain directly from the wavelet coefficients, the gradient information used to solve the
OFCE. The multiresolution strategy allows to improve an initial guess of the motion field at coarse reselution by
back-projecting it on higher resolution levels. The OF is refined only at the moving object boundaries, determined
by a discontinuity measure based on the magnitude and direction of the velocity vectors. This technique decreases
the preseace of noisy vectors at OF discontinuities and can serve as a good initial estimate for a motion feld
segmentation result.
Future works on this approach attempt to study technigues that allow to refine the OF even in areas that do not
seem to present at first discontinuities, by using 2 motion-compensated error measure as an additional indicator.
This should allow to determine whether a refinement should also be provided for the smooth areas of the OF at
higher resofution. Efforts are also being carried out to obtain good motion field segmentation results, using this
multiresolution approach.
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Figure T: Number of operations per vector required by the multiresolution strategy under the constant assumption.
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Figure 8: Number of operations per vector required by the multiresolution strategy under the linear assumption.
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Figure 9: PSNR comparison between multiresolution and traditional approaches under the constant (a) and linear
(b) assumptions on the first ten frames of the taxi sequence.
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Figure 10: PSNR comparison between multiresclution and traditional approaches under the constant (a) and
linear (b) assumptions on the first ten frames of the sine sequence.




Figure 11: Needle diagram of a taxi sequence frame.

Figure 12: A comparison between two frames respectively extracted from the original sequence taxd and from the
compensated one; the recovered zones have been left in black.
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