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ABSTRACT 

Energy saving measures properly applied to the 

existing building stock can bring noticeable savings. 

In particular, optimal cost-effective solutions can be 

found through multi-objective optimization 

techniques, such as those based on genetic algorithms 

(GA), coupled with building energy simulation 

(BES). Although the robustness of GA multi-

objective optimizations to the quality of the inputs is 

discussed in the literature, the role of the weather 

data file is not investigated in detail. For this reason, 

this work analysed the extent to which the method 

adopted for the development of reference weather 

data for BES can affect the optimal solutions. 

Considering a group of simplified building 

configurations and the location of Trento, Italy, many 

multi-objective optimizations are performed. The 

results show changes to both Pareto fronts and 

optimal retrofit solutions. 

INTRODUCTION 

The European Commission suggested the renovation 

of existing buildings into nearly zero-energy 

buildings through the definition of cost-optimal 

levels into the framework of building energy 

retrofitting (European Commission, 2010 and 2012). 

Among all possible energy saving measures (ESMs), 

the one that optimizes some competitive goals - such 

as the contemporaneous minimization of net present 

value (NPV) and primary energy (EP), should be 

chosen. For this reason, multi-objective optimization 

and BES can help to determine a set of equivalent 

optimal solutions, the so-called Pareto front. In 

particular, among the different alternative strategies, 

such as those described by Evins (2013), the 

evolutionary optimization approaches - and 

especially the genetic algorithms, have become more 

and more popular (Penna et al., 2015). 

When dealing with imprecise input data, sensitivity 

issues can undermine the suitability of multi-

objective optimization in finding cost optimal 

solutions. In this regard, while GA robustness to 

algorithm parameters has been widely investigated 

(Wright and Alajmi, 2005; Ihm and Krarti, 2012), the 

robustness to suboptimal inputs needs to be further 

discussed. In this context, reliable building 

simulation results depend also on the 

representativeness of weather inputs, which can be 

sources of external scenario uncertainties (Hopfe and 

Hensen, 2011). In fact, both length of the multi-year 

weather data series (Prada et al., 2014) and 

methodology used for the typical month selection 

largely influence the results of the reference year 

development process (Pernigotto et al., 2014a; 

Pernigotto et al., 2014b). Consequently, the cost 

optimal identification through GA optimization could 

be influenced as well and the findings could lack 

robustness to climate changes. 

The aim of this work is to investigate the extent to 

which the weather data used for BES can affect the 

robustness of GA approach for multi-objective 

optimization and the identified optimal solutions. In 

this way, it has been possible to assess the sensitivity 

of the optimization method to an uncertain and 

suboptimal input such as the typical climatic file, 

which can be developed according to different 

approaches from the same sets of raw weather data. 

METHODS 

Several multi-objective optimizations have been 

carried out with different reference years, developed 

according to the methods described in (Pernigotto et 

al., 2014b) from a set of hourly weather data series 

collected in the meteorological station of Trento, 

northern Italy. Various building configurations have 

been analysed to achieve results suitable to make 

generalization. 

The implemented Genetic Algorithm 

The choice of optimal trade-off between EP and NPV 

is based on the domination of a general solution X 

over a solution Y. According to Pareto, X dominates 

Y if the following conditions are both true: 

 the solution X is no worse than Y in all 

objectives; 

 the solution X is strictly better than Y in at least 

one objective. 

Thus, passing from X to Y, an improvement for some 

objectives, without worsening the other ones, is 

supposed. When an objective cannot improve without 

making worse the others, an “Optimum of Pareto” is 

found. The two steps of the optimization procedure 

are therefore: (a) the definition of Pareto front and (b) 

the selection of a trade-off solution among those 

belonging to Pareto front. 
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For the multi-objective optimization of building 

retrofits, a GA is implemented in Matlab®. The 

Matlab® fitness function used in the analysis 

launches BES (TRNSYS BES, in this case), reads 

BES output file and post-processes the simulation 

results. The code computes the NPV by means of the 

method proposed by the technical standard EN ISO 

15459:2009 (CEN, 2009) and returns the two 

objectives to the genetic algorithm. In particular, 

NPV and EP for space-heating (EPh) are chosen as 

goals for the multi-objective optimization. 

The genetic algorithm chosen in this work is Elitist 

Non-dominated Sorting Genetic Algorithm, NSGA-II 

(Deb, 2002), identified because of its better 

performance with respect to other GA algorithms 

(Brownlee et al., 2011; Evins, 2013). Moreover, it 

has been modified with customized sampling, 

crossover, mutation and selection procedures. All 

these modifications, together with population size 

and crossover fraction, are adopted with the purpose 

of further increasing the genetic algorithm 

performances (Penna et al., 2015). In the first step, 

the initial population, to which the genetic algorithm 

optimization is closely related, is selected. The Sobol 

sequence sampling is chosen since it produces 

uniform samples for high population sizes (Saltelli et 

al., 2004; Burhenne et al., 2011) and reduces the risk 

of oversampling. Moreover, the random starting 

point in Sobol sequence is obtained through a pseudo 

random generator (Matsumoto and Nishimura, 1998). 

Once the fitness function is evaluated, the genetic 

algorithm proceeds with the selection of the best 

individuals (i.e., the “parents” for the next 

generation). In this study, the “Tournament Selection 

Without Replacement” (Goldberg et al., 1989; 

Goldberg and Deb, 1991) has been adopted: a short 

list of four eligible parents are randomly chosen and, 

among them, the best individual is set to be a parent. 

Then, the genetic characteristics of both parents are 

combined, giving rise to the new generation. 

Children are a random (Matsumoto and Nishimura, 

1998) arithmetic mean of two parents always feasible 

with respect to the bounds (Burjorjee, 2013). The 

adopted crossover fraction - i.e., the fraction of the 

next generation that crosses over, is set to 0.8. The 

remaining individuals in the next generation come 

from population mutation, randomly applied by 

means of Mersenne-Twister pseudo random 

generator (Matsumoto and Nishimura, 1998). 

Specifically, a gene is randomly selected and 

replaced by a random value from a uniform 

distribution that meets the gene range. 

The convergence criterion is based on the crowding 

distance, i.e., the closeness of an individual to its 

neighbours (Deb, 2002). Specifically, multiple runs 

of the algorithm are performed until a change of 10-4 

is found for the crowding distance between two 

consecutive generations (Jena et al., 2013). The final 

population contains the optimal solutions. 

Building case-studies 

With the purpose of ensuring the result 

generalization, three typologies of building are 

simulated: semi-detached houses (S/V = 0.97 m-1), 

penthouses (S/V = 0.63 m-1) and intermediate flats in 

multi-story buildings (S/V = 0.3 m-1), obtained by 

imposing an adiabatic boundary condition whenever 

the envelope structures are adjacent to other 

apartments (Figure 1). Each building has 100 m2 of 

floor surface, 3 m of internal height and façades 

oriented towards the main cardinal directions. If not 

adiabatic, the envelope surfaces are directly exposed 

to the external environment, without thermal contact 

with the ground for the floor of the semi-detached 

house. The considered configurations have windows 

only in one façade (East or South), which is also in 

front of the adiabatic vertical wall adjacent to other 

buildings. The window to floor ratio is equal to 

0.144. 

 

Figure 1 - Test cases used in robustness analysis 
 

Table 1 

Building characteristics 
 

Opaque 

Envelope 
Windows 

Infiltration 

Rate  

d=0.20 m 
Glazing:  

Single-pane  

Intermediate 

flat 

λ=0.25 W m-1K-1 
Ugl 5.69 

0.06 ACH 
[W m-2 K-1] 

R=0.80 m2K W-1 SHGC 0.81 
Semi-detached 

house 

κ=150 kJ m-2K-1 

Frame:  

Standard 

timber 

0.13 ACH 

ρ=893 kg m-3 
Ufr 3.20 

Penthouse 
[W m-2 K-1] 

c=840 J kg-1K-1 Afr/Awin  19.9 0.20 ACH 

 

The thermal transmittances of opaque and transparent 

components have the typical values of the Italian 

building stock built before the first Italian energy 

saving law, law number 373 of 1976 (Table 1). The 

opaque envelope is a simplified massive structure 

with a clay-block and the glazing system includes a 

single-pane glass and a standard timber frame, 

modelled with LBNL Window 6.3. The linear 

thermal transmittances of thermal bridges are 

computed according to EN ISO 10211:2007 (CEN, 
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2007a) by means of LBNL THERM 6.3. The 

infiltration rates (Table 1) are estimated according to 

EN 12207:1999 (CEN, 1999) and EN 15242:2007 

(CEN, 2007b), considering a reference air tightness 

n50 of 7 air changes per hour (ACH). As regards the 

system typically found in buildings built up to 1970s 

and not yet renovated, a standard boiler coupled with 

radiators and ON-OFF system regulation are 

considered. 

Weather data 

Representative weather information is essential for 

reliable building energy performance analyses. In 

particular, a reference year should be able to 

characterize the climatic conditions typical for the 

entire life cycle of the building. In the literature, 

many approaches can be found for the elaboration of 

the reference year, with results characterized by 

different levels of representativeness in the different 

climates (Pernigotto et al., 2014b). In this work, it 

has been verified how the variability of reference 

weather file may affect the choice of optimal retrofit 

solutions for the city of Trento, North of Italy 

(Köppen classification: Cfa; ASHRAE 169/2006 

classification: 4A). Six reference years are developed 

starting from an historic series of 10 years, according 

to the following methods: (M1) EN ISO 15927-4 

(CEN, 2005), (M2) Wilcox and Marion’s method 

(2008), (M3) the method by Pissimanis et al. (1988) 

and the three ones described in (Pernigotto et al., 

2014b) - (M4) the minimum Finkelstein–Schafer 

statistic, FS, (M5) Best rank I and (M6) Best rank II. 

These methods differ from each other because in the 

same historic series of 10 years they lead to select 

different representative months for the reference 

year. The different choice of representative months 

brings differences in Heating Degree-Days calculated 

with respect to a base temperature of 18 °C (HDD18) 

and in daily average global solar irradiation on 

horizontal surface (Isol), as shown in Table 2. In 

particular, the maximum HDD18, obtained from the 

method M6, Best rank II, is 2504 K d and the 

minimum HDD18, arising from the method M2 by 

Wilcox and Marion, is 2330 K d. 

Table 2 

Heating Degree-Days and daily average global solar 

irradiation on horizontal surface obtained with 

different methods for the reference year development 
 

Method HDD18 [K d] Isol  [MJ m-2 d-1] 

M1 2499 7.98 

M2 2330 7.65 

M3 2496 7.27 

M4 2448 7.70 

M5 2484 7.50 

M6 2504 7.49 

Energy saving measures and economic analysis 

In the multi-objective optimizations, six different 

types of ESMs, representative of the most common 

solutions adopted by designers to reduce EPh, are 

evaluated (Penna et al., 2015; Prada et al., 2014): 

 an additional insulating layer of extruded 

polystyrene with a thermal conductivity of 0.04 

W m-1 K-1 and thickness ranging from 0.01 to 

0.20 m (with a step of 0.01 m), changed 

independently for the external surface of non-

adiabatic walls, ceiling (only for semi-detached 

houses and penthouses) and floor (only for semi-

detached houses); 

 replacement of current windows with high 

performance frames with Ufr = 1.2 W m-2 K-1 and 

glazings (i.e., double, D, or triple, T, glazings – 

respectively with Ugl ≈ 1.1 W m-2 K-1 and Ugl ≈ 

0.6 W m-2 K-1, and either high, H, or low, L, solar 

heat gain coefficients of about 0.6 and 0.35, 

respectively); 

 replacement of existing boiler (STD) with either 

modulating (MOD) or condensing boiler 

(COND). In both cases the new boiler is also 

equipped with an external climatic adjustment in 

order to vary the supply temperature as a function 

of the external air temperature; 

 adding a mechanical ventilation (MVS) with heat 

recovery system. 

Some other improvements are associated with the 

proposed measures. The addition of the external 

insulation mitigates the thermal bridges: thus, their 

linear thermal transmittance is recalculated and used 

in simulations. The windows replacements greatly 

increase air tightness and, thus, a reduction of 50 % 

is applied to the building infiltration rate. As a whole, 

the combinations of all possible alternative ESMs can 

be very high: in case of semi-detached houses, for 

example, more than 275 000 solutions need to be 

calculated in order to find the optimal one and this 

makes necessary the adoption of advanced multi-

objective optimization techniques, such as the GA of 

the current research. 

The prices adopted for the different ESMs have been 

taken from the official regional price list and the 

energy source prices are extracted from the database 

of the national authority of gas and electricity (Penna 

et al. 2015; Prada et al., 2014). For the cost-optimal 

analysis the NPV has been computed as suggested by 

the regulation EU 244/2012 (European Commission, 

2012). The investment analysis is 30-year long and 

includes the initial investment cost, the annual 

running costs (composed by energy and maintenance 

costs), the replacement cost due to periodic 

substitution of building elements and the residual 

value for the equipment with longer lifespan. 

Building energy simulation 

The annual primary energy for space heating demand 

EPh has been calculated by means of TRNSYS 

hourly simulation. Each building has been modelled 

by means of TRNSYS Multizone Building 

subroutine “Type 56”. The full Reindl correlation 
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(Reindl et al., 1990) coupled with Perez projection 

model (Perez et al., 1988) has been used to compute 

the solar irradiation incident to tilted surfaces. 

Subroutine “Type 869” (Haller et al., 2011a; Haller 

et al., 2011b) has been adopted to model the different 

heating systems. The heating system has been 

controlled by an ON/OFF thermostat (“Type 2”) that 

switches the boiler ON if the indoor air temperature 

is lower than 20 °C and OFF if the air temperature 

overcomes 22 °C. The pump power consumption has 

been modelled by means of TRNSYS subroutine 

“Type 3” while “Type 31” has been used to compute 

the distribution heat losses of pipes. 

RESULTS AND DISCUSSIONS 

Pareto fronts 

Initial EPh and NPV evaluated with the six reference 

years are reported in Table 3. As expected, the 

weather file composition affects both energy and 

economic performance of the initial existing 

buildings. The configurations with East-faced 

windows have the largest EPh and NPV, 

approximately around +33 kWh m-2 yr-1 and +9000 €, 

as average, with respect to the corresponding cases 

with windows on the South façade. The buildings 

with S/V = 0.97 m-1 have EPh and NPV twice larger 

than those with S/V = 0.30 m-1. The normalized 

standard deviations for both EPh and NPV are 

similar. Considering the whole sample of buildings, 

the reference year M2 is the one with the largest 

deviation (-5.2 %) with respect to the average 

performance of the six reference years, while M5 is 

the closest one (+0.7 %). These findings are coherent 

with those in (Pernigotto et al., 2014b) for Trento, 

where Wilcox-Marion reference year gave the worst 

performance compared to the multi-year average 

heating needs while Best rank I gave the best one. 

The Pareto fronts are represented in Figure 2. The 

graphs show the trade-off between NPV and EPh 

obtained for the six reference years. Two groups of 

results belonging to the fronts can be distinguished: 

the optimal solutions with mechanical ventilation 

system in the higher-left side of the chart (i.e., with 

higher NPV and lower EPh) and those with natural 

ventilation in the lower-right side (i.e., with lower 

NPV and higher EPh). The variability of weather 

inputs is reflected in a shift of Pareto fronts. The 

front calculated with M2 is characterized by the 

lowest NPV and EPh while the one estimated with 

M3 has often the highest NPV and EPh of the group 

of six reference years. Indeed, Wilcox-Marion 

reference year leads to the prediction of a better 

energy performance of the initial configurations 

while reference year M3, developed according to 

Pissimanis et al., a worse performance is indicated 

for most of configurations.  

In some cases, there are also intersections of Pareto 

curves calculated from the different reference years, 

even if this behaviour seems less marked than the one 

observed in previous works in case of reference years 

developed with EN ISO 15927-4 method from 

historic series of different length (Prada et al., 2014). 

Table 3 

Annual primary energy for space heating and net present values for the initial existing buildings according to 

the six different reference years 
 

EPh [kWh m-2 yr-1] 

S/V Orientation M1 M2 M3 M4 M5 M6 Avg. 
Std. 

dev. 

0.30 
East 154.2 143.2 154.6 149.6 153.3 153.3 151.4 2.9 % 

South 119.7 106.5 122.1 112.6 116.7 116.9 115.8 4.8 % 

0.63 
East 231.9 217.6 230.8 225.3 229.2 230.1 227.5 2.3 % 

South 197.9 181.9 200.4 190.3 194.6 195.5 193.4 3.4 % 


East 294.7 280.9 292.7 288.7 291.9 292.9 290.3 1.7 % 

South 264.9 248.2 266.8 256.7 260.8 261.9 259.9 2.6 % 

NPV [€] 

S/V Orientation M1 M2 M3 M4 M5 M6 Avg. 
Std. 

dev. 

0.30 
East 42 666 39 658 42 764 41 406 42 415 42 426 41 889 2.9 % 

South 33 283 29 672 33 910 31 347 32 456 32 502 32 195 4.7 % 

0.63 
East 63 828 59 926 63 522 62 017 63 107 63 315 62 619 2.3 % 

South 54 553 50 227 55 233 52 485 53 671 53 896 53 344 3.3 % 


East 80 910 77 180 80 360 79 292 80 178 80 448 79 728 1.7 % 

South 72 817 68 257 73 310 70 564 71 680 72 008 71 439 2.6 % 
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Figure 2 - Pareto fronts for the different building configurations. The green vertical lines delimitate the spread 

between the energy optima while the red horizontal lines the spread between the cost optima found with the six 

different reference years 

For instance, in the case of S/V = 0.63 m-1 with 

South-faced windows, considering the group of 

configurations with natural ventilation, the Pareto 

front with highest NVP and EPh is with the reference 

year M3, whereas for the group of configurations 

with mechanical ventilation the Pareto front with 

highest NVP and EPh is with the reference year M5. 

Cost optimal 

In order to evaluate in detail the effects of the 

different reference years on the cost-optimal solution, 

the ESM configurations of Pareto front ensuring the 

minimum of a single objective have been analysed, 

starting from the NPV. 

As it can be seen in Tables 4 and 5, the ESMs 

optimizing the economic objective are the adoption 

of double glazing and natural ventilation. The only 

exception is the semi-detached house with East-

oriented windows, for which the reference year M3 

leads to the recommendation of replacing the original 

windows with triple glazing. For cases with S/V = 0.3 

m-1 and both East and South-faced windows and 

those with S/V = 0.63 m-1 and South-oriented 

windows, no substitution of the boiler is suggested. 

For the remaining configurations, the modulating 

boiler is preferred for buildings with South-faced 

windows and the condensing boiler for buildings 

with East-faced windows. For the latter, the reference 

year affects the choice of the new boiler: for instance, 

the penthouse can be optimized with a modulating 

boiler if simulated with reference year M2, while, if 

the other reference years are used, the optimum can 

be achieved with a condensing boiler. As regards the 

optimal insulation, a greater variability is found, 

especially for the configurations with South-oriented 

windows. As a whole, the uncertainty in the NPV of 

the cost-optimal solutions ranges between 1000 and 
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3000 €, increasing when building configurations with 

larger S/V and energy demands are considered. 

Energy optimal 

The energy optimal configurations present slight 

differences in terms of ESMs especially in East-

oriented cases, but have different EPh because of the 

different weather file used (Tables 4 and 5). The 

insulation thickness is generally equal or close to the 

maximum allowable (i.e., 20 cm) with the exception 

of the building with S/V = 0.3 m-1 and South-oriented 

windows, whose optimal insulation ranges from 13 

cm (reference years M1, M4 and M6) to 18 cm 

(reference year M3). The original windows are 

almost always changed with triple-pane glazing 

systems: they have always high SHGC, excluding the 

intermediate flats with windows on the South façade, 

for which triple glazing with low SHGC are preferred 

for all reference years except M1, and the semi-

detached house with South-oriented windows, for 

which double glazing with high SHGC is the best 

solution with reference year M6. 

Mechanical ventilation system is always adopted, 

independently of the reference year. As regards the 

boiler, the condensing one is the prevalent optimal 

solution but for the building with S/V = 0.3 m-1 and 

East-oriented windows, if reference year is M2 or 

M3, no replacement is suggested.  

 

Table 4 

EPh [kWh m-2 yr-1] and NPV [k€] for the building configurations with East-oriented windows according to the 

six reference years: characteristics of energy and cost-optima 
 

 
 

Table 5 

EPh [kWh m-2 yr-1] and NPV [k€] for the building configurations with South-oriented windows according to the 

six reference years: characteristics of energy and cost-optima 
 

 

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

Energy-Optimal

Wall 20 20 20 20 20 20 20 19 19 19 19 20 20 19 18 19 18 18

Roof 0 0 0 0 0 0 19 19 19 20 20 20 20 19 19 19 19 19

Floor 0 0 0 0 0 0 0 0 0 0 0 0 20 20 20 20 19 19

Wind. TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH TH

Boiler COND STD STD COND COND COND COND COND COND COND COND COND COND COND COND COND COND COND

Vent. MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS

EPH 0.55 0.73 0.62 0.93 0.93 0.89 15.39 12.08 15.35 12.87 14.01 13.68 27.84 23.43 28.69 26.17 29.20 29.13

NPV 30.74 27.91 27.88 30.84 30.84 30.83 39.61 38.57 39.47 39.00 39.31 39.35 48.24 46.70 48.00 47.45 47.93 47.91

Cost-Optimal

Wall 19 17 18 19 19 18 18 18 17 17 17 17 19 18 17 18 16 18

Roof 0 0 0 0 0 0 17 19 17 17 17 17 19 17 18 18 17 18

Floor 0 0 0 0 0 0 0 0 0 0 0 0 18 18 18 18 17 19

Wind. DH DH TH DH DH DH DH DH DH DH DH DH DH DH DH DH DH DH

Boiler STD STD STD STD STD STD COND MOD COND COND COND COND MOD COND COND COND COND COND

Vent. NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT

EPH 27.23 23.23 23.27 24.62 25.84 26.48 38.27 34.59 38.60 36.24 38.03 37.91 55.09 46.87 51.46 48.56 52.93 49.80

NPV 20.23 18.88 20.18 19.52 19.85 19.89 30.40 28.92 30.35 29.71 30.20 30.16 39.26 37.36 38.68 38.03 38.54 38.57

East
S/V = 0.3 m

-1
S/V = 0.63 m

-1
S/V = 0.97 m

-1

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

Energy-Optimal

Wall 13 16 18 13 14 13 20 20 20 20 20 20 19 19 19 18 18 18

Roof 0 0 0 0 0 0 20 20 20 20 20 20 19 19 19 17 19 19

Floor 0 0 0 0 0 0 0 0 0 0 0 0 18 18 20 18 20 16

Wind. TH TL TL TL TL TL TH TH TH TH TH TH TH TH TH TH TH DH

Boiler COND COND COND COND COND COND COND COND COND COND COND COND COND COND COND COND COND COND

Vent. MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS MVS

EPH 0.54 0.52 0.54 0.53 0.52 0.51 1.42 1.01 1.54 1.36 1.33 1.30 11.23 8.21 11.88 10.93 10.56 13.69

NPV 29.81 29.83 30.10 29.43 29.57 29.43 36.01 35.90 36.04 36.00 35.99 35.98 42.97 42.14 43.56 42.34 43.06 41.93

Cost-Optimal

Wall 17 15 17 14 18 18 17 16 18 17 17 17 17 18 17 17 17 17

Roof 0 0 0 0 0 0 15 17 16 18 16 16 18 16 18 17 17 17

Floor 0 0 0 0 0 0 0 0 0 0 0 0 17 17 16 16 18 16

Wind. DH DH DH DH DH DH DH DH DH DH DH DH DH DH DH DH DH DH

Boiler STD STD STD STD STD STD STD STD STD STD STD STD MOD MOD MOD MOD MOD MOD

Vent. NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT

EPH 8.02 5.92 9.39 7.76 6.83 6.81 25.78 19.21 26.71 19.13 22.97 22.95 33.61 27.15 36.25 30.48 30.99 32.96

NPV 14.73 13.90 15.11 14.26 14.54 14.54 23.57 22.06 24.17 22.38 23.01 23.01 32.73 30.69 33.24 31.46 32.02 32.14

South
S/V = 0.3 m

-1
S/V = 0.63 m

-1
S/V = 0.97 m

-1
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Considering the uncertainty in the EPh of the energy-

optimal solutions, it is almost null for the most 

compact buildings and about 5 kWh m-2 yr-1 for those 

with the highest S/V. 

CONCLUSION 

In this work, the robustness of a genetic algorithm, 

the Elitist Non-dominated Sorting Genetic 

Algorithm, was assessed in the framework of multi-

objective optimizations of building energy 

refurbishment through building energy simulation. In 

particular, the focus was on the issues due to 

suboptimal hourly weather data and on the impact of 

the method for the development of reference years. 

Six reference years implementing just as many 

different methods were developed for the location of 

Trento, north Italy. These reference years were used 

as inputs for the refurbishment multi-objective 

optimization of six buildings with three ratios 

between the externally exposed surface and the 

conditioned volume and two alternatives of windows 

orientations. Among the available energy saving 

measures for the reduction of final uses for space 

heating, wall insulation, windows and boiler 

substitutions and installation of a mechanical 

ventilation system with heat recovery were 

considered. The optimization involved the trade-off 

between primary energy for space heating and net 

present value of the investment, which were studied 

in terms of Pareto fronts. 

Since each reference year gave specific initial 

conditions of EPh and NPV, different Pareto fronts 

were found for each building configuration. 

However, the results showed that fronts are not 

simply shifted on the NPV-EPh chart but, in some 

cases, they can have different shapes and propose 

different optimal solutions. 

The actual choice of the optimal ESM in Pareto front 

depends on the weights given to the objectives in 

trade-off. In order to analyse which ESMs are more 

sensitive to the weather data input, two separate 

studies were performed to look for (a) the ESM 

optimizing the NPV and (b) the one optimizing the 

EPh among those on Pareto fronts. According to the 

building kind, different sensitivities were found but, 

in general, the insulation level and the boiler 

replacement presented the largest variability, which 

was more emphasized in the NPV optimization 

context. The selection of the best solution for 

window substitution demonstrated to be, to some 

extent, more robust to the weather inputs. As regards 

the ventilation, no sensitivity at all was detected for 

the considered buildings. 

The results of this study confirmed the findings 

found in previous works (Prada et al., 2014) about 

weather inputs, allowing us to conclude that if some 

representativeness issues are present in the reference 

years – because of either the methodology for the 

reference year definition or the inadequacy of the 

historic multi-year weather data series, different 

optimal ESMs can be identified through the multi-

objective optimization. 

NOMENCLATURE 

A =  surface (m2) 

BES =  building energy simulation 

c =  specific heat (J kg-1 K-1) 

d =  thickness (m) 

COND =  condensing boiler 

D =  double glazings 

EP =  primary energy (kWh m-2 yr-1) 

ESM =  energy saving measure 

FS =  Finkelstein–Schafer statistic 

H =  high SHGC 

HDD =  heating degree days (K d) 

GA =  genetic algorithm 

I =  solar irradiation (MJ m-2 d-1) 

 =  thermal conductivity (W m-1 K-1) 

L =  low SHGC 

κ =  thermal capacitance (kJ m-2 K-1) 

MOD =  modulating boiler 

MVS =  mechanical ventilation 

NAT =  natural ventilation 

NPV =  net present value (€) 

R =  thermal resistance (m2 K W-1) 

 =  specific mass (kg m-3) 

S =  envelope exposed surface (m2) 

SHGC =  solar heat gain coefficient (-) 

STD =  standard boiler 

T =  triple glazings 

U =  thermal transmittance (W m-2K-1) 

V =  conditioned volume (m3) 

Subscript 

fr =  frame  

gl  =  glazing 

h =  heating 

sol =  solar 

win =  window 
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