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Abstract

We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the
Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with
the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is
provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the
Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into
account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components
of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED
in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup
trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
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1. Introduction

Interaction of the quantum electromagnetic field with quantum matter represents a huge and long-
standing field of investigation, which can involve both a microscopic description of the fields and a more
phenomenological approach in which some microscopic interactions are described by means of effective fields,
which in turn can be quantised and coupled with QED through effective interaction vertices. An example of
this kind of approach is provided by models describing interactions of the electromagnetic field with dielec-
tric media. See e.g. [1] and references therein. Interest in this framework has been recently risen up, due
to the attempt to reproduce quantum emission by a black hole in the lab by means of analogous systems,
i.e. systems displaying the same kinematics which is at the root of the Hawking effect [2], [3], [4], [5]. A
possible implementation of the analogue Hawking effect as a quantum effect in dielectric media has been
presented and analysed in [6], [7], [8] and further developed in [9]. Improvement of such theoretical analysis
required to look for a more fundamental model, able to maintain the main aspects of the phenomenology of
the system, and still providing a good mathematical model.
A simple and economic model describing the interaction of the electromagnetic field with a homogeneous and
isotropic medium is the Hopfield model [10]. With economic we mean that this model allows to reproduce
the observed spectrum of the electromagnetic field into a class of transparent dielectric media (the Sellmeier
dispersion relations) without entering the details of a complete physical description of the materials them-
selves: they are described as a lattice (or a field) of independent oscillators associated with a characteristic
frequency ω0 (the extension to several characteristic frequencies is also allowed). Thus, the model does not
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record any detail about the matter apart from the characteristic frequency of the dipoles.
It is worth mentioning that the Hopfield model represents a cornerstone for many studies which adopt a
semi-phenomenological approach to the quantization of the electromagnetic field in dielectric media, by
introducing mesoscopic polarization fields. Extensions of the model to include matter fields absorption ap-
pear in [11], and then are developed further on by including also spacetime dependence on susceptibility,
and anisotropic magnetodielectric media [12, 13, 14, 15]. We also recall that canonical quantization of the
electromagnetic field has been performed in [16], and extended further on to the case of a moving dielectric
medium in [17]. We don’t delve into the analysis of absorption herein, as transparent dielectrics are enough
for our present purposes.
Nevertheless, the Hopfield model in its original form is not able to accomplish the preposed targets. Indeed,
the analogue Hawking radiation and other perturbative and non perturbative phenomena occur in presence
of inhomogeneities propagating through a homogeneous background (see e.g. [5]). These phenomena require
to pass from the lab frame to another inertial one, such as the frame comoving with a perturbation or to
a carrier signal. For this reason we have developed a relativistic covariant version of the Hopfield model
in [18]. In [19] we have considered the quantisation in the lab frame in a simple fixed gauge, in order to
study photon production originated by time-dependent perturbations. The covariant and gauge invariant
quantisation has been considered in [18], where in the construction of states the linear coupling between
the electromagnetic field and the polarisation field was treated perturbatively. The Hawking effect as a non
perturbative effect has been also considered in a simplified model in [20].
As the action of the full covariant Hopfield model is quadratic in all fields, we expect that the theory may
be quantisable in an exact way in the Heisenberg representation. This is the aim of the present paper. It
is worth noting that this is a relevant task for several reasons. First, the fact that the perturbative quan-
tisation seems to be well-defined and causal, does not ensure that the same properties hold true for the
full theory, and difficulties may arise in the exact theory in the Heisenberg representation, which instead
remains hidden in perturbative construction (but which would appear after adding further perturbative
terms). We introduce, for purely exemplificative aims, a simple model where such kind of problems emerge
in a straightforward way. Let us consider two Klein-Gordon scalar fields linearly interacting, having the
Lagrangian density

L =
1

2
φ12φ1 −

m2
1

2
φ2

1 +
1

2
φ22φ2 −

m2
2

2
φ2

2 − λ2φ1φ2. (1.1)

The equations of motion in the Fourier dual space are(
−kkk2 +m2

1 λ2

λ2 −kkk2 +m2
2

)(
φ̃1

φ̃2

)
=

(
0
0

)
, (1.2)

where we use the symbol kkk = (k0,~k) for indicating a spacetime vector, whereas ~k indicates a spatial vector.
In order to provide nontrivial solutions, the determinant of the matrix above has to vanish, and then one
gets the dispersion relation

(kkk2)2 − (m2
1 +m2

2)kkk2 +m2
1m

2
2 − λ4 = 0. (1.3)

Since the discriminant is always non negative, this equation has two real solutions in kkk2. However, we see
that one of these solutions will be negative if the condition

λ2 ≤ m1m2 (1.4)

is not satisfied. This means that, if λ2 > m1m2, the exact theory after a linear recombination of the fields,
decouples in a pair of fields, one bradionic and the other tachyonic, colorred and then outside the light cone.
For example, if one of the original masses is zero, say m1 = m, m2 = 0, then the theory is affected by
the presence of tachyon states, irrespectively of the smallness of the coupling constant w.r.t. m. It is not
evident that this fault of the model could be easily recovered in the perturbative formulation. Presence of
the tachyonic modes shows an instability in the theory, due to the fact that the perturbation is not bounded
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from below unless it is small enough w.r.t. both the masses.
The covariant version of the Hopfield model is found in a similar situation: we are considering a massless
field, the photon, coupled to an oscillator field with a linear coupling which is, a priori, non necessarily small,
and, surely not at all small with respect to the zero photon mass. Still, we shall find that the covariant
Hopfield model behaves differently and the theory remains well defined for all values of the coupling constant.
A second reason justifying the relevance of the exact quantisation is the following. The dipole field is defined
as a field of identical oscillators which, in the frame where the matter is at rest, satisfy the harmonic equation
1

∂2 ~P

∂t2
+ ω2

0
~P = ~0. (1.5)

Now, this equation introduces two conceptual difficulties. The first one is that it is not a priori relativistic:
for example, if we interpreted the dipoles as proportional to the displacement of the centre of mass of the
electron w.r.t. to the one of the nuclei, then, since the equation of motion is linear, nothing would prevent
both the product ω2

0
~P and the speed of the moving clouds of electrons, to be arbitrarily large, also compared

to the speed of light. This could give rise to problems with the causality properties of the theory. On the
other hand, the fact that in the model the microscopical details of the structure of matter are irrelevant, at
least as far as low energy scales are involved, suggests that it is not affected by such microscopical aspects
and it might keep satisfying relativistic causality. For this reason it is crucial to check the consistency of the
theory by verifying that causality is not violated. At this point enters the second conceptual complication.
Indeed, causality can be easily proved as a byproduct of the compatibility of the equal time canonical
commutation relations (ETCCR) and relativistic covariance. Since the dipole equations are defined in a
specific frame, the one where the dielectric is at rest, in any other frame the velocity vvv specifying the frame
will enter the equations of motion. Lorentz invariance is broken by the presence of the dielectric medium,
which selects a preferred inertial reference frame. This does not implies that also the covariance is broken,
but it makes the question more subtle, since it requires for relativistic covariance to be realised correctly in
the construction of the representation of the algebra of fields. Again, we shall see that this is the case for
the relativistic Hopfield model, so that it preserves both covariance and causality.
Beyond the above mentioned questions, further difficulties arise in the full construction, as the control of
gauge invariance, the presence of the dipole ghost and the right choice of the test functions space necessary
to define the fields as operator valued distributions.
We mention that some of the results presented here have been anticipated by us in [21], in a simplified form for
a more elementary model in which the electromagnetic field and the polarisation field are replaced by scalar
fields, so that several technical complications, such as gauge invariance and the presence of constraints, are
absent. However, no proves are presented there, only the ideas, and all technical details and mathematical
proofs will be found herein. Finally, we add some comments on notations: we shall use the symbols xxx,kkk
or VVV for the space-time vectors having components xµ, kµ and V µ, whereas their spatial component will be
indicated with ~x,~k, ~V and so on. We shall use k2 for the scalar kkk2 = kkk · kkk.

2. The relativistic Hopfield model and its solutions

Let us consider the relativistic Hopfield model with a single polarisation field with resonance frequency
ω0, as presented in [18]. The Lagrangian density is

L =− ε0c
2

4
FµνF

µν − 1

2χε0ω2
0

(vρ∂ρPµ)(vσ∂σP
µ) +

1

2χε0
PµP

µ +
g

2
(vµPν − vνPµ)Fµν

+B∂µA
µ +

ξ

2ε0c2
B2, (2.1)

1In equation (1.5) we have purposefully neglected the driving term, as our aim is to point out which kind of troubles could
arise in our model with respect to the problem of causality. The driving term would simply make harder the discussion, without
substantial improvements.
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so that the equation of motion are

ε0c
2(2ηµν − ∂µ∂ν)Aµ − g(ηµνv

ρ∂ρ − vµ∂ν)P ν − ∂µB = 0, (2.2)

g(ηµνv
ρ∂ρ − vν∂µ)Aν +

1

χε0ω2
0

(ω2
0 + (vρ∂ρ)

2)Pµ = 0, (2.3)

∂µA
µ +

ξ

ε0c2
B = 0, (2.4)

together with the defining constraint vµPµ = 0. Here the polarisation field Pµ is related to the polarisation
density pµ by ppp = gPPP . Note that, in order to describe the polarization field in a covariant form, one must
introduce also the component P0 of the field, which is absent in the rest frame. As discussed in [18], this new
component is not an independent one, it depends on the spatial components, as can be easily inferred from
the constraint vµPµ = 0, which is required at the level of the classical theory for the polarization vector.
Note that in the rest frame, where vµ = (c, 0, 0, 0), the above constraint leads to P0 = 0, as expected. It
is also remarkable that, with respect to a phenomenological approach, where one introduces by hand an
induction tensor Gµν , we can deduce such a tensor from our mesoscopic model (cf. e.g. [18]).
After defining the Fourier transforms of the fields

ÃAA(kkk) =

∫
R4

d4xeikkk·xxxAAA(kkk), (2.5)

P̃PP (kkk) =

∫
R4

d4xeikkk·xxxPPP (kkk), (2.6)

B̃(kkk) =

∫
R4

d4xeikkk·xxxB(kkk), (2.7)

the system of partial differential equations transform into the algebraic system

MV ≡

ε0c
2(k2I− kkk ⊗ kkk) −ig(ωI− vvv ⊗ kkk) −ikkk

ig(ωI− kkk ⊗ vvv) 1
χε0

(
ω2

ω2
0
− 1
)
I 0

ikkk 0 − ξ
ε0c2


ÃAAP̃PP
B̃

 =

000
000
0

 , (2.8)

where ω := kµvµ. We need to solve this system of equations in a distributional sense. The determinant of
the matrix M defining the system is

detM = −c6 (k2)2

ε0χ4

(
ω2

ω2
0

− 1

)4 [
c2k2 − g2χω2

0ω
2

ω2 − ω2
0

]2 [
1− g2χω2

0

ω2 − ω2
0

]
. (2.9)

Thus, the solutions will have support in the union of four sets. The first set is defined by k2 = 0, the same
spectrum of free photons in vacuum. The associated modes of the photon field do not couple with matter,
and are expected to appear as nonphysical states. The second set is defined by ω2 = ω2

0 : since ω0 is the
resonance frequency, these solutions correspond to modes where the dipoles of the polarisation field oscillate
freely. We shall see that these modes are projected out by the physical constraint vvv ·PPP = 0. The next branch
is defined by

1− g2χω2
0

ω2 − ω2
0

= 0. (2.10)

This mode looks like a resonance at a shifted frequency

ω̄ = ω0

√
1 + g2χ. (2.11)

and it is not particularly significative, as it is shown to correspond to an uncoupled contribution to the
polarisation field. Finally, there are the modes satisfying the equation

c2k2 − g2χ0ω
2
0ω

2

ω2 − ω2
0

= 0. (2.12)
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These modes reproduce exactly the Sellmeier relation with just one resonance, so that they represent the
physical modes we are interested to.
In order to find the solutions we can make use of the identity

xδ(n+1)(x) = −(n+ 1)δ(n)(x), (2.13)

where δ(n) is the n-th derivative of the Dirac delta function δ = δ(0). We can assume, without loss of
generality, that kkk and vvv are linearly independent, and define the four-vectors eee1 and eee2, satisfying eeei ·kkk = 0,
eeei ·vvv = 0 and such that kkk,vvv,eee1, eee2 is a basis for R4. Then we find for the general solution of the linear system
(see Appendix A for a deduction):

ÃAA(kkk) = (ω2 − ω2
0)a0(kkk)vvvδ(k2) + ω

[
ω2 − ω2

0 − ξ(ω2 − ω̄2)
]
a0(kkk)kkkδ(1)(k2) + a3(kkk)kkkδ(k2)

+
(ωkkk − k2vvv)

ε0c2k2
gb3(kkk)δ(ω2 − ω̄2) +

2∑
i=1

δ

(
ε0c

2k2 − ε0
g2χω2

0ω
2

ω2 − ω2
0

)
ai(kkk)eeei, (2.14)

P̃PP (kkk) = −igχε0ω
2
0(ωvvv − kkk)a0(kkk)δ(k2) + i(ωvvv − kkk)b3(kkk)δ(ω2 − ω̄2)

− ig
2∑
i=1

ε0χω
2
0

ω2 − ω2
0

ωδ

(
ε0c

2k2 − ε0
g2χω2

0ω
2

ω2 − ω2
0

)
ai(kkk)eeei, (2.15)

B̃(kkk) = iε0c
2ω(ω2 − ω̄2)a0(kkk)δ(k2). (2.16)

There is also an additional mode for P̃PP proportional to δ(ω−ω0), which is excluded by the condition vvv ·P̃PP = 0.
At this point, we can be a little bit more precise on specifying the solutions space. The Fourier transforms
are supported on the sets

Σ0 :={kkk ∈ R1,3|k2 = 0}, (2.17)

Σ1 :={kkk ∈ R1,3|ω2 = ω̄2}, (2.18)

Σ2 :={kkk ∈ R1,3|c2k2 − g2χω2
0ω

2

ω2 − ω2
0

= 0}. (2.19)

At first sight, we can take the coefficients in the set S(R4) of rapidly decreasing smooth functions. However,
a problem arises because these supports have a non vanishing intersection. We shall see in section 5 that Σ2

intersect Σ1 and Σ0 in two isolated points, which give no rise to any singularity. Instead, Σ0∩Σ1 consists in
a two-dimensional ellipsoid. We require for the Fourier coefficient to vanish on this intersection locus at the
appropriate degree. The presence of the δ(1)(k2) suggests that the order should be two. We shall confirm
this in section 5.
Let us discuss shortly the solutions. The presence of the δ(1)(k2) distribution is related to the fact that
the determinant of M vanishes at second order in k2. This also happens for the Sellmeier modes, but one
can check that no δ(1) contributions are present in that case. The δ(1)(k2) term is well known already for
the free electromagnetic field, and, indeed, it is not a surprise for it to appear in the sector k2 = 0. This
is the dipole ghost, responsible for the infrared divergent terms for the propagators in a covariant gauge
different from the Feynman gauge [22, 23]. One practical way to manage it in standard QED consists in
choosing the Feynman gauge, ξ = 1, where the δ(1) term disappears and one is dealt with the standard Fock
construction where only the spurious harmonic gauge modes are involved. In our case the dipole ghost term
is proportional to

1− ξ ω
2 − ω̄2

ω2 − ω2
0

, (2.20)

which cannot be eliminated by any choice of the gauge parameter ξ. So, we need a different strategy for
managing the dipole ghost. The key observation is to note that the dipole ghost term is proportional to kkk,
i.e. it is a pure gauge mode, corresponding to a vanishing field strength and thus can be hopefully made
harmless in some way. This is essentially the strategy adopted by Lautrup in [24] for constructing the Fock
representation for the electromagnetic field in any covariant gauge, and can be easily adapted to our case,
so adsorbing the dipole ghost into the pure gauge part. The details are reported in Appendix B.
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3. Scalar products and Fourier modes

We can now write down the whole explicit solution. To this end we can eliminate the delta distributions
by integrating out the zeroth component of kkk. In doing this, we must consider separately each of the supports
of the deltas and look at the corresponding spectrum. Let us look shortly at the various spectra:

1. The support k2 = 0 corresponds to the two branches k0(~k) = ±|~k|. We shall use the notation k± to

indicate the corresponding functions of ~k. More in general, with the notation f±(kkk) we mean that k0

is evaluated at k0
±(~k). The property k0

+(~k) = −k0
−(~k) can be employed in order to get real solutions.

2. The support (kkk · vvv)2 − (ω̄)2 = 0 has the two branches

k0(~k) =
~k · ~v ± ω̄

v0
. (3.1)

We shall reserve the name k0
> for the solution corresponding to the positive sign, which is the positive

solution in the lab frame. More in general, given a function f(kkk) we shall write f>(~k) := f(k0
>(~k),~k). If

with k0
< we indicate the solution with the minus sign, then k0

<(−~k) = −k0
>(~k). In particular, ω> = ω̄.

3. The support

c2k2 − g2χω2
0ω

2

ω2 − ω2
0

= 0 (3.2)

defines four branches, two with positive ω and two with negative ω. If we call k0
(a), a = 1, 2, the

two solutions corresponding to positive values of ω, then the solutions with negative ω are −k0
(a)(−~k).

Moreover, if we order k0
(a) so that k0

(1) > k0
(2), then one has k0

(1) > ω0 > k0
(2). See [21] for these

properties. Again, we shall use the notation f(a)(~k) = f(k0
(a)(

~k),~k) for any function f(kkk). Finally, we
introduce the notations

DR := ε0

(
c2k2 − g2χω2

0ω
2

ω2 − ω2
0

)
(3.3)

and indicate its derivative w.r.t. k0 by

DR′ =
dDR

dk0
= 2ε0c

2k0 + 2ε0ωv
0 g2χω4

0

(ω2 − ω2
0)2

. (3.4)
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Thus, the explicit solution of the original system can be written in the form

AAA(xxx) =

∫
R3

d3~k

(2π)3

a0(~k)

2|~k|

[
(ω2

+ − ω2
0)vvv +

1

2

(
ξ(ω2

+ − ω̄2)− ω2
+ + ω2

0

)
(vvv − i(vvv · xxx)kkk+)

]
e−ikkk+·xxx

− i
∫
R3

d3~k

(2π)3

a0(~k)

2|~k|
ξ(ω2

+ − ω̄2)2 +
(
ω2

+ − ω2
0

)
(ω2

+ − ω̄2)− 2ω2
+g

2χω2
0

4ω+(ω2
+ − ω̄2)

kkk+e
−ikkk+·xxx

+ i

∫
R3

d3~k

(2π)3

a3(~k)

2|~k|
kkk+e

−ikkk+·xxx

− g

ε0c2

∫
R3

d3~k

(2π)3

b3(~k)

2ω̄v0

(
vvv − ω̄

k2
>

kkk>

)
e−ikkk>·xxx +

2∑
a=1

2∑
i=1

∫
R3

d3~k

(2π)3

a
(a)
i (~k)

DR′(a)

eee
(a)
i e−ikkk(a)·xxx

+

∫
R3

d3~k

(2π)3

a†0(~k)

2|~k|

[
(ω2

+ − ω2
0)vvv +

1

2

(
ξ(ω2

+ − ω̄2)− ω2
+ + ω2

0

)
(vvv + i(vvv · xxx)kkk+)

]
eikkk+·xxx

+ i

∫
R3

d3~k

(2π)3

a†0(~k)

2|~k|
ξ(ω2

+ − ω̄2)2 +
(
ω2

+ − ω2
0

)
(ω2

+ − ω̄2)− 2ω2
+g

2χω2
0

4ω+(ω2
+ − ω̄2)

kkk+e
ikkk+·xxx

− i
∫
R3

d3~k

(2π)3

a†3(~k)

2|~k|
kkk+e

ikkk+·xxx

− g

ε0c2

∫
R3

d3~k

(2π)3

b†3(~k)

2ω̄v0

(
vvv − ω̄

k2
>

kkk>

)
eikkk>·xxx +

2∑
a=1

2∑
i=1

∫
R3

d3~k

(2π)3

a
(a)†
i (~k)

DR′(a)

eee
(a)
i eikkk(a)·xxx, (3.5)

PPP (xxx) =− igε0χω
2
0

∫
R3

d3~k

(2π)3

a0(~k)

2|~k|
(ω+vvv − kkk+)e−ikkk+·xxx + i

∫
R3

d3~k

(2π)3

b3(~k)

2ω̄v0
(ω>vvv − kkk>) e−ikkk>·xxx

− igε0χω
2
0

2∑
a=1

2∑
i=1

∫
R3

d3~k

(2π)3

a
(a)
i (~k)

DR′(a)

ω(a)

ω2
(a) − ω

2
0

eee
(a)
i e−ikkk(a)·xxx

+ igε0χω
2
0

∫
R3

d3~k

(2π)3

a†0(~k)

2|~k|
(ω+vvv − kkk+)eikkk+·xxx − i

∫
R3

d3~k

(2π)3

b†3(~k)

2ω̄v0
(ω>vvv − kkk>) eikkk>·xxx

+ igε0χω
2
0

2∑
a=1

2∑
i=1

∫
R3

d3~k

(2π)3

a
(a)†
i (~k)

DR′(a)

ω(a)

ω2
(a) − ω

2
0

eee
(a)
i eikkk(a)·xxx, (3.6)

B(xxx) =iε0

∫
R3

d3~k

(2π)3

a0(~k)

2|~k|
ω+(ω2

+ − ω̄2)e−ikkk+·xxx − iε0

∫
R3

d3~k

(2π)3

a†0(~k)

2|~k|
ω+(ω2

+ − ω̄2)eikkk+·xxx. (3.7)

As we see, the expressions for the fields now contain a divergence in ω = ω0 intersected with k2 = 0. We shall
postpone the choice of the test functions until section 5. However, it is worth noting that the divergences
appear exclusively in unphysical components of the AAA field. Here the dagger means complex conjugation. In
order to represent the algebra of the canonical commutation relations, it is convenient to compute also the
conjugate momenta. From [18], and the above construction, we get for the conjugate momenta the following
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expressions:

Π0
AAA(xxx) =icε0

∫
R3

d3~k

(2π)3

a0(~k)

2|~k|
ω+(ω2

+ − ω̄2)e−ikkk+·xxx − icε0

∫
R3

d3~k

(2π)3

a†0(~k)

2|~k|
ω+(ω2

+ − ω̄2)eikkk+·xxx, (3.8)

Πl
AAA(xxx) =icε0

∫
R3

d3~k

(2π)3

a0(~k)

2|~k|
(k0

+v
l − kl+v0)(ω2

+ − ω̄2)e−ikkk+·xxx

+ 2i
ε0

c

2∑
a=1

2∑
j=1

∫
R3

d3~k

(2π)3

a
(a)
j (~k)

DR′(a)

eee
(a)[l
j

[
c2k

0]
(a) − g

2 χω
2
0ω(a)

ω2
(a) − ω

2
0

v0]

]
e−ikkk(a)·xxx

− icε0

∫
R3

d3~k

(2π)3

a†0(~k)

2|~k|
(k0

+v
l − kl+v0)(ω2

+ − ω̄2)eikkk+·xxx

− 2i
ε0

c

2∑
a=1

2∑
j=1

∫
R3

d3~k

(2π)3

a
(a)†
j (~k)

DR′(a)

eee
(a)[l
j

[
c2k

0]
(a) − g

2 χω
2
0ω(a)

ω2
(a) − ω

2
0

v0]

]
eikkk(a)·xxx, (3.9)

ΠΠΠPPP (xxx) =g
v0

c

∫
R3

d3~k

(2π)3

a0(~k)

2|~k|
ω+(ω+vvv − kkk+)e−ikkk+·xxx − 1

ε0c

∫
R3

d3~k

(2π)3

b3(~k)

2χω2
0

(ω>vvv − kkk>)e−ikkk>·xxx

+ g
v0

c

2∑
a=1

2∑
j=1

∫
R3

d3~k

(2π)3

a
(a)
j (~k)

DR′(a)

ω2
(a)

ω2
(a) − ω

2
0

eee
(a)
j e−ikkk(a)·xxx

+ g
v0

c

∫
R3

d3~k

(2π)3

a†0(~k)

2|~k|
ω+(ω+vvv − kkk+)eikkk+·xxx − 1

ε0c

∫
R3

d3~k

(2π)3

b†3(~k)

2χω2
0

(ω>vvv − kkk>)eikkk>·xxx

+ g
v0

c

2∑
a=1

2∑
j=1

∫
R3

d3~k

(2π)3

a
(a)†
j (~k)

DR′(a)

ω2
(a)

ω2
(a) − ω

2
0

eee
(a)
j eikkk(a)·xxx, (3.10)

ΠB(xxx) =0, (3.11)

where the antisymmetrization A[aBb] means (AaBb −AbBa)/2. From these expressions we can extrapolate
a basis of quasi plane wave solutions, which we collect into nine dimensional vectors of the form

ζζζ(xxx) =

AAA(xxx)
PPP (xxx)
B(xxx)

 . (3.12)

In particular, we define

ζζζ0(xxx,~k) =


(ω2

+ − ω2
0)vvv + 1

2

(
ξ(ω2

+ − ω̄2)− ω2
+ + ω2

0

)
(vvv − i(vvv · xxx)kkk+)− i

4ω+
Z(~k)kkk+

−igε0χω
2
0(ω+vvv − kkk+)

iε0c
2ω+(ω2

+ − ω̄2)

 e−ikkk+·xxx, (3.13)

ζζζ3(xxx,~k) =

ikkk+

000
0

 e−ikkk+·xxx, (3.14)

ζ̃̃ζ̃ζ3(xxx,~k) =


− g
ε0c2

(
vvv − ω̄

k2>
kkk>

)
i(ω>vvv − kkk>)

0

 e−ikkk>·xxx, (3.15)
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ζζζa,i(xxx,~k) =


eee

(a)
i

−igε0
χω2

0ω(a)

ω2
(a)
−ω2

0
eee

(a)
i

0

 e−ikkk(a)·xxx, a = 1, 2, i = 1, 2, (3.16)

where

Z(~k) := ξ(ω2
+ − ω̄2) + ω2

+ − ω2
0 −

2ω2
+g

2χω2
0

ω2
+ − ω̄2

. (3.17)

The corresponding momenta are

ΠΠΠζζζ0(xxx,~k) =



 iε0c(ω
2
+ − ω̄2)ω+

iε0c(ω
2
+ − ω̄2)(k0

+~v − v0~k+)


gv0cω+(ω+vvv − kkk+)

0

 e−ikkk+·xxx, ΠΠΠζζζ3(xxx,~k) =


[
0
~0

]
000
0

 ,

ΠΠΠζ̃̃ζ̃ζ3(xxx,~k) =


[
0
~0

]
− v0ω̄
ε0cχω2

0
(ω>vvv − kkk>)

0

 e−ikkk>·xxx,

ΠΠΠζζζa,i(xxx,
~k) =



 0

i ε0c ~e
(a)
i

[
c2k0

(a) − v
0g2 χω

2
0ω(a)

ω2
(a)
−ω2

0

]
− i ε0c e

(a)0
i

[
c2~k(a) − ~vg2 χω

2
0ω(a)

ω2
(a)
−ω2

0

]
g v

0

c

ω2
(a)

ω2
(a)
−ω2

0
eee

(a)
i

0

 e−ikkk(a)·xxx,

a, 1 = 1, 2. (3.18)

In particular, let us compute the scalar products among the plane waves and the general solution. The
conserved scalar product is [18]

(ζ̃̃ζ̃ζ|ζζζ) = i

∫
Σt

d3x
(
Ã∗µ(t; ~x)ΠAAAµ(t; ~x) + P̃ ∗µ(t; ~x)ΠPPPµ(t; ~x)− Π̃∗µAAA (t; ~x)Aµ(t; ~x)− Π̃∗µPPP (t; ~x)Pµ(t; ~x)

)
, (3.19)

where Σt is any spacelike hypersurface. After some algebra we get

(ζζζ0(~k)|ζζζ) =− iε0cω+(ω2 − ω̄2)a3(~k), (3.20)

(ζζζ3(~k)|ζζζ) =iε0cω+(ω2 − ω̄2)a0(~k), (3.21)

(ζ̃̃ζ̃ζ3(~k)|ζζζ) =
1

ε0cχω2
0

(ω̄2 − k2
>)b3(~k), (3.22)

(ζζζa,i(~k)|ζζζ) =
1

c
a

(a)
i (~k). (3.23)
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Then, by using the inversions

a0(~k) = − i

ε0cω+(ω2 − ω̄2)
(ζζζ3(~k)|ζζζ), (3.24)

b3(~k) =
ε0cχω

2
0

ω̄2 − k2
>

(ζ̃̃ζ̃ζ3(~k)|ζζζ), (3.25)

a
(a)
i (~k) = c(ζζζa,i(~k)|ζζζ), (3.26)

a3(~k) =
4πi

ε0cω+(ω2 − ω̄2)
(ζζζ0(~k)|ζζζ), (3.27)

we can compute the commutators among the Fourier modes.

3.1. The quantum algebra of Fourier modes

We take into consideration the quantum algebra of fields, by promoting them to distributions taking value
in a quantum algebra which realises the equal time canonical commutation relations among the fields AAA(xxx),
PPP (xxx), B(xxx), ΠΠΠAAA(xxx), ΠΠΠPPP (xxx), and ΠB(xxx), obtained by applying the correspondence principle to the respective
Dirac brackets, see [18]. Since we need to rephrase the algebra in terms of the particle representation (Fock
representation), by means of the above formulas we are led to consider the commutators

[(ζζζA(~k)|ζζζ), (ζζζB(~q)|ζζζ)], (3.28)

and

[(ζζζA(~k)|ζζζ), (ζζζB(~q)|ζζζ)∗], (3.29)

where A,B take the values 0, 3, 3̃, (a, i), and ζζζ 3̃ = ζ̃̃ζ̃ζ3. By using the definition of the scalar product in terms
of the Poissonian structure, and the canonical commutation relations among the fields, we get

[(ζζζA(~k)|ζζζ), (ζζζB(~q)|ζζζ)] = ~(ζζζ∗B(~q)|ζζζA(~k)), (3.30)

[(ζζζA(~k)|ζζζ), (ζζζB(~q)|ζζζ)∗] = ~(ζζζA(~k)|ζζζB(~q)). (3.31)

The scalar products (3.30) are obviously zero. This means that, if we set αA so that α0 = a0, α3 = a3, α3̃ =
b3, αa,i = aa,i, then

[αA(~k), αB(~q)] = [α†A(~k), α†B(~q)] = 0 (3.32)

as expected. On the other hand, we get

(ζζζ0(~k)|ζζζ0(~q)) =0, (3.33)

(ζζζ0(~k)|ζζζ3(~q)) =− 2i(2π)3ε0cω+|~k|(ω2 − ω̄2)δ3(~k − ~q), (3.34)

(ζζζ3(~k)|ζζζ3(~q)) =0 (3.35)

(ζ̃̃ζ̃ζ3(~k)|ζ̃̃ζ̃ζ3(~q)) =2(2π)3 v0ω̄

ε0cχω2
0

(ω̄2 − k2
>)δ3(~k − ~q), (3.36)

(ζζζa,i(~k)|ζζζb,j(~q)) =(2π)3 ε0

c

(
2k0 + 2ωv0 g2χω4

0

(ω2 − ω2
0)2

)
δabδijδ

3(~k − ~q), (3.37)
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whereas all the remaining terms trivially vanish. Then, the nontrivial commutators are

[a0(~k), a†0(~q)] =[a3(~k), a†3(~q)] = 0, (3.38)

[a0(~k), a†3(~q)] =(2π)3~
|~k|

ε0cω+

2i

ω2 − ω̄2
δ3(~k − ~q), (3.39)

[b3(~k), b†3(~q)] =2(2π)3~
ε0cχω

2
0v

0ω̄

ω̄2 − k2
>

δ3(~k − ~q), (3.40)

[a
(a)
i (~k), a

(b)†
j (~q)] =(2π)3~

ε0

c

(
2c2k0 + 2ω(a)v

0 g2χω4
0

(ω2
(a) − ω

2
0)2

)
δijδabδ

3(~k − ~q). (3.41)

Notice that the commutator (3.39) is singular in ω = ω̄. This is not merely a consequence of the singular
redefinition of the fields introduced above. It is easy to see that the singularity would be appeared even
with the original definitions.

3.2. The Hamiltonian

We shall discuss later about the generators of the Noether symmetries related to the Poincaré group.
However, a privileged role is played by the Hamiltonian, since it also defines the dynamics of the system.
For this reason we anticipate here the determination of the Hamiltonian. Even though we have not yet
introduced the construction of the Fock representation, being the latter one quite standard (apart from
some technical points) we think we can still introduce without any ambiguity the normal ordering of the
operators, with respect to what will be the vacuum state of the representation. Then, we shall turn on
the discussion of the Hamiltonian after the explicit construction of the representation. Now, we assume the
normal ordering to be understood. The computation of the Hamiltonian in terms of the particle modes is
quite involved by the presence of the δ(1) contributions. However, its determination can be notably simplified
by means of the following trick. The Hamiltonian can be computed directly, with the warning that the only
terms which are problematic are the ones containing a†0a0 (to be indicated with H00 henceforth). The direct
computation gives

H =

2∑
j=1

2∑
a=1

∫
R3

d3~k

(2π)3

1

DR′(a)

a
(a)†
j (~k)a

(a)
j (~k)k0

(a) +

∫
R3

d3~k

(2π)3

ω2
> − k2

>

2v0ε0χω2
0ω̄
b†3(~k)b3(~k)k0

>

+ i

∫
R3

d3~k

(2π)3

ω+

2
ε0c

2(ω2 − ω̄2)(a†3(~k)a0(~k)− a†0(~k)a3(~k)) + . . . (3.42)

where the dots stay for the a†0a0 terms, whose computation requires to handle the derivatives of the delta
function and it is quite tricky. In order to determine them, let us consider first the mixed term (to be defined
as H03) involving creation-annihilation operators with indices 0, 3:

H03 := i

∫
R3

d3~k

(2π)3

ω+

2
ε0c

2(ω2 − ω̄2)(a†3(~k)a0(~k)− a†0(~k)a3(~k)). (3.43)

By using the commutation rules we first notice that (since, in particular, [a0(~k), a†0(~k)] = 0)

[H,B(t, ~x)] = [H03, B(t, ~x)] = i~
∂B(t, ~x)

∂t
, (3.44)

as expected. Now, let us consider the gauge field

AAA3(t, ~x) :=

∫
R3

d3~k

(2π)3

i

2|~k|
kkk+

[
a3(~k)e−ikkk+·xxx − a†3(~k)eikkk+·xxx

]
, (3.45)
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and set

H00 :=

∫
R3

d3~k

(2π)3
f(~k)a†0(~k)a0(~k) (3.46)

for the a†0a0 terms in the Hamiltonian. Thus, f(~k) is completely fixed by requiring that

[H,AAA3(t, ~x)] = [H03 +H00,AAA3(t, ~x)] ≡ i~∂A
AA3(t, ~x)

∂t
, (3.47)

when AAA3 is a solution, which means when all the particle modes, but a3, are set to zero. One could be
erroneously tempted to write H00 = 0. Still, if we look at the first line of (3.5), we see that H03 alone
does not provide the right temporal evolution of the a0 components and we must take f 6= 0. Indeed, the
H00 term does not commute with AAA3, but, being the commutator proportional to a0, this does not affects
the relation (3.47), which must be true on shell (i.e. when AAA = AAA3 is a solution, thus corresponding, in
particular, to a0 = 0). In order to determine f we must impose the right behaviour for the commutator
between H and A. Imposing it to the solutions corresponding to have only a0 non zero, this provides

f(~k) = −ε0c
2ω+v

0

4|~k|
(
ξ(ω2 − ω̄2)− ω2 + ω2

0

)
(ω2 − ω̄2). (3.48)

Thus, the Hamiltonian takes the form

H =

2∑
j=1

2∑
a=1

∫
R3

d3~k

(2π)3

1

DR′(a)

a
(a)†
j (~k)a

(a)
j (~k)k0

(a) +

∫
R3

d3~k

(2π)3

ω̄2 − k2
>

2v0ε0χω2
0ω̄
b†3(~k)b3(~k)k0

>

+ i

∫
R3

d3~k

(2π)3

ω+

2
ε0c

2(ω2 − ω̄2)(a†3(~k)a0(~k)− a†0(~k)a3(~k))

−
∫
R3

d3~k

(2π)3

ε0c
2ω+v

0

4|~k|
(
ξ(ω2 − ω̄2)− ω2 + ω2

0

)
(ω2 − ω̄2)a†0(~k)a0(~k), (3.49)

which, indeed, provides the right time evolution of all the fields. Notice the compatibility with the commu-
tation rules. A direct comparison shows that we can interpret

dn
(a)
j (~k) =

1

~cDR′(a)

a
(a)†
j (~k)a

(a)
j (~k)

d3~k

(2π)3
(3.50)

as the number of excitations of the field, in the mode ζ
(a)
i with linear momentum ~k in a volume d3~k. This

should be corroborated by the explicit form of the linear momentum operator. Analogously

dnb3(~k) =
ω̄2 − k2

>

2~cv0ε0χω2
0ω̄
b†3(~k)b3(~k)

d3~k

(2π)3
(3.51)

is the number of states for the excitation of the ω>vvv − kkk> component of the field, with linear momentum
~k in a volume d3~k. We have intentionally avoided to speak about excitation of the electromagnetic field
rather than the polarisation field, in the light of the fact that the excited modes indeed correspond to an
excitation of both AAA and PPP . This is the effect of the “interaction” in the Heisenberg representation: fields AAA
and PPP are not associated with independent particle modes (of course, this would happen in the interaction
representation).

4. Covariance of the theory under the Poincaré group and causality

Let us now discuss the covariance properties of the theory constructed up to now. The classical theory
is covariant since it provides a working model in any specified inertial frame, selected by a specification of
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the velocity vector vvv. Indeed, it is immediate to verify that, consistently, given a Lorentz transformation
ΛΛΛ ∈ SO(1, 3) such that vvv′ = ΛΛΛvvv, then the theory specified by vvv′ is obtained by transforming the system
specified by vvv under ΛΛΛ. Nevertheless, covariance is not the same as invariance: the presence of the dielectric
medium, and then of the vector vvv, explicitly breaks the Poincaré symmetry so that, in general, boosts are no
more expected to be symmetries, and, indeed, they are not. For example, if we consider the free oscillators
describing the dielectric medium, thus with coupling g = 0, its equations of motion in the frame at rest
w.r.t. the medium are

∂2
t P

i + ω2
0P

i =0, (4.1)

P 0 =0. (4.2)

Their covariant form is

(vν∂ν)2Pµ + ω2
0P

µ =0, (4.3)

vµPµ =0. (4.4)

The Lorentz symmetry is broken since one can individuate the inertial frame just by looking at the form
of the equations of motion. Nevertheless, the equations remain covariant in the sense that the first set of
equations can be recovered from the second one simply by setting vvv ≡ (1;~0), and in any other frame by
specifying the velocity vvv.
In order to discuss this point appropriately, as a general fact, let us consider a theory for a field ψ in which
a velocity vvv, specifying a privileged inertial frame, appears explicitly in the Lagrangian in such a way that
the theory in a given frame, boosted by ~v/v0 with respect to the privileged frame, is described simply by
fixing the spacetime vector vvv ≡ (v0, ~v). Obviously, our Lagrangian belongs into this class. The point is that
such a Lagrangian is not a scalar under Lorentz transformations unless we transform vvv also. In other words
we have

L(ψ(ΛΛΛxxx), ∂µψ(ΛΛΛxxx);ΛΛΛvvv) = L(ψ(xxx), ∂µψ(xxx);vvv), (4.5)

whereas

L(ψ(ΛΛΛxxx), ∂µψ(ΛΛΛxxx);vvv) 6= L(ψ(xxx), ∂µψ(xxx);vvv). (4.6)

Thus, such a transformation does not represents a symmetry of a specified model, but it is indeed a covariance
transformation and, technically, it looks more as a duality transformation relating two different set of
parameters (vvv and vvv′) in a family of models. In order to further clarify this point, let us investigate quickly
its role in the Noether theorem. If we consider a Lorentz transformation ΛΛΛ specified by an infinitesimal
transform ε such that ηε = −εT η, η being the usual Minkowski tensor, then the field will transform as

δεψ(xxx) =
1

2
εµνσ

µνψ(xxx) + εµνxµ∂νψ(xxx), (4.7)

where σµν are the representation matrices of the Lorentz group determined by the spin of the field. Such a
transformation, as discussed above, must be also associated with a Lorentz transformation of the velocity

vµ 7−→ vµ + εµνv
ν (4.8)

for consistency. Only after including this transformation, the Lagrangian will transform as a scalar, which
means

∂L

∂ψ
δεψ +

∂L

∂∂µψ
∂µδεψ +

∂L

∂vµ
δεv

µ = εµνxµ∂νL(xxx), (4.9)

where in the r.h.s. we emphasised that the Lagrangian has been seen as a scalar function of xxx. Equivalently,
this can be recast in the form(

∂L

∂ψ
− ∂µ

∂L

∂∂µψ

)
δεψ + ∂µ

(
∂L

∂∂µψ
δεψ + εµνxνL

)
= − ∂L

∂vµ
δεv

µ. (4.10)
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Usually, for theories with scalar couplings, the right hand side vanishes so that on any solution of the
equations of motion the quantity

jµε (xxx) =
∂L

∂∂µψ
δεψ + εµνxνL (4.11)

defines a conserved current. But in our general case the story is quite different since the r.h.s. of (4.10) is
different from zero. One may wonder if ∂L

∂vµ δεv
µ is a divergence, but also this cannot be true in general.

For example, if L depends polynomially on vvv, like in our specific case, then this would imply that also each
term in L explicitly containing vvv would be a divergence. But in this case such terms would not influence
the dynamics and could be completely eliminated from the action from the beginning.
Thus, the Lorentz symmetry is broken down to one of its maximal compact subgroups: the little group
associated to vvv, which, vvv being a timelike vector, is a three dimensional rotations group. Since it leaves vvv
invariant, we have that, for εvvv a generator of the little group, δεvvvv

µ = 0 and the corresponding current jjjεvvv
is conserved. We recall that, in case of full Lorentz invariance, the Noether charge associated with Lorentz
boosts is the so-called ergocenter velocity. In the present case, as discussed above, boosts are not symmetries
of our model. In other words, the presence of the dielectric medium defines a sort of external source which
does not allow for the conservation of the ergocenter velocity (and maybe the ergocenter is not even well
defined since the dielectric medium essentially looks like a system with infinite inertia).
We can rephrase the problem we discussed above also by referring to the ideas developed in [25]. See also
[26], pp. 356-360. Our model Lagrangian is associated with equations of motion which are covariant with
respect to the Lorentz group. This fact does not correspond to a full Lorentz invariance, due to the fact
that the Lorentzian metric is not the only absolute object of the theory, but the velocity vvv of the medium
is an absolute object too. This implies that our theory, and any covariant theory of a dielectric medium
(cf. e.g. [27]), is involved with a preferred frame: the rest frame of the medium. This kind of behaviour
is not exceptional, as it occurs e.g. in all the cases where Klein-Gordon equation is studied in presence of
an external potential V (φ(xxx),xxx) as, for example, in presence of a fixed electromagnetic background Aµ(xxx)
where the Klein-Gordon equation takes the form

~2(∂µ − iAµ(xxx))(∂µ − iAµ(xxx))φ(x) +m2c2φ(xxx) = 0. (4.12)

Loss of Lorentz invariance is evident, but, at the same time, the field equations are covariant, and solutions
are transformed into solutions of the Klein-Gordon equation by the Lorentz group, provided that external
potential is transformed too [28].
We shall see soon how to compute the conserved charges. Before doing this, we want to discuss the covariance
of the quantum theory on the light of the stated observations.

4.1. Covariance and the quantum theory

How do the above considerations reflect in the quantum theory construction? Since the Lorentz group
is no more a symmetry group, but only the little group of vvv for any given vvv, beyond spacetime translations,
we cannot expect to represent the whole Poincaré group on a single Fock space, but over a family Fvvv of
Fock spaces, one for each vvv. Each Fvvv will be cyclically generated by the polynomial action of the fields on
a vacuum state |0〉vvv, annihilated by the set of operators

a0(~k;vvv), a3(~k;vvv), b3(~k;vvv), a
(a)
i (~k;vvv), i = 1, 2, a = 1, 2, ~k ∈ R3. (4.13)

We shall refer to the Fock space Fvvv as the vvv sector. Since they correspond to different inertial frames, any
two sectors are expected to be equivalent and, then, related by a boost in some way. More precisely, we
infer the existence of a map

U : SO(1, 3)↑ × V + −→ U , (4.14)

(ΛΛΛ, vvv) 7−→ U(ΛΛΛ, vvv) : Fvvv −→ FΛΛΛvvv, ∀vvv timelike, (4.15)
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from the orthocronus Lorentz group times the set of all future directed timelike vectors to the set U of all
unitary maps among Fock spaces Fvvv and Fwww, in such a way that U(ΛΛΛ, vvv) must satisfy

U(ΛΛΛ, vvv)|0〉vvv = |0〉ΛΛΛvvv, (4.16)

and

U(ΛΛΛ, vvv)o(~k;vvv)U(ΛΛΛ, vvv)−1 = o(ΛΛΛ~k;ΛΛΛvvv), (4.17)

for o any of the operators in (4.13). Here, with ΛΛΛ~k we mean ΛΛΛ(k0(~k),~k), which makes perfectly sense since
all dispersion relations are Lorentz covariant. The maps U(ΛΛΛ, vvv) are indeed well defined and unitary. There
is no particular difficulty in proving that and we shall sketch the proof.
Given ΛΛΛ ∈ SO(1, 3)↑, vvv ∈ V +, and setting www = ΛΛΛvvv, we can construct the Fock spaces Fvvv and Fwww, in the
usual way, as the Cauchy completion of the spaces generated by the polynomial actions of the operators∫

R3

d3νo(~k)o†(~k,zzz)f(~k), (4.18)

on |0〉zzz, where zzz = vvv,www, o is any of the operators (4.13), d3νa(~k) the corresponding covariant measure,2 and
f is any test function (wave packet). This way, the two Fock spaces are well defined, and the maps defined
by (4.16) and (4.17) are also well defined and isometric on all polynomially generated states (obviously one
has to take into account all subtleties relative to the restriction to the set of physical states, projecting out
the null norm states, but it is standard so we do not enter into details). Since the maps just defined are
bounded operators over dense sets, they remain well defined by Cauchy completion, and provide indeed
unitary equivalences among the different representations.
In other words, the representation of the quantum algebra is finally realised on a bundle of Fock spaces over
the quotient space B = SO(1, 3)↑/SO(3) ' V +. The detailed construction of the Fock spaces (and, then,
the details of the proof sketched above) is omitted as it is standard. Thus, we have a different quantum field
theory for any given velocity field vvv of the dielectric medium. The different Fock spaces represent different
quantum theories, and the set of {Fvvv}vvv defines a bundle of quantum field theories over V +, or, equivalently,
a family of quantum field theories parameterized by vvv, which plays the role of external parameter.

4.2. On the causality properties

In a quantum field theory, causality imposes that the commutators among fields vanish when the supports
of the fields have a spacelike separation, or, in the point-like formulation, if the fields are evaluated at
spatially separated points. Having ensured covariance, in our construction such causality relations are
simply a consequence of the equal time canonical commutation relations. Notice that in the presence of
gauge fields this cannot be realised when also charged fields are involved. However, in our case no charged
fields are present.

4.3. Conserved quantities and the little group

For completeness let us shortly discuss the conserved quantities associated to the continuous symmetries
of the relativistic Hopfield model. The symmetry group is GvvvnR4, the semidirect product of the little group
Gvvv of vvv and the spacetime translations group R4. The conserved currents associated with translations do not
require any particular care, and are computed exactly in the same way as for any relativistic invariant theory.
The same happens for the little group, with the only care to appropriately select the correct infinitesimal

2so

d3νo(~k) =
d3~k

(2π)3DR′o(~k)
, (4.19)

where DRo = 0 is the dispersion relation describing the kkk spectrum relative to the operator o, and the prime means derivative
w.r.t. k0.
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transformations. For a Lorentz invariant theory, the infinitesimal generators are parameterised by any
antisymmetric matrix εµν , and give rise to six conserved quantities Mµν = −Mνµ, which, for a set of fields
ΨΨΨa, a = 1, . . . , n, having spin Sa (with representation matrices σσσµν = −σσσνµ) and Lagrangian L, can be
expressed in the form

Kj = M0j =

n∑
a=1

∫
Σ

[iσσσ0jΨΨΨa(xxx)πα(xxx) + (x0∂j − xj∂0)ΨΨΨa(xxx)πa(xxx) +
1

n
xjL]d3~x (4.20)

for the boosts, where πa is the momentum field canonically conjugate to ΨΨΨa, whereas for rotations we have

Ji =
1

2
εijkM

jk =

n∑
a=1

∫
Σ

[iSSSiΨΨΨa(xxx)πa(xxx) +
1

2
εijk(xj∂k − xk∂j)ΨΨΨa(xxx)πa(xxx)]d3~x, (4.21)

with 2SSSi = εijkσσσ
jk. However, we cannot apply directly this formula to our case since we have to restrict the

parameters generating symmetries to the set of antisymmetric matrices εµν that satisfy

εµνv
µ = 0. (4.22)

The solutions are given by

εµν = εijΛΛΛ(vvv)iµΛΛΛ(vvv)jν , (4.23)

where εµν is an arbitrary antisymmetric matrix which vanishes if one of the indices is zero, and ΛΛΛ(vvv) is any

boost transforming vvv into ccc ≡ (c,~0). We can choose

ΛΛΛ(vvv)0
0 =

v0

c
, (4.24)

ΛΛΛ(vvv)i0 = ΛΛΛ(vvv)0
i = −v

i

c
, (4.25)

ΛΛΛ(vvv)ij = (γ(vvv)− 1)
vivj

~v2
+ δij . (4.26)

In this way we see that the little group rotations are generated by the conserved quantities

Rij = ΛΛΛ(vvv)iµΛΛΛ(vvv)jνM
µν , (4.27)

where Mµν are the quantities defined above (and computed in our specific case). More precisely

Rij = M ij − (γ(vvv)− 1)
vk
~v2

(viMkj − vjMki)− vi

c
M0j +

vj

c
M0i, (4.28)

where vk = −vk, or, equivalently, recalling that εijk = −εijk:

J lvvv :=
1

2
εlijRij = v0J l − εlijviKj , (4.29)

with J l and Kl as given above. Obviously, the normal ordering w.r.t. the vacuum state |0〉v has to be
understood in the quantum expressions. We don’t display the explicit formulas giving the operators J l in
terms of the annihilation and creation operators, as they are cumbersome and of little interest.
The physical meaning of the conserved quantities is clear from their construction, which can be understood
as follows. Since the Lorentz group is broken, and in particular boosts are not symmetries, in the lab
frame, where the dielectric is at rest, the conserved quantities are just the components of the total angular
momentum w.r.t. the origin of the coordinate system. Thus, going back to the generic inertial frame
characterised by the velocity vector vvv, we see that J lvvv are simply the components of the boosted angular
momentum.
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5. The two point function

Our theory, being quadratic in the fields, is essentially characterised by the propagator, which can be
computed directly as the vacuum expectation value of the time ordered product of the fields

iGIJvvv (xxx,yyy) = vvv〈0|T (ΦI(xxx)ΦJ(yyy))|0〉vvv/~, I, J = 1, . . . , 9, (5.1)

where

ΦI =


AI−1 if I = 1, 2, 3, 4,

P I−5 if I = 5, 6, 7, 8,

B if I = 9.

(5.2)

We define GIJvvv (xxx,yyy)± by writing

GIJvvv (xxx,yyy) = GIJvvv (xxx,yyy)+θ(x
0 − y0) +GIJvvv (xxx,yyy)−θ(y

0 − x0). (5.3)

Since GIJvvv (xxx,yyy)− is easily obtained from GIJvvv (xxx,yyy)+, we shall write down only the latter. This computation
does not require any particular shrewdness and we can directly write down the relevant components, which,
for µ, ν = 0, 1, 2, 3, are

iG(µ+1)(ν+1)
vvv (xxx,yyy)+ = vvv〈0|Aµ(xxx)Aν(yyy)|0〉vvv/~

=

∫
R3

d3~k

(2π)3
e−ikkk+·(xxx−yyy) v

µkν+ + vνkµ+

4ε0c2|~k|ω+

(
ξ +

ω2 − ω2
0

ω2 − ω̄2

)
− i
∫
R3

d3~k

(2π)3
e−ikkk+·(xxx−yyy) (xxx− yyy) · vvv

4ε0c2|~k|ω+

(
ξ − ω2 − ω2

0

(ω2 − ω̄2)

)
kµkν

+

∫
R3

d3~k

(2π)3
e−ikkk+·(xxx−yyy) ξ(ω

2 − ω̄2)2 +
(
ω2 − ω2

0

)
(ω2 − ω̄2)− 2ω2

+g
2χω2

0

4ε0c2ω2
+|~k|(ω2 − ω̄2)2

kµkν

+
g2χω2

0

2ε0c4ω̄v0

∫
R3

d3~k

(2π)3
e−ikkk>·(xxx−yyy) 1

ω̄2 − k2
>

(
vµ − ω̄

k2
>

kµ>

)(
vν − ω̄

k2
>

kν>

)
+

2∑
a=1

2∑
i=1

∫
R3

d3~k

(2π)3
e−ikkk(a)·(xxx−yyy) e

(a)µ
i (~k)e

(a)ν
i (~k)

DR′(a)(
~k)

; (5.4)

iG(µ+1)(ν+5)
vvv (xxx,yyy)+ = vvv〈0|Aµ(xxx)P ν(yyy)|0〉vvv/~

=i

∫
R3

d3~k

(2π)3
e−ikkk+·(xxx−yyy) gχω2

0

2c2|~k|ω+

ω+k
µ
+v

ν − kµ+kν+
ω2

+ − ω̄2

+ i
gω2

0χ

2c2ω̄v0

∫
R3

d3~k

(2π)3
e−ikkk>·(xxx−yyy) 1

ω̄2 − k2
>

(
vµ − ω̄

k2
>

kµ>

)
(ω̄vν − kν>)

+ igχω2
0

2∑
a=1

2∑
i=1

∫
R3

d3~k

(2π)3
e−ikkk(a)·(xxx−yyy) ω(a)

ω2
(a) − ω

2
0

e
(a)µ
i (~k)e

(a)ν
i (~k)

DR′(a)(
~k)

; (5.5)

iG(µ+1)9
vvv (xxx,yyy)+ = vvv〈0|Aµ(xxx)B(yyy)|0〉vvv/~ = − i

2

∫
R3

d3~k

(2π)3
e−ikkk+·(xxx−yyy) k

µ

|~k|
; (5.6)
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iG(µ+5)(ν+5)
vvv (xxx,yyy)+ =vvv〈0|Pµ(xxx)P ν(yyy)|0〉vvv/~

=
χε0ω

2
0

2ω̄v0

∫
R3

d3~k

(2π)3
e−ikkk>·(xxx−yyy) 1

ω̄2 − ω2
0

(ω̄vµ − kµ>)(ω̄vν − kν>)

+ g2χ2ε2
0ω

4
0

2∑
a=1

2∑
i=1

∫
R3

d3~k

(2π)3
e−ikkk(a)·(xxx−yyy) ω(a)

ω2
(a) − ω

2
0

e
(a)µ
i (~k)e

(a)ν
i (~k)

DR′(a)(
~k)

; (5.7)

iG(µ+5)9
vvv (xxx,yyy)+ = vvv〈0|Pµ(xxx)B(yyy)|0〉vvv/~ = 0; (5.8)

iG99
vvv (xxx,yyy)+ = vvv〈0|B(xxx)B(yyy)|0〉vvv/~ = 0. (5.9)

At a first sight, these quite involved expression do not immediately communicate any particular information.
However, in the definition of the fields, we have seen that we need to restrict the space of test functions
in order to avoid a singular behaviour around ω2 = ω̄2 intersected with the future directed light cone. By
looking at the expressions for the propagator, we see precisely what is the degree at which the singularities
appear. These new singularities have been originated by the commutator (3.39) between the a0 and the a3

modes. In particular, it involves only gauge configuration and is thus expected to be eliminable from any
contribution to physical quantities. We can avoid them by a suitable choice of the distribution space, thus
making all expressions well defined.
The origin of the extra singularities is due to the fact that the different branches of the spectrum have non-
trivial intersections. The three main components of the spectrum are defined respectively by the equations

k2 = 0, (5.10)

ω2 − ω̄2 = 0, (5.11)

c2k2 − g2χ0ω
2
0ω

2

ω2 − ω2
0

= 0, (5.12)

together with positivity conditions, and which we shall indicate with Σ+, Σ> and Σ(a) respectively. The

denominators that generate divergences in the propagator have the form (ω2
+ − ω̄2)l, l = 1, 2. The polar

region is thus in the intersection Σp = Σ+ ∩ Σ>. Since k0 = |~k| this is equivalent to write

|~k|v0 − ~v · ~k = ±ω̄. (5.13)

Now vvv2 = c2 implies v0 > |~v| so that we must take the positive sign since v0 is positive. The equation is
thus equivalent to

v2
0
~k2 = (ω̄ + ~v · ~k)2. (5.14)

If we now introduce the shift

~k = ~q + ω̄~v, (5.15)

the equation becomes

c2~q2

ω̄2
− c2(~v · ~q)2

ω̄2v2
0

= 1. (5.16)

This shows that the singular locus is a prolate ellipsoid, symmetric under rotation around the direction of
~v, centred in

~k =
ω̄

c2
γ(~ν)~ν, (5.17)
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where

~v = γ(~ν)~ν, γ(~ν) =
1√

1− ~ν2/c2
, (5.18)

with shorter axis of length

b = cω̄ (5.19)

whereas the longer one has length

b = cω̄γ(~ν). (5.20)

We can cure the singularities by defining the field operators as distributions acting on test rapidly decreasing
smooth functions whose Fourier transforms vanish on the singular ellipsoid at least with degree two. It is
easily verified that this domain gives rise to well defined distributions.
It is interesting to note that the remaining intersections among spectra are just pointlike and give no new
singularities. Indeed, we have that Σ+ ∩Σ(a) is given by the point ~k = 0, whereas Σ> ∩Σ(a) corresponds to

~k = ω̄~v/c2. (5.21)

To verify these, we first note that k2 = 0 in Σ(a) implies ω = 0 that means vvv ·kkk = 0. Since kkk is null and vvv is
timelike, we get kkk = 0. Similarly, for Σ> ∩ Σ(a), if we set ω = ω> in Σ(a), we get

g2χω2
0ω

2

ω2 − ω2
0

= ω̄2, (5.22)

so that the points in the intersection must satisfy

c2k2 − ω̄2 = 0, (5.23)

where k0v0 = ω̄ + ~k · ~v. In the frame where ~v = 0 this has solution ~k = 0, and boosting at a general ~v gives
(5.21). This can also be determined directly. Assuming ~v 6= ~0, let v̂ the direction of ~v. We can write

~k = αv̂ + βv̂⊥, (5.24)

where v̂⊥ is a normalised vector perpendicular to v̂. The equation for the intersection thus becomes(
ω̄

v0
+ α
|~v|
v0

)2

= ω̄2 + α2 + β2. (5.25)

After some manipulations it takes the equivalent form

0 = β2c2 +
(
ω̄|~ν|/c− α

√
c2 − ~ν2

)2

, (5.26)

which gives β = 0 and (5.21). The intersection points are schematically depicted in figure 1.

5.1. The test functions

In order to avoid the above singularities, and get well defined fields and propagators, we choose as test
function space the set

Svvv(R4) := {f ∈ S(R4)|g(kkk) = (ω2 − ω̄2)−2F [f ](kkk)⇒ g ∈ S(R4)}, (5.27)

where F is the Fourier transform. It is immediate to verify that with this choice all fields and propagators
are well defined distributions. Moreover, the set of such spaces transform covariantly under the Lorentz
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ω0/c
ω̄/c

k0 ≡ ω/c

k

k′0

k′

Σ>

Σ+

Σ(1)

Σ(2)

Figure 1: The thick black lines represent the dispersion relations (as seen in the lab frame). The grey lines represent the axes
of a boosted frame. The grey points are single point intersections. The black point is a two-dimensional intersection surface.

transformation, and each of them is dense in L2(R4, dνa), see (4.19), as a consequence of the Wiener
Tauberian theorems [29].
A comment is in order. Indeed, all singularities are generated by commutators of the kind (3.39), each one
giving a singularity of order one. The second order pole arises because the a0 coefficients in AAA have already
a first order singularity, and a second one is added by the commutator. The singularity in the field has
been introduced by the shift (B.28), which has been introduced as a redefinition of the mode a3(~k) in order

to get the commutators [a3(~k), a†3(~q)] = 0. So, we may wonder if such a singularity is simply due to a bad
redefinition of the fields, then questioning if such redefinition was allowable. However, it is easy to check
that if we were not performing the shift (B.28), then we would not have a singular expression for the field,
but we would get

[a3(~k), a†3(~q)] =
~
ε0c2

[
ξ +

(ω2
+ − ω2

0)(ω2
+ − ω̄2)− 8πω2

+ω
2
0g

2χ

(ω2
+ − ω̄2)2

]
|~k|
ω2

+

δ3(~k − ~q), (5.28)

in place of zero. This shows that the second order pole appears in the propagator independently from the
shift (B.28).

6. Conclusions and outlooks

We have provided a full relativistic quantum theory of the electromagnetic field interacting with an
homogeneous and isotropic medium. The fields, which are indicated for simplicity with ΦΦΦ, are represented
as operator valued distributions

S ′vvv(R4)⊗ L(Fvvv), (6.1)

where L(Fvvv) is the set of linear operators on the separable Hilbert space Fvvv. Indeed, one gets a family of
representations parameterised by vvv ∈ B = SO(1, 3)↑/SO(3) ' V + = {xxx ∈ R1,3| xxx ·xxx > 0}. In this sense the
vacuum state is not the unique state invariant by translations, but we have a family of vacuum states which
are however substantially identified by unitary maps. Indeed, on each Fvvv it is not represented the whole
Poincaré group but only the little group of vvv, the set of Poincaré transformations which leave vvv invariant.
The remaining Poincaré transformations vvv 7→ ΛΛΛvvv, the boosts relating different inertial frames, essentially
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realise the unitary equivalences U(ΛΛΛ) : Fvvv → FΛΛΛvvv. Each vacuum state Ωvvv = |0〉vvv is unique in Fvvv and cyclic
for it. We have realised the theory by means of the correspondence principle, so starting from the equal time
canonical commutation relations. This, combined with Lorentz covariance, ensures that microcausality (or
locality) is satisfied: [ΦΦΦ(f),ΦΦΦ(g)] = 0 for any f, g ∈ Svvv(R4) whose supports are spatially separated.
It may be interesting to compare these characteristics with the standard Wightman axioms, which we report
here for convenience, [30]:

1. The states are described by vectors of a separable Hilbert space H;

2. Energy momentum spectral condition:

a) The space-time translations are a symmetry of the theory, and consequently they are described by
(strongly continuous) unitary operators U(a), a ∈ R4, in H;

b) The spectrum of the generator Pµ is contained in the forward closed cone V̄+;
c) There is a vacuum state Ω, with the property of being the unique translationally invariant state in H;

3. The theory is formulated in terms of fields {Φ} which are operator valued tempered distributions (densely
defined) in H (with Ω in the domain of the polynomials P of the smeared fields Φ(f)) and the vacuum
is a cyclic vector with respect to P , namely H = {PΩ};

4. Covariance:

a) The Lorentz transformations are described by (strongly continuous) unitary operators U(ΛΛΛ), ΛΛΛ ∈
SO(1, 3)↑+ (the restricted Lorentz group);

b) The fields transforms covariantly under the Poincaré transformations U(aaa,ΛΛΛ) ≡ U(aaa)U(ΛΛΛ),

U(aaa,ΛΛΛ)ΦJ(xxx)U(aaa,ΛΛΛ)−1 = SJ(ΛΛΛ−1)ΦJ(ΛΛΛxxx+ aaa),

with SJ a finite dimensional representation of SL(2,C), the universal covering of SO(1, 3)↑+;

5. Microcausality or locality: The fields either commute or anticommute at spacelike separated points

[ΦJ(f),ΦK(g)]± = 0, if f, g have support in spacelike separated regions,

where the ± stands for anti- and commutator respectively.

We see that while axioms 1 and 2a are satisfied, the first difference is in axiom 2b: in our model the spectrum
is not contained in V̄ + = {xxx|x0 ≥ 0,xxx2 ≥ 0}, since the oneparticle spectrum contains the branches Σ>, Σ2.
Since the branch Σ2 is well-known in experimental physics, it must be included in the spectrum defining
the fields. We shall turn on this point later. Axiom 2c is weakened in our case, since we have not a unique
invariant vacuum Ω, but a family of (equivalent) translationally invariant vacua Ωvvv, each one unique in
F~v. But this is not a novelty peculiar of our model, since it must happen each time a preferred frame is
selected, e.g. when an external field is present, as previously discussed. Axiom 3 is also slightly modified by
restricting the set of test functions to the Schwartzian functions whose Fourier transform vanish on suitable
singular loci. Since these loci have zero Lebesgue measure, it follow from the Wiener Tauberian theorems
that these spaces remain dense. It is worth noting that the singularities we have chosen to smear out involve
only the unphysical gauge components dddσ of the fields, and are thus expected not to contribute to physical
quantities.
Axiom 4 again is respected in a weaker form: on each Fvvv is represented only a subgroup SO(3)vvv ⊂ SO(1, 3)↑+,
isomorphic to SO(3), by strongly continuous unitary operators. The remaining transformations extend these
to an action of unitary operators over a family of Hilbert spaces. Finally, microcausality is realised with
the minus sign, since we are working with bosonic fields, thanks to the covariance and the implementation
of the equal time canonical commutation relations. Microcausality may be not sufficient to grant causality,
if axiom 2b is not satisfied. Nevertheless, this is not our case, where causality is respected, but, again, it
could not be a surprise, see [31].
This way we reached the goal of realising the exact quantisation of a nontrivial physical system, in the
Heisenberg picture. There are several possibilities for extending this work. First of all, the model can
also be quantised by means of the path integral methods. Even though it is a less rigorous way from the
mathematical point of view, in a sense it sheds some new light on the quantisation of the system, and deserves
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investigation. This topic is presented elsewhere [32]. An interesting generalisation would be to improve the
model from the point of view of the physical properties of the dielectric medium, which in our minimal
realisation are essentially absent. However, at the moment this task is out of our goals. A simpler step
would be to include interactions, inhomogeneities and non linearities. For example, in order to improve our
analysis of the analogue Hawking effect in dielectrics we need to modify the model enough in order to include
at least some nonlinear effects, as the Kerr effect. More in general, it would be interesting to investigate other
representations, like, for example, the thermal ones. All these topics are under investigation. Our model
can be extended to the case of an arbitrary number of polarisation fields, in a quite straightforward way.
Another interesting possibility would be to cure singularities at resonances by including absorption. This
may become relevant if one needs to investigate regions not too far from the resonance, so that the absorption
becomes important. Far from the resonances the relativistic Hopfield model is enough for describing light
in a transparent medium.
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Appendix A. Solution of the system (2.8)

A way for solving the algebraic system (2.8) consists in looking at the eigenvalues and eigenvectors of the
matrix M. It has seven eigenvalues, two of which are double degenerate. The two degenerate eigenvalues
are

λ±0 =
1

2

ε0c
2k2 +

ω2 − ω2
0

χε0ω2
0

±

√(
ε0c2k2 − ω2 − ω2

0

χε0ω2
0

)2

− 4g2ω2

 , (A.1)

with eigenvectors

Vλ±
0 ,i

=


igωeeei

1
2

[
ε0c

2k2 − ω2−ω2
0

χε0ω2
0
∓
√(

ε0c2k2 − ω2−ω2
0

χε0ω2
0

)2

− 4g2ω2

]
eeei

0

 , i = 1, 2, (A.2)

where eeei are two spacelike vectors orthogonal to kkk and vvv, such that eeei · eeej = −δij . The remaining five
eigenvalues are:

λ±1 = − ξ

2ε0c2
±

√
ξ2

4ε2
0c

4
+ k2, (A.3)

with eigenvectors

Vλ±
1

=

 kkk
000

− iξ
2ε0c2

± i
√

ξ2

4ε20c
4 + k2

 ; (A.4)

λ±2 =
1

2

(
ε0c

2k2 +
ω2 − ω2

0

χε0ω2
0

)
± 1

2

√(
ε0c2k2 − ω2 − ω2

0

χε0ω2
0

)2

− 4g2c2k2 (A.5)

with eigenvectors

Vλ±
2

=


kkk − k2

ω vvv

− i
2gω

[
ε0c

2k2 − ω2−ω2
0

χε0ω2
0
∓
√(

ε0c2k2 − ω2−ω2
0

χε0ω2
0

)2

− 4g2c2k2

]
(kkk − ω

c2vvv)

0

 ; (A.6)

λ3 =
ω2 − ω2

0

χε0ω2
0

(A.7)

with eigenvector

Vλ3 =

000
vvv
0

 . (A.8)

Because of the condition vvv ·PPP = 0, the last eigenvector can be omitted. These eigenvectors, each one defined
up to multiplication by an arbitrary function of kkk, are solutions of the algebraic system only when the
eigenvalues are zero. By direct inspection we see that the only possibilities are:

λ−0 = 0, (A.9)
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which corresponds to the branch (2.19) and gives the solutions

fi(~k)Vλ−
0 ,i
δ

(
c2k2 − g2χω2

0ω
2

ω2 − ω2
0

)
, i = 1, 2, (A.10)

where fi are arbitrary functions;

λ+
1 = 0, (A.11)

corresponding to the branch (2.17), with eigenvector

h(~k)

kkk000
0

 δ(k2) (A.12)

where h is an arbitrary function, and, finally, the condition

λ−2 = 0 (A.13)

which corresponds to two contributions. The first one is (2.18) with eigenvector

l(~k)Vλ−
2
δ(ω2 − ω̄2), (A.14)

where l is an arbitrary function, and the other contribution is again k2 = 0 with eigenvector (A.12). The
last one suggests that this solution is degenerate and, indeed, we find that the combination

W :=
2

ξ
Vλ−

2
−
(

1 +
g2χω2

0

ω2 − ω2
0

)
Vλ+

1
(A.15)

is such that

MW = O((k2)2), (A.16)

so that

m(~k)Wδ(1)(k2) (A.17)

is a second independent solution of (2.8). Putting all together, with a suitable redefinition of the arbitrary
functions, gives the general solution (2.14), (2.15) and (2.16).

Appendix B. The generalised Lautrup strategy

A strategy for getting rid of the dipole ghost term is as follows. First we note that the δ(1) term is
proportional to kkk, which means that in the configurations space it is of the form ∂µf(~x, t) for some f . In an
unconstrained theory, this would be a pure gauge configuration (it does not contribute to the electromagnetic
field). However, because of the introduction of the auxiliary field B, the whole gauge symmetry is broken and
only harmonic gauge transformation, that are transformations of the form Aµ → Aµ+∂µΛ with Λ harmonic
(2Λ = 0), are allowed as symmetry transformation. Thus, there is no way to eliminate the undesired term
by a symmetry gauge transformation in the constrained theory. Nevertheless, we can always separate this
pure gauge term from the rest by decomposing the field AAA as follows:

AAA(xxx) = AAAF (xxx) + gradgradgradσ(xxx), (B.1)

for some scalar function σ, in such a way that the δ(1) contribution is contained in gradgradgradσ. The suffix F stays
for Feynman, for analogy with the usual case. To this aim, we need to look at the very origin of the δ(1)
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solution. By working in the momentum space, we have ÃAA = ÃAA
F
− iσ̃kkk, where σ̃ is the Fourier transform of

σ, and the equations of motion take the form

ε0c
2k2ÃAA

F
−
[
ε0c

2k2σ̃ − (ξ − 1) B̃
]
ikkk − ig

[
ωP̃PP − (kkk · P̃PP )vvv

]
= 000, (B.2)

1

χε0

(
ω2

ω2
0

− 1

)
P̃PP + ig

(
ωÃAA

F
− (vvv · ÃAA

F
)kkk
)

= 000, (B.3)

ε0c
2kkk · ÃAA = −iξB̃. (B.4)

Being ω2 6= ω2
0 , as ω2 = ω2

0 is associated with a mode P̃PP ∝ vvv that is forbidden by the physical constraint
vvv ·PPP = 0, we can write

P̃PP = −ig ε0χω
2
0

ω2 − ω2
0

(
ωÃAA

F
− (vvv · ÃAA

F
)kkk
)
, (B.5)

and, then,

ε0c
2k2ÃAA

F
−
[
ε0c

2k2σ̃ − (ξ − 1) B̃
]
ikkk − g2ε0χω

2
0

ω2 − ω2
0

[
ω2ÃAA

F
− ω(vvv · ÃAA

F
)kkk − ω(kkk · ÃAA

F
)vvv + k2(vvv · ÃAA

F
)vvv
]

= 000.

(B.6)

It is now convenient to proceed by looking at solution in the different supports determined above, branch
by branch. Let us start with the solutions having support in k2 = 0, which is the branch containing the
dipole ghost. We assume that σ̃ and B̃ are any two given scalar distributions such that[

ε0c
2k2σ̃ − (ξ − 1) B̃

]
ikkk =: U(kkk)ikkkδ(k2) (B.7)

so that only the δ appears. Thus, substituting the ansatz

ÃAA
F

(kkk) = a(kkk)δ(k2)kkk + b(kkk)δ(1)(k2)kkk + r(kkk)δ(k2)vvv +

2∑
i=1

di(kkk)δ(k2)eee(i)(kkk), (B.8)

in (B.6), we get di(kkk) = 0, whereas a(kkk) and r(kkk) can be arbitrary, and the coefficient of the δ(1) is

b(kkk) = − i

ε0c2
U(kkk) +

g2χω2
0ω

c2(ω2 − ω2
0)
r(kkk). (B.9)

We can eliminate the δ(1) from ÃAA
F

by choosing σ̃ in such a way that the coefficient b(kkk) vanishes, which is
equivalent to say that we have to cancel out all terms linear in kkk in (B.6). Thus, the desired decomposition
is defined by the condition

ε0c
2k2σ̃ − (ξ − 1) B̃ + iε0

g2χω2
0

ω2 − ω2
0

ω(vvv · ÃAA
F

) = 0. (B.10)

At this point, the equation for ÃAA
F

is

c2k2ÃAA
F
− g2χω2

0

ω2 − ω2
0

[
ω2ÃAA

F
− ω(kkk · ÃAA

F
)vvv + k2(vvv · ÃAA

F
)vvv
]

= 000, (B.11)

which has general solution

ÃAA
F

(kkk) =(ω2 − ω2
0)a0(kkk)δ(k2)vvv +

2∑
i=1

δ

(
ε0c

2k2 − g2ε0χω
2
0ω

2

ω2 − ω2
0

)
ai(kkk)eeei

+ δ

(
ε0c

2k2 − g2χε0ω
2
0ω

2

ω2 − ω2
0

)
ã3(kkk)kkk − g

ε0
b3(kkk)δ(ω2 − ω̄2)vvv, (B.12)
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which corresponds to a sum of plane wave solutions.
For the polarisation vector we get

P̃PP (kkk) =− igε0χω
2
0a0(kkk)δ(k2)(ωvvv − kkk)− ig ε0χω

2
0ω

ω2 − ω2
0

2∑
i=1

δ

(
ε0c

2k2 − ε0
g2χω2

0ω
2

ω2 − ω2
0

)
ai(kkk)eeei

+ ib3(kkk)δ(ω2 − ω̄2)(ωvvv − kkk). (B.13)

Notice that from

B̃

ε0c2
=
i

ξ
kkk · ÃAA =

i

ξ
kkk · ÃAA

F
+
i

ξ
k2σ̃ (B.14)

and using (B.10), we get

B̃(kkk) = iε0c
2(kkk · ÃAA

F
)− iε0c

2 g
2χω2

0ω

ω2 − ω2
0

(vvv · ÃAA
F

), (B.15)

and so

B̃(kkk) = (ω2 − ω̄2)iωε0c
2a0(kkk)δ(k2). (B.16)

In particular, B is harmonic, as expected. Finally, we have to solve the equation for σ̃

k2σ̃(kkk) =
(ξ − 1)

ε0
B̃(kkk)− iω g2χω2

0

ω2 − ω2
0

(vvv · ÃAA
F

), (B.17)

that is

k2σ̃(kkk) =
(
ξ(ω2 − ω̄2)− ω2 + ω2

0

)
iωa0(kkk)δ(k2)− ik2ã3(kkk)δ

(
ε0c

2k2 − g2χε0ω
2
0ω

2

ω2 − ω2
0

)
+ i

g

ε0c2
ωb3(kkk)δ(ω2 − ω̄2). (B.18)

In order to find the right representation, let us simplify the expressions by setting

V (kkk) :=
(
ξ(ω2 − ω̄2)− ω2 + ω2

0

)
iωa0(kkk) (B.19)

and look for a particular solution of the equation

k2σ̃(kkk) = V (kkk)δ(k2). (B.20)

Since (k2)2σ̃(kkk) = 0, if we are working in the space of tempered distributions, the solution must be of the
form

σ̃(kkk) = α(kkk)δ(k2) + β(kkk)δ(1)(k2), (B.21)

for some scalar functions α and β. Here is exactly where the δ(1) enters the game. Note that the α part is
harmonic, so it is not determined by the equation, which, indeed, simply gives

β(kkk) = −V (kkk). (B.22)

In the configuration space, let us give a look at the particular solution

σ(xxx) ≡ −
∫
R4

d4k

(2π)4
V (kkk)e−ikkk·xxxδ(1)(k2), (B.23)

26



where with the symbol ≡ we mean modulo harmonic terms, which can be reabsorbed in the pure harmonic
gauge terms, corresponding to the a3 term in (2.14). If we consider the identity

δ(1)(k2) =
1

2ω
vµ

∂

∂kµ
δ(k2) (B.24)

we can write

σ(xxx) ≡ − i
2

∫
R4

d4k

(2π)4
V (kkk)

vvv · xxx
ω

e−ikkk·xxxδ(k2). (B.25)

After inserting back the expression of V we get

σ(xxx) ≡ 1

2

∫
R4

d4k

(2π)4

(
ξ(ω2 − ω̄2)− ω2 + ω2

0

)
a0(kkk)(vvv · xxx)e−ikkk·xxxδ(k2), (B.26)

which is a covariant version of the function Λ introduced by Lautrup in [24]. The corrections due to the
remaining terms in (B.18) are3

σ(xxx) ≡1

2

∫
R4

d4k

(2π)4

(
ξ(ω2 − ω̄2)− ω2 + ω2

0

)
a0(kkk)(vvv · xxx)e−ikkk·xxxδ(k2)

− i
∫
R4

d4k

(2π)4
ã3(kkk)e−ikkk·xxxδ

(
ε0c

2k2 − g2χε0ω
2
0ω

2

ω2 − ω2
0

)
+ i

g

ε0c2

∫
R4

d4k

(2π)4

ω

k2
b3(kkk)e−ikkk·xxxδ(ω2 − ω̄2). (B.27)

In adding gradgradgradσ to AAAF , the terms with ã3 in (B.12) cancel out. Thus, we apparently loose a degree of
freedom. However, σ is defined modulo additive harmonic terms, as we said, which can be equally included
in AAAF without changing its property of excluding the dipole ghost. For this reason we prefer to drop the
ã3 term out from σ, and substitute the corresponding term in (B.12) with the harmonic term a3(kkk)δ(k2)kkk,
whereas we include, for later convenience, a pure harmonic gauge term in gradgradgradσ, whose Fourier transform is

− i

4ω+

ξ(ω2 − ω̄2)2 +
(
ω2 − ω2

0

)
(ω2 − ω̄2)− 2ω2

+g
2χω2

0

(ω2 − ω̄2)(ω2 − ω2
0)

a0(kkk)kkkδ(k2). (B.28)

In conclusion, we write

AAA(xxx) = AAAF (xxx) + gradgradgradσ, (B.29)

with

AAAF (xxx) =

∫
R4

d4k

(2π)4

[
(ω2 − ω2

0)a0(kkk)δ(k2)vvv +

2∑
i=1

δ

(
ε0c

2k2 − g2χε0ω
2
0ω

2

ω2 − ω2
0

)
ai(kkk)eeei + δ

(
k2
)
a3(kkk)kkk

− g

ε0c2
b3(kkk)δ(ω2 − ω̄2)vvv

]
e−ikkk·xxx, (B.30)

and

gradgradgradσ(xxx) =

∫
R4

d4k

(2π)4

[
1

2

(
ξ(ω2 − ω̄2)− ω2 + ω2

0

)
(vvv − i(vvv · xxx)kkk)+

−i
ξ(ω2 − ω̄2)2 +

(
ω2 − ω2

0

)
(ω2 − ω̄2)− 2ω2g2χω2

0

4ω(ω2 − ω̄2)
kkk

]
δ(k2)a0(~k)e−ikkk·xxx

+
g

ε0c2

∫
R4

d4k

(2π)4

ω

k2
δ(ω2 − ω̄2)kkkb3(kkk)e−ikkk·xxx. (B.31)

3Notice that, in the limit g → 0, the last row disappears and the second one becomes harmonic.
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In particular, we note that AAAF contains a basis of plane waves. Let us notice that the above redefinition of
the fields introduces a singularity in ω2 = ω̄2, so one could be prevented in doing it. However, as we have
discussed in section 2, such a singular locus is expected to appear in any case, as we shall see, because of
the non vanishing intersection of the different branches.

Appendix C. Deduction of (B.12)

We need to solve the equation

MÃAA
F

= 000, (C.1)

where

M =

[
c2k2 − g2χω2

0ω
2

ω2 − ω2
0

]
I4 +

g2χω2
0

ω2 − ω2
0

[ωvvv ⊗ kkk − k2vvv ⊗ vvv]. (C.2)

Since kkk ·vvv = ω, kkk is in the kernel of the last parenthesis. Also, being eeei ·kkk = eeei ·vvv = 0, eeei are also in the kernel
of the same matrix. Thus,M acts on these terms only by means of the first part which is proportional to the
identity. The coefficient of proportionality is thus an eigenvalue with multiplicity 3. The fourth eigenvalue
can be computed by observing that the image of the second matrix is proportional to vvv. Since the first part
is proportional to the identity, this means that vvv is the fourth eigenvector:

Mvvv = k2c2
[
1− g2χω2

0

ω2 − ω2
0

]
vvv. (C.3)

The determinant of the matrix is the product of the four eigenvalues:

detM =

[
c2k2 − g2χω2

0ω
2

ω2 − ω2
0

]3

c2k2ω
2 − ω̄2

ω2 − ω2
0

. (C.4)

The supports of the equation are thus defined by detM = 0.
The component [

c2k2 − g2χω2
0ω

2

ω2 − ω2
0

]3

= 0 (C.5)

corresponds to 3 different eigenvectors, eee1, eee2, kkk, so it defines the solution

fff(kkk) = δ

(
c2k2 − g2χω2

0ω
2

ω2 − ω2
0

)
[a1(kkk)eee1 + a2(kkk)eee2 + a1(kkk)kkk] . (C.6)

The other support pieces, k2 = 0 and ω2 − ω̄2 = 0, correspond to the eigenvector vvv, so they define the
solution

ggg(kkk) = (ω2 − ω2
0)a0(kkk)δ(k2)vvv + b̃3(kkk)δ(ω2 − ω̄2)vvv. (C.7)

Putting all together and defining b̃3(kkk) =: 4πgb3(kkk), we get (B.12).
Remark: the reason for defining b3 is to get the right behaviour in the limit g = 0.
Remark: the same result can be obtained directly from (2.14), by considering that∫

d4k

(2π3)
ω
[
ω2 − ω2

0 − ξ(ω2 − ω̄2)
]
a0(kkk)kkkδ(1)(k2)e−ikkk·xxx

=

∫
d4k

(2π3)

[
ω2 − ω2

0 − ξ(ω2 − ω̄2)
]
a0(kkk)

1

2
kkkvµ

∂

∂kµ
δ(k2)e−ikkk·xxx

=
i

2

∫
d4k(2π3)

[
ω2 − ω2

0 − ξ(ω2 − ω̄2)
]
a0(kkk)(vvv · xxx)kkkδ(k2)e−ikkk·xxx

− 1

2

∫
d4k(2π3)

[
ω2 − ω2

0 − ξ(ω2 − ω̄2)
]
a0(kkk)vvvδ(k2)e−ikkk·xxx + . . . , (C.8)
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where we have integrated by parts, and the first line of the last expression comes out from the derivative of
the phase, the second line from the derivative of the vector kkk, and the ellipses, which are the derivative of
the remaining factor, stay for harmonic pure gauge terms.
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