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We consider the so-called Hopfield model for the electromagnetic field in a dielectric dispersive medium
in a framework in which one allows a space-time dependence of microscopic parameters, aimed at a
phenomenological description of a space-time varying dielectric perturbation induced by means of the Kerr
effect. We discuss the analogue Hawking effect by introducing a simplified model which avoids some
difficulties which characterize in the full Hopfield model, still keeping the same dispersion relation. Our
main result is an analytical calculation of the spontaneous thermal emission in the single-branch case,
which is provided nonperturbatively for the first time in the framework of dielectric black holes. A
universal mechanism for thermality which is shared both by optical black holes and acoustic black holes is
also pointed out.
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I. INTRODUCTION

In the framework of analogue gravity, a very interesting
possibility to check experimentally the existence of the
analogue of Hawking radiation is represented by black
holes in dielectric media. By taking into account in a very
short summary the historical developments, we point out
that there are several contributions to this topic, which was
reassessed in an interesting framework in [1] and received a
further impulse, especially on the experimental side, in [2],
grounded on [3,4], and then corroborated also by numerical
simulations in [5]. Experimental results in [2] are con-
troversial (see e.g. [6–9]). Subsequent studies involve both
numerical and experimental situations. On the former side,
an interesting 2D model where there is a sharp step
behavior of the dielectric properties of the medium has
been discussed in [10–12], with numerical evaluations of
the pair-production processes involved. Numerical but also
analytical perturbative studies appeared in [13,14], where a
smooth behavior of the refractive index was assumed, in the
framework of a phenomenological model grounded on the
unidirectional pulse propagation equation approximation
for the electromagnetic field, and thermality has been
explored again in particular in [14]. The aforementioned
studies contributed in a very important way to the com-
prehension of the physics at hand. In the present paper, our
main contribution is to complement these studies on the
analytical side, providing both a theoretical framework and
analytical nonperturbative deduction of thermality which
has been lacking up to now for dielectric black holes. Our
reference model is the covariant Hopfield model discussed
in [15,16]. It represents our basic tool for analyzing
conceptual issues which characterize the physics at hand.

We then introduce a simplified model for dispersion, which
is still covariant, but has the great advantage to be not
involved in a constrained quantization procedure and also
to be based on a couple of scalar fields (in place of a couple
of vector fields). Its physical content is nontrivial, and can
allow for a number of very interesting physical situations,
which can be also experimentally tested. We stress that the
full Hopfield model can also be exactly solved in the same
physical situations, with the difference that it is much more
difficult to be handled, both for the vectorial nature of the
fields involved, and for their being constrained systems.
The main focus of our paper is in the analytical

deduction of thermality for dielectric black holes. This
represents our key result, and main motivation of our
analysis. Furthermore, we point out a peculiar Fuchsian
singularity structure of the field equations near the horizon,
and stress its role in determining thermality of the emitted
radiation, and is shared with other analytical calculations in
the acoustic black hole case [17,18]. As a by-product of our
analysis, we provide also a derivation of the so-called
generalized Manley-Rowe relations, which play an impor-
tant role in the presence of pair creation. See Appendix C.
The plan of the paper is the following. In Sec. II we start

from a short discussion of the Hopfield model, and describe
a simplified model which avoids some formal difficulties of
the Hopfield model, still maintaining the same dispersion
relation. We develop the scattering picture in order to point
out the presence of pair creation from the vacuum. Then in
Sec. III we derive thermality in the limit of weak dispersion
by matching asymptotic solutions with solutions obtained
in the near horizon region, in strict analogy with calcu-
lations developed in [17,18]. In Sec. IV we discuss the

PHYSICAL REVIEW D 91, 124063 (2015)

1550-7998=2015=91(12)=124063(18) 124063-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.124063
http://dx.doi.org/10.1103/PhysRevD.91.124063
http://dx.doi.org/10.1103/PhysRevD.91.124063
http://dx.doi.org/10.1103/PhysRevD.91.124063


problem of the nature of the horizon involved in the pair
creation process. In Sec. V we adapt our results to the case
of multiple resonances in the dielectric medium. Then in
Sec. VI we summarize our main results. For the sake of
completeness, we also provide some appendices. In
Appendix A we show that our model reproduces exactly
the same dispersion relation as in the full electromagnetic
case. Moreover, we show that, in line of principle, the
model can be solved exactly, being reducible to a Gaussian
path integral. In Appendix B we discuss some formal
aspects of scattering theory. In Appendix C we derive the
generalized Manley-Rowe relations in our scattering frame-
work. In Appendix D, some discussion of geometrical
optics aspects is given.

II. HOPFIELD MODEL REVISITED: THE
φψ–MODEL AS A THEORETICAL BENCHMARK

FOR THE ELECTROMAGNETIC CASE

The Hopfield model is aimed at the description of
dielectric dispersive media, considered as transparent
[19,20]. The model, as known, introduces mesoscopic
fields, representing the polarization fields of mesoscopic
electrodynamics, which are coupled with the electromag-
netic field. These fields are in the form of a number of
harmonic oscillators, each with a proper oscillation fre-
quency characterizing dispersive effects of light in the
medium. The medium itself is considered in the first
approximation as transparent. The latter requirement can
be relaxed, as e.g. in [21–23]. In particular, in [22] an
interesting model including space-time variations of the
susceptibility is provided. The original model can be
described as follows:

Lem∶ ¼ 1

8π

�
1

c
_Aþ∇ϕ

�
2

−
1

8π
ð∇∧AÞ2

þ 1

2χ
ð _P2 − ω2

0P
2Þ − 1

2c
ðP · _Aþ _A · PÞ

−
1

2
ðP ·∇ϕþ∇ϕ · PÞ:

In the previous equation, A;ϕ stand for the components of
the electromagnetic potential vector field, P is the polari-
zation field, ω0 is the proper frequency for the oscillation of
the polarization field, χ is the dielectric susceptibility, and c
is the speed of light. We introduced in [15,16] a full
covariant 4D version of the Hopfield model, taking into
account the requirements for a relativistic extension, which
is apt for a simple discussion of physics in the comoving
frame of a uniformly moving dielectric perturbation
induced by means of the Kerr effect. This is only a
phenomenological approximation, in the sense that, in
place of the nonlinear interactions involved in the Kerr
effect, we consider its effects through the space-time

dependence of parameters like the susceptibility.
See below.
The covariant Lagrangian density deduced in [16] is

L ¼ −
1

16π
FμνFμν −

1

2χω2
0

½ðvρ∂ρPμÞðvσ∂σPμÞ�

þ 1

2χ
PμPμ −

g
2c

ðvμPν − vνPμÞFμν; ð1Þ

where Pμ is the polarization field, Fμν is the field strength
tensor, and vμ is the four velocity associated with the
dielectric medium. In this model, we allow the microscopic
parameters χ, ω0, g to depend on space-time variables. We
notice that, as e.g. in the (noncovariant) polariton model
introduced in [21,24], where a space dependent coupling
between the electromagnetic field and the polarization field
is introduced, we have as well introduced a coupling g,
which is a priori space-time dependent.
The covariant quantization of the model has been

pursued in [16], and is a nontrivial task because of the
gauge constraints implied by the model. See also [15],
where further analysis is presented in a perturbative
framework. In order to look for our main goal, which is
the Hawking effect in dielectric media, we simplify as
possible the theoretical framework, as discussed in the
following.
The electromagnetic Lagrangian for the full Hopfield

model is quite involved, and in order to test quantum effects
is not so manageable. In order to gain insights into the real
situation, and carry out analytical calculations as far as
possible, we introduce a simplified model where the couple
electromagnetic field–polarization field is simulated by a
couple of scalar fields: φ, ψ in place of the electromagnetic
field and of the polarization field respectively. The model
we propose is constructed in such a way to maintain the
same dispersion relation and to simulate the same coupling
as in the full case. The model at hand is related to the 2D
reduction of the Hopfield model which is adopted in [11].
We introduce

Lφψ ¼ 1

2
ð∂μφÞð∂μφÞ þ 1

2χω2
0

½ðvα∂αψÞ2 − ω2
0ψ

2�

þ g
c
ðvα∂αψÞφ; ð2Þ

where χ plays the role of the dielectrical susceptibility, vμ is
the four-velocity vector, ω0 stays for the proper frequency
of the medium, and g is a constant which plays the role of
coupling constant between the fields. A priori, in a
phenomenological model aimed at describing the electro-
magnetic field, we can leave room for a space-time
dependence of microscopic parameters like χ, ω0, g.
Moreover, we can extend the model in such a way to
include also N > 1 polarization fields ψ i, each one char-
acterized by a different ω0i, χi, gi. We shall not use the latter
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freedom until the final sections of the paper, and focus our
attention on the single-resonance model with just a single
polarization field.
The equations of motion are (we omit space-time

arguments):

□φ −
g
c
ðvα∂αψÞ ¼ 0; ð3Þ

ðvα∂αÞ
1

χω2
0

ðvα∂αψÞ þ
1

χ
ψ þ 1

c
vα∂αðgφÞ ¼ 0: ð4Þ

Let Gψ be the Green function for ψ :�
ðvα∂αÞ

1

χω2
0

ðvα∂αÞ þ
1

χ

�
Gψ ¼ δ; ð5Þ

where δ stays for the Dirac delta function. Then, defining
~x ¼ ðt; x; y; zÞ, we get the following system:

ψð~xÞ ¼ 1

c

Z
d4wGψ ð~x − wÞðvα∂αgφÞðwÞ; ð6Þ

□φð~xÞ − g
c2

ðvα∂αÞ
Z

d4wGψð~x − wÞðvβ∂βgφÞðwÞ ¼ 0;

ð7Þ

which represent a simplified model equations set simulat-
ing dispersive effects in optics.
It is also useful to introduce the Hamiltonian equations

for the given model. In particular, we introduce the
conjugate momenta

πφ ≔
∂L
∂∂0φ

¼ ∂0φ; ð8Þ

πψ ≔
∂L
∂∂0ψ

¼ 1

χω2
0

v0vα∂αψ þ g
c
v0φ: ð9Þ

Then we calculate the Hamiltonian density H:

H ¼ ∂0ψπψ þ ∂0φπφ − L

¼ 1

2
π2φ þ

χω2
0

2ðv0Þ2 π
2
ψ −

vk

v0
ð∂kψÞπψ −

g
c
χω2

0

v0
πψφ

þ 1

2c2
χω2

0g
2φ2 þ 1

2χ
ψ2 þ 1

2
ð∂kφÞ2: ð10Þ

Let us also define h ≔
R
dxH. Then we obtain

∂0φ ¼ fφ; hg; ð11Þ

∂0ψ ¼ fψ ; hg; ð12Þ

∂0πφ ¼ fπφ; hg; ð13Þ

∂0πψ ¼ fπψ ; hg: ð14Þ

Of course, the following nontrivial Poisson brackets
hold true:

fφ; πφg ¼ δ; ð15Þ

fψ ; πψg ¼ δ; ð16Þ

which will play a role in the quantization of the fields, as in
the Hopfield model [16].

A. Conserved scalar product

By following the same line of thought as in the
electromagnetic case, we can show that the following
(global) phase transformation,

φ ↦ eiaφ; φ� ↦ e−iaφ�; ð17Þ

ψ ↦ eiaψ ; ψ� ↦ e−iaψ�; ð18Þ

is a symmetry for the complexified Lagrangian,

Lcomplex
φψ ¼ 1

2
ð∂μφ

�Þð∂μφÞ þ 1

2χω2
0

½ðvα∂αψ
�Þðvα∂αψÞ þ ω2

0ψ
2� þ g

2c
ðvα∂αψ

�Þφþ g
2c

ðvα∂αψÞφ�; ð19Þ

Noether’s theorem implies that the following current:

Jμ ≔
i
2

�
φ�∂μφ − ð∂μφ�Þφþ 1

χω2
0

vμψ�vα∂αψ −
1

χω2
0

vμψvα∂αψ
� þ g

c
vμðψ�φ − ψφ�Þ

�
ð20Þ

is conserved: ∂μJμ ¼ 0 along the solutions of the equations of motion. Then the charge

Z
Σt

dxJ0 ð21Þ
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is conserved, and allows us to define a conserved scalar product. In particular, we obtain

ððφψÞjð ~φ ~ψÞÞ ¼ i
2

Z
Σt

�
φ�∂0 ~φ − ð∂0φ�Þ ~φþ 1

χω2
0

v0ψ�vα∂α ~ψ −
1

χω2
0

v0 ~ψvα∂αψ
� þ 1

c
gv0ðψ� ~φ − ~ψφ�Þ

�
: ð22Þ

This scalar product will be particularly important in the
definition of the quantum states for the model at hand.
The same scalar product can be obtained also as

associated with the symplectic structure of the classical
Hamiltonian equations. The starting point is still the
complexified Lagrangian. One first defines

πφ ≔
∂Lc

∂∂0φ
¼ 1

2
∂0φ; ð23Þ

π�φ ≔
∂Lc

∂∂0φ
� ¼

1

2
∂0φ

�; ð24Þ

πψ ≔
∂Lc

∂∂0ψ
¼ 1

2χω2
0

v0vα∂αψ þ g
2c

v0φ; ð25Þ

π�ψ ≔
∂Lc

∂∂0ψ
� ¼

1

2χω2
0

v0vα∂αψ
� þ g

2c
φ�: ð26Þ

Then, introducing

Ω ≔ −i
�

0 1

−1 0

�
; ð27Þ

where the square matrix represents the symplectic form of
standard Hamiltonian classical mechanics, we can obtain
the conserved scalar product as follows:

hΨ1;Ψ2i ≔ ðΨ1;ΩΨ2Þ ¼ ∶
Z

dxΨ�
1 ·ΩΨ2; ð28Þ

where · stands for the ordinary scalar product in R4, and

Ψ ≔

0
BBBB@

ψ

φ

πψ

πφ

1
CCCA: ð29Þ

B. Separation of variables in the comoving frame
for v ¼ const

From the system (6) and (7), it is not immediately
evident that it is possible to separate variables in the
comoving frame for v ¼ const. As to the dependence on
transversal spatial variables y, z, it is evident that separation
of variables occurs. In the case of the time variable t, it is
necessary to write the system (6) and (7) as a first order
system in t; in other words, we have to rewrite the
aforementioned system of equations of motion in
Hamiltonian form. Then we obtain the following
Hamiltonian form of the system:

i∂0

0
BBB@

φ

ψ

πφ

πψ

1
CCCA ¼ i

2
66666664

0 0 1 0

− g
c χω

2
0 − vk

v0 ∂k 0 − χω2
0

v0�
∇2 − g2

c2 χω
2
0

�
0 0 g

c χω
2
0

0 − 1
χ 0 − vk

v0 ∂k

3
77777775

0
BBB@

φ

ψ

πφ

πψ

1
CCCA: ð30Þ

In a more concise form, we can write the previous equation
as follows:

i∂tΨ ¼ HΨ; ð31Þ

where Ψ ≔ ðφ;ψ ; πφ; πψ ; ÞT and where H is the matrix
operator displayed in (30). It is to be noted that H is
formally self-adjoint in the scalar product h; i we have
defined in the previous subsection. Indeed, it is not difficult
to show that the Hermitian conjugate of H, say
Hc ¼ ðΩHΩÞ†, has the same form as the operator H.

Since H is independent on t, it follows that one can find
stationary solutions in the form

Ψ ¼ expð−iωtÞFðx; y; zÞ; ð32Þ
and separation of variables in t becomes evident. Notice
that ω is a conserved quantity, and that this amounts to the
following conservation in the lab frame

ωlab − vklab;x ¼ const; ð33Þ
which was previously obtained in a perturbative approach
and now is confirmed in an exact model. Note that this
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conservation is simply associated with the conservation of
energy in the comoving frame.

C. Norm of the states and field quantization

The norm of the states is inherited by a conserved scalar
product:

∥Ψjj2 ≔ hΨ;Ψi

¼ i
2

Z
Σt

�
φ�∂0φ − ð∂0φ�Þφþ 1

χω2
0

v0ψ�vα∂αψ

−
1

χω2
0

v0ψvα∂αψ
� þ g

c
v0ðψ�φ − ψφ�Þ

�
: ð34Þ

Particle states correspond to positive norm states (which is
a notion which remains invariant under Lorentz group),
negative norm states correspond to antiparticles. This can

be exemplified in the homogeneous case, i.e. in absence of
the perturbation. Then, in the case of plane-wave solutions,
it can be shown that

∥Ψjj2 ≔ hΨ;Ψi ∝ ωlab; ð35Þ

so that sgn∥Ψjj2 ¼ sgnωlab.
This results match well what happens in the electro-

magnetic case, and show that particles in the lab are defined
by the condition ωlab > 0. Then, in the comoving frame, we
have that particle states are defined by the condition
ω > −vk. These conditions should represent a good
indication for particle and antiparticle states also for the
full problem. See Appendix B for more details. This
corroborates the common use of the asymptotic dispersion
relation, to be indicated as (DR)-asymptotic in the follow-
ing, in order to identify particle and antiparticle states. See
Fig. 1. For example, in the Cauchy approximation we have

nðωlabÞ ¼ nð0Þ þ Bω2
lab þ δnðx − vtÞ; ð36Þ

where nð0Þ is nðωlab ¼ 0Þ, B is constant, and the Kerr effect
induces the right-moving perturbation δnðx − vtÞ; the
(DR)-asymptotic displays three states on the same branch
G− [cf. Eq. (48)] with the same ω in the comoving frame:
the positive group velocity particle state, to be called IN,
the negative group velocity particle state, to be called P,
and a negative group velocity antiparticle state N�. It is also
to be remarked that each state ðω; kÞ is conjugated to a state
with ð−ω;−kÞ (and then there is e.g. a state N which is the
conjugate of N�). See [13,25]. There is also another branch
Gþ [cf. Eq. (48)], which for the same ω displays only a
single negative group velocity particle state B. Only the
former branch G− is involved in the Hawking process.
Quantization follows the general lines we have found for

the electromagnetic case [16], with the important simpli-
fication associated with the absence of constraints, which
makes easier and standard the treatment of the topic. In
particular, in the comoving frame (which is static), we have

Ψðt;xÞ ¼
XZ

dω
2π

dk
ð2πÞ3

1

NΨ
δðdispersion relationÞðaðω;kÞUðω;k; t;xÞ þ a†ðω;kÞVðω;k; t;xÞÞ; ð37Þ

where NΨ stands for a normalization factor,
δðdispersion relationÞ indicates that one considers solu-
tions “on shell,” and U, V are positive norm solutions and
negative norm solutions of the field equations respectively.
To be more specific, we also point out that we are interested
in the following fields:

ΨðINÞðt;xÞ; ð38Þ

which represents the field asymptotically in the past: as
t → −∞, and the correspondingasymptotic field in the future:

ΨðOUTÞðt;xÞ: ð39Þ

A single (rapid) transition from a region with a given set of
parameters χ, g, ω0 to a region with parameters χ0; g0;ω0

0 is
considered,andtheaboveasymptotic fieldsareinterpolatedby
the field (37).
Notice that the above quantization, in a two-dimensional

model, on shell, can give rise both to an ω-representation,
where only the integration in dω is left, and also to a k-
representation, where the dispersion relation is used to

ϖ

N* PB IN

N

k

FIG. 1. Asymptotic dispersion relation for the Cauchy case in
the comoving frame. The monotone branch is Gþ, the non-
monotone one is G−. The dashed line divides antiparticle states
(below it) and particle ones (above it). Two lines at ω ¼ const and
at −ω ¼ const are also drawn, and relevant states introduced in
the text are explicitly indicated.

HAWKING EFFECT IN DIELECTRIC MEDIA AND THE … PHYSICAL REVIEW D 91, 124063 (2015)

124063-5



leave only the integral in dk. In a four-dimensional model,
the latter choice is to be preferred.
In order to compute amplitudes for pair creation, the

strategy is the following. Let us expand in plane waves both
the IN state and the P;N; B states emerging from the
scattering process. Then, let us consider

jNj2 ≔ jJNx j
jJINx j ; ð40Þ

where Jx stands for the conserved current (20), and the
indexes N, IN indicate that one is considering theN-particle
states and the IN-particle states respectively (and similar
for P and B). Indeed, jNj2 above is the ratio between the
outgoing flux along x of negative energy particle states and
the flux along x of ingoing particle states, where an
infinitesimal surface element orthogonal to x has been
simplified. jNj2 coincides with the mean number per unit
time and unit volume of created particles [26–28]. See also
[29]. To this topic is devoted Appendix C, where scattering
amplitudes are discussed in detail, and the relation between
white hole scattering and black hole scattering is pointed
out. Furthermore, a deduction of the generalized Manley-
Rowe identitities (which are substantially Wronskian rela-
tions) is also given. In the following section, we discuss
particle creation and in particular its thermal character in
our model in the Hawking case.

III. ANALYTICAL CALCULATIONS
AND THERMALITY

We wish to set up an analytical approach allowing us to
infer thermality for our model. Our reference works will be
[17,18]. Indeed, we also try to identify a common mecha-
nism for thermality, including our model, and the general
fluid model discussed in [18], which is a generalization and
a refinement of the seminal calculations by Corley [17].
The strategy is shared with the aforementioned calcula-
tions: Wentzel-Kramers-Brillouin (WKB) approximation is
introduced at the level of the calculations for asymptotic
states far from the horizon, and this expansion is matched
with the near-horizon expansion, which is instead treated in
Fourier space, in the approximation up to the linear order in
x. It is not difficult to show that, under the hypothesis of not
very strong gradient of the refractive index, one of the four
asymptotic states (which belongs to the monotone branch
of the dispersion relation) decouples and gives rise to a
scattering phenomenon which is an almost negligible
fraction of the dominant phenomenon represented by the
Hawking effect. On the other hand, it is a consequence of
the construction of the states in the near-horizon region that
the states which match with the asymptotic states P and N
(positive and negative norm states emerging from the
scattering and lying on the nonmonotone branch of the
dispersion relation) are such that the ratio

jNj2
jPj2 ¼ exp ð−βhℏωÞ; ð41Þ

where βh is the black hole temperature, i.e. it leads to the
standard thermal spectrum as far as the fourth state is
negligibly coupled (which means that jBj2 is negligible).
We start from the asymptotic expansion.

A. WKB analysis

We consider our equations of motion. Instead of working
in full generality, we take into account only the possibility
to get g ↦ g0 þ δgðxÞ, where g0 is constant. We could
allow also a dependence on x of the susceptibility
χ ↦ χ0 þ δχðxÞ, as well as ω2

0 ↦ ω2
0 þ δω2

0ðxÞ, where
χ0, ω2

0 are constants, but this choice seems to represent a
hindrance to a neat deduction of the Hawking effect, as we
show in the following subsection. As a consequence, we
avoid such a dependence, and justify this choice by
recalling that our model is phenomenological: the traveling
perturbation is introduced by means of inhomogeneities in
the couplings of the model, which are chosen so that the
refractive index displays the expected behavior. What is
important is the latter behavior, and not the way the
phenomenological model allows us to implement it. As
a matter of fact, the model, as it is constructed, is able to
reproduce a behavior like nðxlab − vtlab;ωlabÞ ¼ n0ðωlabÞþ
δnðxlab − vtlabÞ, with the traveling perturbation described as
independent on the dispersion, only in the limit of negli-
gible dispersion [3], when the Cauchy approximation holds
true. Otherwise, such phenomenological behavior cannot
be approached by means of the Hopfield model, and its
extension to the nonlinear regime would be required.
All considerations above in any case do not affect the

zeroth order WKB approximation, which is obtained as
follows. As in [17,18], we have ∂t ↦ iω. We adopt the
following expansion:�

φ

ψ

�
¼

X
k≥0

�
ℏ
i

�
k
exp

�
i
ω

ℏ
tþ i

SðxÞ
ℏ

��
Ak

Bk

�
: ð42Þ

Then, defining p ¼ ∂xS, we get the following zeroth order
matrix by expanding in powers of ℏ:

Mð0Þ ¼
"

− ω2

c2 þ p2 −i gc γðωþ vpÞ
i gc γðωþ vpÞ 1

χω2
0

ðω2
0 − γ2ðωþ vpÞ2Þ

#
: ð43Þ

As to the zeroth order, the mandatory vanishing of the
determinant of Mð0Þ amounts to

c2p2 − ω2 ¼ g2γ2χðωþ vpÞ2
1 − γ2ðωþvpÞ2

ω2
0

; ð44Þ

which is equivalent to the usual dispersion relation in
the lab, apart for the dependence on space of the
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inhomogeneous terms. We obtain a polynomial of degree 4
in p, to which we can associate four solutions, as expected.
Due to the intrinsic nature of our model, it makes sense to
adopt the Cauchy approximation. As it is easy to under-
stand, at this level there is no substantial difference between
solutions one obtains as above and the solutions one can
obtain from the two branches of the Cauchy approximation
in a phenomenological model where the eikonal approxi-
mation is assumed. We assume that

pðxÞ ¼ p0ðxÞ þ ϵp1ðxÞ þ � � � ; ð45Þ
i.e. we assume that pðxÞ is developable in series. Then, we
consider the following perturbative solution ansatz, which
is equivalent to the one adopted in [17,18]:

pðxÞ ¼ p0ðxÞ þ ϵp1ðxÞ; ð46Þ

ω ¼ ϵω1; ð47Þ

which is equivalent to the ansatz ω ≪ pv. The two
branches in the Cauchy approximation are

G� ≔ γðωþ vpÞðBγ2ðωþ vpÞ2 þ nðxÞÞ

� c
v

�
γðωþ vpÞ − ω

γ

�
¼ 0; ð48Þ

where Gþ ¼ 0 corresponds to the monotone branch. From
G− ¼ 0, in the above perturbative ansatz, we obtain three
solutions:

p� ¼ � 1ffiffiffiffi
B

p 1

γv

ffiffiffiffiffiffiffiffiffiffiffi
c
v
− n

r
−
ω

v
−
1

2

cω
γ2v2

1
c
v − n

; ð49Þ

pþs ¼ −
ω

v
þ cω
γ2v2

1
c
v − n

; ð50Þ

where we have purposefully introduced a notation which
resembles the one in [17], and indeed the modes we have
found correspond to the modes identified therein. It can be
noticed that asymptotically the norm of pþ, pþs is positive,
being ωþ vp > 0, whereas the norm of p− is negative.
Moreover, p� are short wavelength states, and pþs is a long
wavelength one. A fourth real solution emerges from
Gþ ¼ 0, and is the one which decouples from the spectrum
in the approximation where a not too strong gradient in the
refractive index occurs. The above solutions have to be
matched with the ones which will be obtained in the near
horizon region. With this aim, we investigate also the
amplitude part of the WKB solutions. We can obtain
the same results from Eq. (44). We are also interested in
the amplitudes associated with the zeroth order equation,
which leaves undetermined one solution (due to the fact
that Mð0Þ, which is a rank 1 matrix, is to be considered on
shell, i.e. for p corresponding to a root of detMð0Þ ¼ 0). We
need to look for the first order equation, which is

Mð1Þ

�
A0

B0

�
þMð0Þ

�
A1

B1

�
¼ 0: ð51Þ

We have

Mð1Þ ¼
� −ið∂xpÞ − 2ip∂x − 1

c γvg∂x

1
c γvðg∂x þ ð∂xgÞÞ i γ

2v
χω2

0

ðð∂xsÞ þ 2s∂xÞ

�
; ð52Þ

where p coincides with one of the roots of detMð0Þ ¼ 0

(at the leading order) and we introduced

s ¼ γðωþ vpÞ: ð53Þ
Following the theory of the multicomponent WKB (see e.g.
[30,31]), in order to find out the zeroth order amplitude, we
proceed as follows. We first express the zeroth order
solution as r0a0, where r0 is a right eigenvector of Mð0Þ
relative to the zero eigenvalue, and a0 is the unknown
amplitude. Then we project (51) on the left eigenvector l0
of Mð0Þ relative to the zero eigenvalue, obtaining then a
single equation l0Mð1Þr0a0 ¼ 0 for the amplitude. A rather
straightforward calculation gives us, in the limit of negli-
gible ω, and for the leading order solutions p� (Mð1Þjp� is
considered)

A0 ∝
1

x3=4
; ð54Þ

B0 ∝
1

x1=4
; ð55Þ

in the near horizon region where the WKB approximation
still holds, in the so-called linear region of [18], but not too
near the horizon, where it breaks down. This behavior is
also expected from the near horizon expansion [see
below Eq. (79)].

B. Near horizon region analysis

For the region near the horizon xþ which is such that
nðxþÞ ¼ c=v, we proceed again by adopting the same
ansatz as in [17,18]. Our starting point is to Fourier
transform the equations of motion, by keeping into account
that x ↦ i∂p. The trick is a linearization in the neighbor-
hood of the horizon x ¼ 0: nðxÞ ∼ c

v þ κx ↦ c
v þ κi∂p.

In the following analysis, our guide is represented by the
presence of a suitable branch cut in Fourier space which
should allow us to pinpoint the origin of thermality. At first,
we proceed by looking for a Fuchsian singularity as the one
occurring at p ¼ 0 also in [17,18]. Our ansatz is that, given
the universality in the Hawking effect in the nondispersive
case, one should be able to find out a common origin of
thermally also in the dispersive case. We show in the
following that it is indeed possible to implement thermality
according to our ansatz. As both our model and the ones in
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[17,18] characterize a huge class of analogous systems, we
conjecture that such a behavior is a distinctive signal for the
Hawking effect in analogous systems. Indeed, provided that
a suitable matching exists with WKB solutions in the
asymptotic region, the calculation of thermality can be
associated with a (hyper)local behavior, in the sense that,
once the aforementioned matching allows to find a relation
between asymptotic WKB wave functions and local func-
tions near the horizon, thermality can be calculated even
locally. It is sufficient to compare jNj2=jPj2 near the
horizon to get the right behavior.
The aforementioned ansatz is interesting, in the sense that

it is very selective in the way the phenomenological model
should be related to the behavior of microscopical param-
eters appearing in the Hopfield model. Indeed, in the latter
one, we could allow the following dependence on the x
variable in the comoving frame of the dielectric perturbation:
χ ↦ χ0 þ δχðxÞ;ω2

0 ↦ ω2
0 þ δω2

0ðxÞ; g ↦ g0 þ δgðxÞ. The
worst behavior is obtained by the presence of a dependence
on δχðxÞ, as it does not allow any Fuchsian structure and
makes as hard as possible the problem of identifying the
source of thermality. Even by considering only a first order
equation arising from Eq. (57) (see below), it is not possible
to identify a mechanism for thermality. So our choice is to
factor out this behavior. There is no problem, in our view, in
this choice, as in any case the Hopfield model we are trying
to adapt in order to match the phenomenological behavior is
only an approximate model which should be more correctly
described by a nonlinear version of quantum electrodynam-
ics (as the dielectric perturbation arises from nonlinearities of
the dielectric medium). Then we consider the correction
δω2

0ðxÞ, which is interesting (indeed, it could be as well
considered as arising from a linearization of the nonlinear
polarization term P4 one could add to the Lagrangian). Still,
even if a Fuchsian structure can be identified, the roots of the
indicial equation depend on ω2

0 instead of on ω2, so that
again thermality is not extracted from the model. The last
possibility, which is to some extent an unexpected variant of
the model, because it amounts to a variation of the plasma
frequency, but at constant susceptibility χ, is at the very least
satisfactory. Indeed, it not only provides us a good Fuchsian
behavior with thermality, but it is also a good model at the
level of a first order analysis.
We also symmetrize the last term in the Lagrangian (2):

g
c ðvα∂αψÞφ ↦ g

2c ðvα∂αψÞφ − g
2c ðvα∂αφÞψ . From the

equations of motion we obtain

~φðpÞ ¼ 1

p2 − ω2

c2

1

c

�
1

2
αγvþ ig0γðωþ vpÞ

− α∂pγðωþ vpÞ
�
~ψðpÞ; ð56Þ

where

gðxÞ ¼ g0 þ αx ↦ g0 þ iα∂p; ð57Þ

and

1

χ

�
1 −

γ2ðωþ vpÞ2
ω2
0

�
~ψðpÞ

þ 1

c

�
1

2
αγvþ ig0γðωþ vpÞ − α∂pγðωþ vpÞ

�
× ~φðpÞ ¼ 0: ð58Þ

Equations (56) and (58) lead in a natural way to a second
order differential equation, which is better described in
terms of the variable s and which displays a Fuchsian
singularity for s ¼ 0:

�
∂2
s þ

2

s
∂s þ

�
1

4
þ c2ω2

γ4v4χα2

�
1

s2

�
~ψðsÞ ¼ 0; ð59Þ

whose indicial roots are

α� ¼ −
1

2
� i

cω
γ2v2

ffiffiffi
χ

p
α
: ð60Þ

Then, near s ¼ 0, the solutions behave as

~ψðsÞ ∼ s
−1
2
�i cω

γ2v2
ffiffi
χ

p
α: ð61Þ

We note that a similar Fuchsian singularity appears also in
[17,18]. As both the models characterize a huge class of
analogous systems, we conjecture that such a behavior is a
distinctive signal for the Hawking effect in analogous
systems.
By comparing with the phenomenological dispersion

relation GþG− ¼ 0 in the Cauchy approximation [the latter
approximation is the only one to be expected to provide a
sensible match between the Hopfield model and the zeroth
order assumption of nondependence on ω of the dielectric
perturbation δnðxÞ], we find

g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð0Þ2 − 1

χ

s
; ð62Þ

δg ¼ nð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðnð0Þ2 − 1Þχ

s
δn; ð63Þ

ω2
0 ¼

nð0Þ2 − 1

2nð0ÞB : ð64Þ

We assume χ > 0, g0 > 0. In particular, we stress the
following relation:
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α ≔ g0 ¼ nð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðnð0Þ2 − 1Þχ

s
n0; ð65Þ

where the prime indicates the x-derivative and the above
identity is considered at x ¼ 0. Note that n0 ¼ κ, which is
not yet the surface gravity (because also of the sign to be
taken into account).
Even if an almost satisfactory behavior can be identified,

there is a problem: it is not possible to find out a solution for
(58) in explicit form, so it is not clear how to prescribe the
behavior of the solutions. As a consequence, in the spirit of
our above considerations, we turn to a first order analysis.
This amounts to consider (58), where ~φ is given by (56),
and to neglect terms ∝ α2.
We assume that αγv ≪ s in order to properly deal with

the limit as ω → 0.
The first order equation one obtains admits the following

solution:

~ψðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðs − γωÞ2 − γ2v2ω2

q
1

s
expðiqðsÞÞ; ð66Þ

where the phase qðsÞ is

qðsÞ ≔ c2s3

6αχg0γ3v3ω2
0

þ c
v

cω
αχg0γ2v2

logðsÞ þ wðsÞ; ð67Þ

where

wðsÞ ≔ g0s
2αγv

þ c2ω2

2sαχg0γ3v3
−

c2s
2αχg0γ3v3

−
c2s2ω

2αχg0γ2v3ω2
0

þ c2sω2

2αχg0γv3ω2
0

−
sω2

2αχg0γvω2
0

: ð68Þ

We aim to write the field ψðt; xÞ as follows:

ψðt; xÞ ¼ eiωt
Z
Γ
dp

1ffiffiffiffiffiffi
2π

p ~ψðpÞeipx

¼ eiωte−i
ω
vx

1

γv

Z
Γ
ds

1ffiffiffiffiffiffi
2π

p ~ψðsÞeis 1
γvx; ð69Þ

for a suitable path Γ in the complex plane.
Our ansatz is the following: the contribution wðsÞ is not

relevant in the saddle point approximation, in such a way
that, keeping into account the contribution of the Fourier
transform, the saddle points are determined by

d
ds

�
s
γv

xþ c2s3

6αχg0γ3v3ω2
0

�
¼ 0: ð70Þ

In other terms, the relevant saddle points are the ones of the
function

hðsÞ ≔ s
γv

xþ c2s3

6αχg0γ3v3ω2
0

: ð71Þ

According to the saddle point approximation we haveZ
Γ
dsFðsÞ expðihðsÞÞ

≃X
k

FðskÞ expðihðskÞÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−i d2hds2 ðskÞ
q ; ð72Þ

where the sum is extended to the saddle points. From (70)
we obtain

c2s2

2αχg0γ2v2ω2
0

þ x ¼ 0; ð73Þ

i.e.

s� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðxÞjxj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χjαjg0

p
γvω0

1

c
≔ �ηjxj1=2; ð74Þ

where we have taken into account that α < 0. In particular,
we get

ðaÞx > 0 ⇒ s� ¼ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2χjαjg0
p

γvω0

1

c

�
x1=2; ð75Þ

ðbÞx < 0 ⇒ s� ¼ �i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χjαjg0

p
γvω0

1

c

�
jxj1=2; ð76Þ

where case ðaÞ refers to the outer region and ðbÞ to the
inner one. The large parameter in the saddle point approxi-
mation is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jαjg0χω2

0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð0Þ2 − 1

B
jκj

r
∝

ffiffiffiffiffi
jκj
B

r
; ð77Þ

the above parameter is manifestly large due to the smallness
of B.
Due to the strong analogy with the [17,18] case, we can

adopt the same choice for circuits in the complex plane (the
only difference being in using variable s instead of variable
p). See Fig. 2. Forbidden sectors in the complex s-plane are
formally the same, albeit s cannot be too high because in
our approximation ω0 acts as an ultraviolet cutoff s ≪ ω0.
Case (b) above provides us modes with exponentially

increasing/decreasing behavior. The growing mode is not
physically allowed, whereas the decreasing one is assumed
to be defined along the curve Γ0 passing through
−ið ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2χjαjg0
p

γvω0
1
cÞx1=2 and with asymptotes in the

allowed regions in the lower s-plane. As to the branch
point s ¼ 0, we choose the associated branch cut along the
positive ℑðsÞ axis. The decreasing mode, in the saddle
point approximation, is
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ψ0ðxÞ ∼ C0 exp

�
−
4

3
jxj3=2 η

γv

�
fðxÞ 1

jxj1=4 ; ð78Þ

where C0 is a normalization constant. The function fðxÞ is
associated with the remaining dependence on x (it depends
also on η).
Modes with high momentum correspond to curves Γ�,

passing through �ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χjαjg0

p
γvω0

1
cÞjxj1=2, ending in the

allowed region and flowing asymptotically near the branch
cut (see the figure). Γ− flows from the allowed left region to
the allowed region having the positive imaginary ℑðsÞ-axis
as asymptote. Γþ arises from the left of the aforementioned
branch cut (asymptote) and ends in the right allowed
region. We get

ψ�ðxÞ ∼ Cþ expðir�ðxÞÞ
1

jxj1=4 exp
�
�πω

c
v

1

nð0Þ
c

jκjγ2v2
�
;

ð79Þ
where Cþ is a (common) normalization constant and r�
indicates a pure phase function. The real “thermal” char-
acterization arises from the real exponential term, with
exponent proportional to ω. In particular, thermality is
related to the contribution

−
c
v

cω
jαjχg0γ2v2

logðsÞ ð80Þ

in the phase factor, by taking into account that

logðs� iϵÞ → log jsj � iπ as ϵ → 0: ð81Þ
One could wonder if this corresponds to a good temperature
for our model, matching the one for the nondispersive
model. The answer is positive, indeed

βH ¼ 2πkb
ℏ

c
v

c
jαjχg0γ2v2

¼ c
v

1

nð0Þ
�
2πkb
ℏ

c
jκjγ2v2

�
; ð82Þ

where the term in brackets is immediately realized to have
the same form of the inverse of the nondispersive temper-
ature. As it stands, the factor c

v
1

nð0Þ is substantially equal to

one, because the horizon condition nð0Þ þ δnðxÞ ¼ c=v
implies, due to the smallness of δn, that nð0Þ ∼ c=v. Still, it
is true that it is not an exact result. The model is imperfect,
which is to be expected.
It is interesting to point out that pair creation, in a thermal

way, comes out because of the circuits suitably running
around the branch point s ¼ 0, which is also the threshold
for defining particle (s > 0) and antiparticle (s < 0) states.
There is a fourth circuit Γb which is running around the

branch cut. Its behavior can be inferred by analogy
with [17,18].
Near the horizon, for ω → 0 (cf. [17,18]), the contribu-

tion to the amplitude arising from the saddle points is of the
order of 1=

ffiffiffi
s

p
, i.e. x−1=4, which matches the WKB result in

the same order of approximation. Of course, one has to
keep into account if signðxÞ is positive or negative (i.e. if
the mode is in the inner part or in the outer part of the
horizon). In the inner region, there is an evident decreasing
exponential factor which tames the modes, as in [17,18].
As to the behavior of the field φðxÞ, by taking into

account that αγv ≪ s, one obtains φ� ∝ x−3=4, again in
agreement with the WKB calculations.
In particular, we are interested in the large p modes,

which amount to modes p� in the WKB approximation.
These modes are involved with Γ� which give rise to the
well-known thermality factor, with temperature

TH ≃ ℏ
2πckb

jκjγ2v2: ð83Þ

We could proceed as in [17] and [18] for getting this result,
or we can adopt a simpler ansatz, which is grounded on the
nature of modes p� to be associated with positive and
negative norm states with an “ultraviolet” momentum.
They correspond to P and N modes respectively, and, as
far as the fourth mode B is weakly coupled to the scattering,
thermality can be inferred simply by the behavior of the
ratio

jNj2
jPj2 ¼ exp

�
−

ℏω
kbTH

�
; ð84Þ

where TH is given by (83).

IV. EXPANSION POINT: WHICH KIND
OF HORIZON DO WE NEED?

We have assumed, up to now, to work with the non-
dispersive (geometrical) horizon as an expansion point

Γ

ΓΓ

Γ b

0

+−

FIG. 2. Circuits in the complex s-plane defining the relevant
modes as described in the text.
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where the near horizon analysis is carried out. As a matter
of fact, this choice is not the only one. Indeed, we could as
well choose two other horizons: the group horizon (GH)
and the phase horizon (PH), which are defined respectively
as the blocking horizon for propagating waves at a given
frequency in the comoving frame (the point where the
group velocity of the wave packet vanishes), and the locus
where the phase velocity of the waves composing the wave
packet vanishes. From a physical point of view, at first
sight, there is no doubt that GH is more attractive and
meaningful than the PH, and should play the role of
nondispersive horizon in the dispersive case, as it results
in the optical case in [14], where GH is referred to as
“blocking horizon.” Pure thermality of the spectrum is
supposed to rely on the presence of a GH. Still, we wish to
consider both concepts, as they could play a role which is
not yet made as evident from our previous calculations.
In our analysis in Sec. III B the horizon surface is at a

generic locus simply indicated as “horizon” and shifted to
x ¼ 0, where only at the end of calculations our micro-
scopic parameters are transformed into the macroscopic
ones. Equation (82) remains unaltered, and changes occur
only at the level of the subsequent approximation for the
factor cv

1
nð0Þ. It is still true that it is substantially equal to one,

because nð0Þ ∼ c=v. Corrections in the temperature appear,
depending onω in the GH case, and on k0 in the PH case. In
particular, one finds

c
v

c
v − nPH

¼ 1

1 − v
c zk

2
0

∼ 1þ v
c
zk20; ð85Þ

c
v

c
v − nGH

¼ 1

1 − v
c ζBω

2=3 ∼ 1þ v
c
ζBω

2=3; ð86Þ

provided that in the former case v
c zk

2
0 ≪ 1 holds true, as

well as v
c ζBω

2=3 ≪ 1 in the latter case and ζB is given by
Eq. (D7). No modifications in the saddle point approxi-
mation and in the choice of the paths appear, as quantities
appearing in the calculations, like κ, do not depend on s
(they can depend on ω or on k0, which are fixed
parameters).
As a matter of fact, we have also to point out that in fluid

models the above distinction between different kinds of
horizons, and in particular between nondispersive horizon
and group horizon, is a posteriori irrelevant, in the sense
that conditions can be given such that the wave function of
the modes is not able to distinguish between the afore-
mentioned horizons, and also any correction to thermality
is washed out. This is the main contribution of Ref. [32].
Due to several analogies between the framework discussed
therein and our own, our hypothesis is that a similar
conclusion is reasonable also in our case, despite the
formal dependence we found above on the expansion
point. We do not delve into this question herein.

V. MULTIRESONANCES CASE FOR THE
HOPFIELD MODEL

We discuss shortly in this section how to modify the
model in order to take into account several resonances
ω01 < ω02 < � � � < ω0N . We introduce

L ¼ 1

2
ð∂μφÞð∂μφÞ

þ
XN
i¼1

�
1

2ω2
0iχi

½ðvα∂αψ iÞ2 − ω2
0iψ

2
i � þ

gi
c
ðvα∂αψ iÞφ

�
;

ð87Þ

where N polarization fields ψ i appear, as well as N a priori
different ω0i, χi, gi. As a consequence, in the homogeneous
case we get

n2 ¼ 1þ
XN
i¼1

g2i χi
1 − s2

ω2
0i

: ð88Þ

It is rather simple to manage expressions like

1

1 − s2

ω2
0i

¼

8>><
>>:

P∞
k¼0

�
s2

ω2
0i

�
k

for s < ω0i;

− ω2
0i
s2
P∞

k¼0

�
ω2
0i
s2

�
k

for s > ω0i:

ð89Þ

This allows one to find expressions to the desired order of
approximation for any value of s. The only warning is
represented by the regions in a strict neighborhood of the
resonances themselves. Such regions cannot be described
through the Hopfield model in the present simplified
version, because there a large absorption by the dielectric
medium, whose dissipative aspects require a special care,
takes place. We simply limit ourselves to neglect these
regions, deserving their study to more complete models. As
to the Hawking effect in dielectric media, we point out that
the near horizon analysis does not introduce any new
interesting features: indeed, the only Fuchsian term in a
second order expansion, or the only logarithmic branch
point in a first order expansion, still occurs at s ¼ 0. For
example with reference to the former expansion, and
limiting ourselves to a two-resonance (N ¼ 2) model,
where the two polarization fields ~ψ1, ~ψ2 are reexpressed
in terms of ~φ by using the equations of motion, one finds

�
∂2
s þ

2

s
∂s þ

�
1

4
þ c2ω2

γ4v4ðχ1α21 þ χ2α
2
2Þ
�

1

s2

�
~φðsÞ ¼ 0;

ð90Þ
where αi amounts to the derivative of gi, in a straightfor-
ward generalization of the single-branch model.
Microscopic parameters are related to macroscopic ones
as follows in the region s < ω01:

HAWKING EFFECT IN DIELECTRIC MEDIA AND THE … PHYSICAL REVIEW D 91, 124063 (2015)

124063-11



g21χ1 þ g22χ2 ¼ nð0Þ2 − 1; ð91Þ

g1χ1δg1 þ g2χ2δg2 ¼ nð0Þδn; ð92Þ

g21χ1
1

ω2
01

þ g22χ2
1

ω2
02

¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð0Þ2 − 1

q
: ð93Þ

We also get the following relation:

n0nð0Þ ¼ g1χ1α1 þ g2χ2α2: ð94Þ

A first order expansion in α1, α2, allows one to recover a
phase term related to thermality of the form

i
c2ω

ðg1χ1α1 þ g2χ2α2Þγ2v3
logðsÞ; ð95Þ

it is easy to show that, thanks to (94), one is able to recover
again (82). It is evident that the model is more involved, and
it is remarkable that there is the possibility to have more
complex scattering processes, as evident also by inspection
of the dispersion relation. In particular, there are processes
which involve both the lower branch and the upper one, and
which are candidated to be Hawking-like. For example, a
process IN0 → P0 þ N0� is possible, where N0� belongs to
the lower branch and P0; IN0 to the upper one (see Fig. 3).
We shall consider details in a future publication, and limit
ourselves to observe that in the latter case IN0 is a higher
energy and momentum state than P0, and then, whichever
nature one would be able to attribute to the aforementioned
scattering, what is sure is that vacuum emission still will be
peaked at the lower branch emission process we have
analyzed in the previous sections, being more energetically
favourable.

VI. CONCLUSIONS

In this paper we focused on the Hawking effect in
dispersive dielectric media, and in particular our focus was
on the analytical proof of thermally in the spectrum of
emitted photons. Our reference framework was the
Hopfield model, suitably modified in order to account
phenomenologically of some characteristics of the Kerr
effect. Several aspects of the model were also taken into
account, and interesting results were obtained. We sum up
our results as follows.
(1) The microscopical (or rather, mesoscopical) model

apt to the phenomenological description of the
process involved in thermal pair creation has been
previously identified with the Hopfield model. In
place of the model with a stepwise behavior of the
refractive index [10–12], we have developed a model
where microscopic parameters are left free to vary
smoothly in space-time coordinates. This model
allows extensions to multiresonance situations for
the polarization field. We have also introduced a
simpler model involving a scalar field doublet in
place of the full electromagnetic field and of the
polarization field, in order to get a simpler and more
manageable model, which still preserves the same
dispersion relation as the original one. A conserved
scalar product has been identified, in order to
provide a norm for identifying particle and anti-
particles states. In Appendix C, from Wronskian
relations, the generalized Manley-Rowe relations are
deduced in a scattering framework (they were
deduced by other means in [33–35]).

(2) The analytical calculations for thermality have been
based on matching the asymptotic solutions obtained
in the WKB approximation and the solutions of the
differential equation in Fourier space where an
expansion up to the linear order of the refractive
index has been performed. In particular, we have
shown that calculations can be developed in a nice
parallel way with respect to known calculations
concerning fluid models [17,18]. We have also tried
to identify a common denominator between the two
aforementioned classes of models (i.e. fluid models
and dielectric models). On one hand, if one pursues a
second order expansion in Fourier space near the
horizon, a Fuchsian singularity structure of the
second order equation one obtains can be associated
with Hawking effect. On the other hand, a first order
expansion has been shown to be also very interesting
(and sufficient for the aim to find out thermality),
and in this case a Fuchsian singularity structure can
be still identified, and a phase factor with a loga-
rithmic branch point has been identified as the
source of thermality. In all cases, thermality is
involved with a ternary process (a fourth state is
shown to decouple from the spectrum, as in [17,18]).

N'*

N*

klab

lab

B'

B
IN

P'

P

IN'

FIG. 3. Asymptotic dispersion relation for the Sellmaier
dispersion relation of a diamondlike material (qualitative plot).
The lab frame is adopted. Lines of constant ω are represented by
straight lines.

F. BELGIORNO, S. L. CACCIATORI, AND F. DALLA PIAZZA PHYSICAL REVIEW D 91, 124063 (2015)

124063-12



(3) The aforementioned picture can be extended to the
multiresonances situation. Thermality is still pre-
served, and the possibility to get it in processes
involving the lower branch and also the upper one
has been indicated. We deserve to come back to this
topic in future studies.

(4) A more tricky, and still open, problem concerns what
should be meant by horizon in the near horizon
expansion. We have discussed this problem in our
model, and the nondispersive horizon, the group
horizon and also the phase horizon could have
chances to be the right places for our model. GH
is a strong candidate. Our analysis cannot yet be
conclusive. In particular, the expected role of a
blocking horizon is not yet emerging in a neat
way from the present (as well as in the existing
one, albeit on a analytical footing) analysis. Fur-
thermore, a detailed discussion, in comparison with
the analysis of the recent paper [32], where it is
shown that in fluid models the wave function
associated with the modes involved in the scattering
process is not able to distinguish between different
kinds of horizons, would be required in order to
delve into this interesting problem.

Our analysis is completed in the Appendices. In
Appendix A we pointed out that the model, in line of
principle, can be solved exactly in the general case, without
necessarily referring to the physical situations involved in
the Hawking effect. In Appendix B, the asymptotic
behavior of the solution was considered. In Appendix C
the generalized Manley-Rowe identities were discussed,
and in Appendix D some relevant aspects of the geomet-
rical optics approximation were discussed too.
Further theoretical studies and further experimental

analysis are still required in order to give better and
stronger grounds to this fascinating field of investigation.
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APPENDIX A: THE GENERAL THEORY: EXACT
TREATMENT

In the φψ-model, we can also obtain in line of principle
the exact dispersion relation. For an example, we deal with
the case where χ ¼ χðx − vtÞ in the lab frame (see also
[15]). In order to delve into the physical content of the
above equations, let us introduce ~Gψ , i.e. the Fourier
transform of the Green function Gψ . Then, for

k ¼ ðωc ; ~kÞ, from Eq. (7) we obtain

kμkμ −
g2

c2
ðvμkμÞ2 ~GψðkνÞ ¼ 0; ðA1Þ

which represents the exact dispersion relation for the theory
at hand. This relation holds for a generic space-time
dependence of the susceptibility χ, and even of the proper
frequency ω0. It contains all the necessary information in
order to explore the problem of pair creation, as we shall
see in the following.
Let us consider χ ¼ χðxÞ in the comoving frame: we

obtain in 2D, with vμ ¼ γðc; vÞ and kμ ¼ γðωc ; kÞ,

ω2

c2
− k2 −

g2

c2
γ2ðωþ vkÞ2 ~Gψðω; kÞ ¼ 0: ðA2Þ

This equation in the lab becomes

k2labc
2 ¼ ω2

lab½1 − g2 ~Glab
ψ ðωlab; klabÞ�; ðA3Þ

where we define

~Glab
ψ ðωlab; klabÞ≡ ~Gψ

�
γðωlab − vklabÞ; γ

�
klab −

v
c2

ωlab

��
:

ðA4Þ

Then, we can define the refractive index as

n2ðωlab; klabÞ ¼ 1 − g2 ~Glab
ψ ðωlab; klabÞ; ðA5Þ

which is an exact relation for the refractive index in the
traveling perturbation case with v ¼ const. It is interesting
to note that, when no perturbation is present, one obtains

n2ðωlab; klabÞ ¼ 1þ g2χ0ω2
0

1

ω2
0 − ω2

lab

; ðA6Þ

which has exactly the same form as for the standard
Hopfield model (apart from a suitable redefinition of g).
Indeed, we obtain easily

~Glab
ψ ðωlab; klabÞ ¼

−χ0ω2
0

ω2
0 − ω2

lab

ðA7Þ

in the aforementioned case. It is to be noted that (A2)
depends on the explicit form of χðxÞ in the comoving
frame, and that in general the refractive index in the lab
frame is expected to display a dependence also on k, i.e.
also spatial dispersion is to be expected in the general case.
In the 2D case, one can also write formally the exact

solutions for the equation of motion as follows:
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φðt; xÞ ¼
Z

dkdω
ð2πÞ2 δ

�
ω2

c2
− k2 −

g2

c2
γ2ðωþ vkÞ2 ~Gψ ðω; kÞ

�
~φðω; kÞeiωtþikx; ðA8Þ

ψðt; xÞ ¼ g2
Z

dkdω
ð2πÞ2 δ

�
ω2

c2
− k2 −

g2

c2
γ2ðωþ vkÞ2 ~Gψðω; kÞ

�
~Gψðω; kÞiγðωþ vkÞ ~φðω; kÞeiωtþikx: ðA9Þ

We are of course interested in quantum aspects. It is very
useful to point out that the model is, at least in line of
principle, exactly soluble. Indeed, if we define

Φ ≔
�
φ

ψ

�
; ðA10Þ

we can obtain the following form for the action:

S ≔
1

2

Z
d4xΦTQΦ; ðA11Þ

where

Q ≔
� −□ gvα∂α

−vα∂αg −vα∂α
1

χω2
0

vβ∂β − 1
χ

�
: ðA12Þ

As it stands, the action is quadratic in the field Φ, and this
implies that the quantum theory is exactly soluble, as the
path-integral formalism immediately reveals. Any ampli-
tude is related to the Green function of the matrix operator
Q, and, moreover, any (spontaneous) pair-creation process
induced by the presence of a spacetime-dependent χ is in

line of principle exactly calculable, being associated with
the imaginary part of the effective action, which could be
obtained, as usual, via ζ-function techniques, after having
calculated the effective action (which amounts to calculat-
ing the functional determinant of Q). This route, even in
simple cases can be very involved also for a Gaussian
model as the one we are setting up. The approach we
have adopted for revealing quantum instabilities, which
consists in checking the presence of negative norm
states (antiparticles) in stimulated scattering, is simpler.
Sometimes, this approach is called transmission coefficient
approach [26].

APPENDIX B: ASYMPTOTIC BASES

We consider in what follows the asymptotic behavior (in
x) for simplicity in the case of the 2D model (in the 4D
case, separation of variables also on transverse variables
allows to show that only a little and not substantial
modification of the calculations displayed below occurs;
see also [16]). We work on stationary solutions, so we get
the following second order system of ordinary differential
equations:

ψ 00 ¼
��

log χω2
0Þ0 þ 2i

ω

v

�
ψ 0 þ

�
−i

ω

v

�
log χω2

0Þ0 −
ω2
0

γ2v2

�
þ ω2

v2

�
ψ − i

g
c
χω2

0

ω

γv2
φ −

1

γvc
χω2

0∂xðgφÞ; ðB1Þ

φ00 ¼ g
c
γvψ 0 − i

g
c
γωψ −

ω2

c2
φ: ðB2Þ

Then, we associate with it a first order system by intro-
ducing

p ≔ ψ 0; q ≔ φ0: ðB3Þ

Then, if WðxÞ ≔ ðψðxÞ;φðxÞ; pðxÞ; qðxÞÞT , we obtain the
following first order system:

W0ðxÞ ¼ K4WðxÞ; ðB4Þ

where the 4 × 4 matrix operator K4ðxÞ has the following
structure:

K4 ≔
�
02 12

A2 B2

�
: ðB5Þ

02; 12 are 2 × 2 matrices, the first one with all entries
equal to zero, and the second one is the identity. As to
A2; B2, we have

A2 ≔

"
ω2

v2 − i ωv ðlog χω2
0Þ0 − ω2

0

γ2v2 −i gc
ω
v
χω2

0

γv − χω2
0

γvc g
0

−i gc γω − ω2

c2

#
; ðB6Þ

and

B2 ≔

"
2i ωv þ ðlog χω2

0Þ0 − g
c
χω2

0

γv
g
c γv 0

#
: ðB7Þ
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Let us write

K4 ¼ C þR; ðB8Þ

where C is a constant matrix and R ¼ RðxÞ:

C ≔
�
02 12

Ac Bc

�
; ðB9Þ

with

Ac ≔
� ω2

v2 −
ω2
0

γ2v2 0

0 − ω2

c2

�
; ðB10Þ

and

Bc ≔
�
2i ωv 0

0 0

�
; ðB11Þ

moreover,

R ≔
�
02 02

Ar Br

�
; ðB12Þ

with

Ar ≔
�
−i ωv ðlog χω2

0Þ0 −i gc
ω
v
χω2

0

γv − χω2
0

γvc g
0

−i gc γω 0

�
; ðB13Þ

and

Br ≔
� ðlog χω2

0Þ0 − g
c
χω2

0

γv
g
c γv 0

�
: ðB14Þ

Let us assume the following condition:Z
∞

a
dxjRðxÞj < ∞; ðB15Þ

which physically can match very well the nature of
traveling perturbation of δn, to be implemented by means
of a suitable choice of the microscopic parameters g;ω0; χ.
Then, according to theorems in [36], we can infer that, both
as x → ∞ and as x → −∞, the asymptotic behavior of
solutions is governed by the eigenvalues of C, which
implies that the basis for the homogeneous case with
g;ω0; χ asymptotically constants, is asymptotically a good
scattering basis also for the perturbed problem. To be more
precise: the asymptotic region solutions are a scattering
basis, and, moreover, solutions of the full equations
asymptotically behave as the asymptotic region solutions,
which then represent a good scattering basis. Furthermore,
we are interested in (localized) wave packets, whose

support is finite. This is relevant as far as we are concerned
with the problem of defining particle and antiparticle states.

APPENDIX C: GENERALIZED MANLEY-ROWE
RELATIONS AND PAIR CREATION

AMPLITUDES

We give a more systematic account of pair-creation
amplitudes, which can be used both for analytical calcu-
lations and for numerical ones (see in the latter case results
in [5,13,14,37]). At first, we focus on the two-dimensional
problem and we fix a scattering basis in the asymptotic
regions. At fixed ω we have a number of states as x → −∞,
which is equal to the number of intersections between the
horizontal line ω ¼ const and the asymptotic dispersion
relation ω ¼ fðkÞ, see Fig. 1. Some of them can have
positive group velocity vg > 0 (right moving), and some
others can have vg < 0 (left moving). In situations where a
blocking horizon is present, only the states belonging to the
asymptotic region on the left (with δn ¼ 0) are involved. In
situations where blocking is absent or frequencies involved
do not admit blocking, then also (transmitted) scattering
states belonging to the asymptotic region on the right (with
δn ≠ 0) are involved. See also [11,12].
Some preliminary considerations are in order, concern-

ing the Hawking effect. We shall discuss the scattering
process involved in the Hawking effect for a white hole in
this section, whereas in Sec. III thermality is discussed for a
black hole. There is no contradiction, as white hole is the
time reversal of a black hole. Still, at the level of scattering,
one has to investigate what happens. Time-reversal implies
ðω; vÞ ↦ ð−ω;−vÞ. We notice that the original Hopfield
model, and also the one with varying χ;ω0; g, is invariant
under time reversal, as the Lagrangian of the model is. As to
the φψ-model we have introduced, equations of motion are
invariant under time reversal provided that g ↦ −g. The
latter freedom for the scalar model can be assumed without
any problem, provided that the correct branch for the
relation between microscopic parameters and macroscopic
ones is chosen.
In general, we can expect to deal with several branches of

the dispersion relation. In that case, it may be more useful
to consider the asymptotic dispersion relations in the lab.
An analogous reasoning leads to a number of states as
x → ∞, for which again vg > 0 or vg < 0. A complete
scattering basis is obtained by considering both a scattering
with one initial right-moving state, which can give rise to
several reflected states and one transmitted state, and a
scattering with one initial left-moving state, with an
analogous behavior. This is particularly important for the
actual computation of the pair creation amplitude in the
spontaneous emission case.
Amplitudes can be calculated both in the traditional

framework, by means of Bogoliubov transformations, or by
means of the conservation of fluxes in the scattering
process in the comoving frame. We adopt the latter frame,

HAWKING EFFECT IN DIELECTRIC MEDIA AND THE … PHYSICAL REVIEW D 91, 124063 (2015)

124063-15



which is also more directly related to some previous works
in literature [33–35]. We know that, in the comoving frame,
there is a current Jx which is conserved, as we have shown
in Sec. II. In particular, we can consider Jx as a bilinear
form:

JxðΨ1;Ψ2Þ; ðC1Þ
where Ψ1;Ψ2 is a couple of asymptotic plane wave
solutions of the equations of motion. In the scattering
“→,” with a single initial state which is right moving,

scattering solutions are denoted by Ψ→. An analogous
definition is given for the scattering “←” andΨ←. Then we
can obtain a number of “Wronskian relations,” for example
we can calculate

JxðΨ�
→;Ψ→Þ: ðC2Þ

For definiteness, let us consider, for the case
IN → Pþ N� þ Bþ T, where T stays for a possible
transmitted state, the following state:

Ψ→ ¼ NΨe−iωt
�
T→
INWINeikINx þ T→

P WPe−ikPx þ T→
N�WN�e−ikN�x þ T→

B WBe−ikBx for x → −∞;
T→
T WTeikTx for x → ∞;

ðC3Þ

where T→
IN , T→

P , T→
N� , T→

T , T→
B are the usual scattering

coefficients with the additional label → indicating that the
initial state is right moving, and where WIN etc. are vector
Fourier components of the plane wave which is considered.
Then, (C2) is of the following form:

1 − jPj2 − jBj2 − jTj2 þ jNj2 ¼ 0: ðC4Þ

Interference terms are washed out asymptotically in time, in
the sense that separated “photon packets” for the various
modes are expected on long time scales (long with respect
to the interaction time scale). This emerges from current
conservation:

Jleftx ¼ Jrightx ; ðC5Þ

where “left” and “right” indicate states on the left and on
the right of the steplike potential as x → −∞ and x → ∞
respectively. For well-separated packets, we also get

JINx þ JPx þ JN
�

x þ JBx ¼ JTx : ðC6Þ

The above quantities have a sign which is determined by

JUx ¼ signðvUg ÞjJUx j; ðC7Þ

where U is meant as a positive norm asymptotic solution;
furthermore, we take into account that

JN
�

x ¼ −JNx ; ðC8Þ

i.e. the antiparticle state (negative norm) current is
opposite to the corresponding particle state (positive norm)
current. Compare also [26]. Then, we define the following
quantities:

JUx
JINx

¼ ∶ sign

�
vUg
vINg

�
jUj2; U ¼ P;B; T; N: ðC9Þ

It is not difficult to show that

jUj2 ¼ Fðω; kUÞjT→
U j2; U ¼ P; B; T; N; ðC10Þ

where Fðω; kUÞ is a positive kinematic coefficient which of
course depends on the current structure. This analysis can
be easily extended to the case of an arbitrary number of
states (compatibly with the dispersion relation).
It is also remarkable that, in the spontaneous case, we

have to consider

hJxi ≔ h0jJxj0i

¼
X
→

X
←

Z
dω
ð2πÞ

dk
ð2πÞ

1

NΨ
δðdispersion relationÞV�V;

ðC11Þ
where the sum has to be extended both to initial left-moving
states and to initial right-moving ones. This leads to the
same particle creation amplitudes associated with (C4).
As to the conservation of the fluxes, we recall that we

could also define the Poynting vector for the theory at hand.
It is easy to conclude that the same amplitudes as above
would be obtained.

APPENDIX D: GEOMETRICAL OPTICS

The eikonal approximation is a usual tool for analyzing
solutions in the framework of analogue gravity. We explore
also this conceptual frame, because it can give useful
suggestions and provide us also analytical tools for a better
comprehension of the phenomenon at hand. In particular, it
is remarkable that thermality of the Hawking radiation
arises as associated with the presence, in the comoving
frame, of a so-called group horizon (GH), i.e. a turning
point (TP) for the waves which reach the perturbation, at
least for frequencies in a given interval. For example in the
WKB approximation, a turning point is to be handled with
care, due to the fact that it violates the requirements of the
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approximation itself. In geometrical optics, a TP represents
a caustic for rays, so, again, the eikonal approximation fails
there. It is necessary to point out immediately the limits of
the given approximation, due to the fact that all the
phenomenology which we are interested in arises near
such a TP, where some other analytical tool has to be
assumed.
In what follows, we point out that even in presence of

dispersion, the eikonal approximation still gives useful
suggestions, and the method of characteristics can be used
in order to explore solutions (geometrical optics is a good
tool for studying the problem in the nondispersive case, as
known). Moreover, the problem of the group horizon, and
also the problem of the phase horizon, can be exactly
solved in the Cauchy approximation.
We shall limit ourselves mainly to the 2D eikonal

equation

ωlabnðωlab; x − vtÞ ¼ �cklab: ðD1Þ
Let us consider the Cauchy approximation (36). We have in
the comoving frame [3]

G ¼ 0 ⟺ ðωþ vkÞðnðxÞ þ Bγ2ðωþ vkÞ2Þ
− ck −

v
c
ω ¼ 0: ðD2Þ

We are interested in the expression for the group horizon (if
any), which is obtained by solving the system [38]

G ¼ 0; ðD3Þ

∂kG ¼ 0: ðD4Þ

As to the latter equation, we obtain

∂kG ¼ 0 ⟺ 3Bγ2vðωþ vkÞ2 − v

�
c
v
− nðxÞ

�
¼ 0;

ðD5Þ

which can be solved explicitly:

ðωþ vkÞ ¼ �
�c

v − nðxÞ
3Bγ2

�
1=2

: ðD6Þ

By substitution of the positive root inG ¼ 0, as we mean to
get the group horizon for positive norm waves, we obtain
an equation for nðxÞ which allows us to find out explicitly
the group horizon:

c
v
− nðxÞ ¼ 3Bγ2

�
1

2Bγ4
c
v

�
2=3

ω2=3 ¼ ∶ζBω2=3; ðD7Þ

where ζB ∝ B1=3. So we are able to find out xGHðωÞ, which
is a function of the frequency ω, as expected.
As to the phase horizon, we have in the comoving frame

that it corresponds to ω ¼ 0. By taking into account the
dispersion relation (D2), we find that

c
v
− nðxÞ ¼ Bγ2v2k20; ðD8Þ

where k0 is the value at which the dispersion relationG ¼ 0
intersect the k-axis (i.e. ω ¼ 0). In the latter case, xPHðk0Þ is
a function of the aforementioned parameter, which is
independent from ω.
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