
On the Ability of Functional Size Measurement Methods

to Size Complex Software Applications

Luigi Lavazza Sandro Morasca Davide Tosi

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

{luigi.lavazza, sandro.morasca, davide.tosi}@uninsubria.it

Abstract—The most popular Functional Size Measurement

methods, namely IFPUG Function Point Analysis and the

COSMIC method, adopt a concept of “functionality” that is

based mainly on the data involved in functions and data

movements. Neither of the mentioned methods takes directly

into consideration the amount of data processing involved in a

process. Functional size measures are often used as a basis for

estimating the effort required for software development, and it

is known that development effort does depend on the amount

of data processing code to be written. Thus, it is interesting to

investigate to what extent the most popular functional size

measures represent the functional processing features of

requirements and, consequently, the amount of data processing

code to be written. To this end, we consider a few applications

that provide similar functionality, but require different

amounts of data processing. These applications are then

measured via both functional size measurement methods and

traditional size measures (such as Lines of Code). A

comparison of the obtained measures shows that differences

among the applications are best represented by differences in

Lines of Code. It is likely that the actual size of an application

that requires substantial amounts of data processing is not

fully represented by functional size measures. In summary, the

paper shows that not taking into account data processing

dramatically limits the expressiveness of the size measures.

Practitioners that use size measures for effort estimation

should complement functional size measures with measures

that quantify data processing, to get precise effort estimates.

Keywords- functional size measurement; Function Point

Analysis; IFPUG Function Points;COSMIC method.

I. INTRODUCTION

The most popular Functional Size Measurement (FSM)
methods, i.e., IFPUG (International Function point User
Group) [1][2][3] and COSMIC (Common Software
Measurement International Consortium) [4]– adopt a concept
of “functionality” that is based mainly on two elements:

− the processes, named Elementary Processes (EP) in
IFPUG and Functional Processes (FPr) in COSMIC;

− the data that cross the boundary of the application being
measured or are used (i.e., read or written) in the context
of a process.

Quite noticeably, neither method satisfactorily considers
the amount of data processing involved in a process. As a
matter of fact, Function Point Analysis proposes an

adjustment of the size based on the complexity of data
processing, but, as discussed in Section VII, quite
imprecisely and ineffectively, while the COSMIC method
does not take the amount of data processing into account at
all.

The goal of the paper is to provide evidence, by using an
example, that not considering data processing dramatically
limits the expressiveness of functional size measures.

The core of the paper can be described as follows:

− Two applications are specified. These applications
are similar with respect to the aims and functionality
offered to the user, but they are very different in the
amount and complexity of the processing required.

− The two applications are modeled and measured
according to the IFPUG and COSMIC rules.

− It is highlighted that the two applications have the
same functional size measures, even though the
amount of functionality to be coded in the two cases
is enormously different.

− In fact, when measured via Lines of Code, it is
apparent that the implementations of the two
applications have quite different sizes. The reason is
that more data processing clearly requires more
code.

The conclusion is that using only the functional size to
estimate development effort is likely to yield huge errors for
complex applications. Since size measures are used for effort
estimation, using functional size measures to size complex
applications (i.e., programs that require a substantial amount
of data processing) may lead to large (and dangerous) effort
underestimations.

The paper is structured as follows. Section II reports a
few basic concepts of functional size measurement. Section
III illustrates the case studies used in the paper. Section IV
describes the models and measures of the considered
applications: the collected measures are then compared in
Section V. Section VI discusses the alternatives that should
be considered for complementing standards functional size
measures with measures that represent data processing.
Section VII accounts for related work. Finally, Section VIII
draws conclusions and briefly sketches future work.

404Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università dell'Insubria

https://core.ac.uk/display/53561544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. FSM CONCEPTS

Functional size measurement methods aim at providing a
measure of the size of the functional specifications of a given
software application.

Here, we do not need to explain in detail the principles
upon which FSM methods are based. Instead, it is important
for our purposes to consider what is actually measured, i.e.,
the model of software functional specifications that is used
by the Function Point Analysis (FPA) and COSMIC
methods.

The model used by FPA is given in Figure 1. Briefly,
Logical files are the data processed by the application, and
transactions are the operations available to users. The size
measure in Function Points is computed as a weighted sum
of the number of Logical files and Transactions. The weight
of logical data files is computed based on the Record
Elements Types (RET: subgroups of data belonging to a data
file) and Data Element Types (DET: the elementary pieces of
data). The weight of transactions is computed based on the
Logical files involved –see the FTR (File Type Referenced)
association in Figure 1– and the Data Element Types used
for I/O.

SW application functional specifications

Logical file Transaction

Data Element Type

Record Element Type

FTR

0..*

I/O

1..*

Figure 1. The model of software used in Function Point Analysis.

It is possible to see that in the FPA model of software,
data processing is not represented at all.

The model used by COSMIC is given in Figure 2. The
size of the functional specification expressed in COSMIC
function points (CFP) is the sum of the sizes of functional
processes; the size of each functional process is the number
of distinct data movements it involves. A data movement
concerns exactly one data group.

SW application functional specifications

Functional Process

Data processing Data movement Data group

Figure 2. The model of software used by the COSMIC method.

Neither data groups nor data processing are directly used
in the determination of an application’s functional size. In
particular, data processing is not measured at all. The
COSMIC method assumes that a fixed amount of data
processing is associated with every data movement;
however, it is not so, in the examples considered in this
paper.

III. CASE STUDIES

In this section, we describe the functional specifications
of the two software applications that will be used to test the
functional sizing ability of FPA and COSMIC.

The chosen applications are programs to play board
games against the computer. They are similar with respect to
the provided functionality, but require different amounts of
data processing.

The specifications that apply to both applications are as
follows:

− The program lets a human player play against the
computer.

− The program features a graphical interface in which the
game board is represented.

− The player makes his/her moves by clicking on the
board. Illegal moves are detected and have no effect. As
soon as the human player has made a move, the
computer determines its move and shows it on the
board.

− When the game ends, the result is shown, and the player
is asked if he/she wants to play another game.

A. A Software Application to Play Tic-tac-toe

Tic-tac-toe is a very simple, universally known game. It
is played on a 3×3 board, as shown in Figure 3. Each player
in turn puts his/her symbol in a free cell. The first player to
put three symbols in a row (horizontally, vertically or
diagonally) wins. When the board is filled and no three-
symbol row exists, the match is tie.

405Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 3. Tic Tac Toe playing board.

Playing Tic-tac-toe is very simple. In fact, to play
optimally, a software program has just to evaluate the
applicability of the following sequence of rules: the first
applicable rule determines the move:
1) If there is a row such that two cells contain your symbol,

and the third cell X is empty, put your symbol in the free
cell X.

2) If you are the first to move and this is your first move,
put your symbol in the central cell.

3) If there is a row in which your opponent has two
symbols and the third cell X is free, put your symbol in
the free cell X.

4) If there is a free cell X such that putting your symbol
there results in two rows, each one having two cells
occupied by your symbol and the third cell free, put
your symbol in cell X.

5) If there is a row in which you have one symbol and the
other two cells X and Y are free, put your symbol in cell
X or in cell Y.

The code that implements the playing logic described
above is very simple and very small: we can expect that a
few tens of lines of code are sufficient to code the game
logic.

B. A Software Application to Play “five in a row”

Five in a row (aka Gomoku) can be seen as a
generalization of Tic-tac-toe. In fact, it is played on a larger
board (typically 19×19, as in Figure 4) and the aim of the
game is to put five symbols of a player in a row
(horizontally, vertically or diagonally).

Figure 4. Gomoku playing board.

The functional specifications of Gomoku are exactly the
same as the specifications of Tic-tac-toe, except that

a) The size of the board is larger
b) The number of symbols to put in a row is 5 instead

of 3.
The combinations of symbols and free cells that can

occur in a Gomoku game are many more than in a Tic-tac-
toe game. Accordingly, a winning strategy is much more
complex, as it involves considering a bigger graph of
possibilities.

As a matter of fact, Gomoku has been a widely
researched artificial intelligence research domain, and there
are Gomoku professional players and tournaments.

Accordingly, we can safely state that Gomoku is a much
more complex game than Tic-tac-toe, and it requires a huge
amount of processing, so that the machine can play at a level
that is comparable with that of a human player.

On the contrary, Tic-tac-toe is a very simple game: you
do not need to be particularly smart to master it and always
play perfectly.

IV. APPLICATION SIZING

A. A Software Application to Play Tic-tac-toe

Let us measure the Tic-tac-toe specifications given in
Section III.A above, starting with IFPUG Function Points.

The software model to be used involves just a Logical
data file: the board and a matrix of cells, each having one of
three possible values (circle, cross, free).

The software model to be used involves the following
elementary processes:

− Start a new game.

− Make a move.
It is not necessary to consider details (RET, DET) to see

that the Logical data files is a simple Internal Logical File
(ILF), contributing 7 FP.

Similarly, it is not necessary to consider details (FTR,
DET) to see that:

− Start a new game is a simple External Input (EI),
contributing 3 FP.

− Make a move is a simple external output, contributing 4
FP. One could wonder if this operation should be
considered an input (because the move involve inputting
a position) or an output (because of the computation and
visualization of the move by the computer). We consider
that the latter is the main purpose of this transaction,
which is thus an external output.

In summary, the FPA size of the Tic-tac-toe application
is 14 FP.

The COSMIC functional processes of the application are
the same as the FPA elementary processes. When measuring
the application using the COSMIC method, we have to
consider the data movements associated with each functional
process:

− Start a new game involves clearing the board and
possibly updating it, if the computer is the first to move
(a Write) and showing it (a Read and an Exit).
Therefore, this functional process contributes 3 CFP.

− Make a move involves entering a move (an Entry),
updating the board with the human player move (a

406Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Write), reading it (a Read), and then updating it again
with the computer move and showing it (an Exit). In
addition, if a move concludes the game, the result is
shown (an Exit). Therefore, this functional process
contributes 5 CFP.

In summary, the COSMIC size of the Tic-tac-toe
application is 8 CFP.

Since we are also interested in indications concerning the
amount of computation performed by the application, we
selected an open source implementation of Tic-tac-toe and
measured it.

To evaluate the “physical” size of the Tic-tac-toe
application, we looked for an open source application that
implements the specifications described above. One such
application is the program available from [8].

The main measures that characterize the code are given
in TABLE I.

TABLE I. MEASURES OF THE TIC-TAC-TOE APPLICATION CODE

Measures
Tic-tac-toe [8]

Total AI part

LoC

172

(118 statements)

66

(52 statements)

McCabe 3.6 5

Num. classes 2 1

Num. methods 17 7

In TABLE I (and in TABLE II), column “AI part”

indicates the measures concerning exclusively the part of the
code that contains the determination of the computer move.

In the LoC line, we reported both the number of lines and
the number of actual statements. The latter is a more precise
indication of the amount of source code. We also reported
the mean value of McCabe complexity of methods.

B. A Software Application to Play “five in a row”

The functional size measures of the Gomoku application
are exactly the same as the measures of the Tic-tac-toe
application. In fact, the specifications of the two applications
are equal, except for the board size and winning row size,
which do not affect the measurement, because both IFPUG
FPA and COSMIC consider data types, not the value or
number of instances.

As for Tic-tac-toe, we selected an open source
implementation of Gomoku and measured it. More precisely,
to take into account that a programmer may aim at
developing a program capable of more or less sophisticated
“reasoning,” we considered a few different implementations
of Gomoku.

In this case, to evaluate the “physical” size of the
application, we also looked for an open source application
implementing the specifications described above. One such
application is the Gomoku application available from [9].

The main measures that characterize the code are given
in TABLE II.

TABLE II. MEASURES OF THE GOMOKU APPLICATION CODE

Measures
Gomoku [9]

Total AI part

LoC

832

(395 statements)

425

(234 statements)

McCabe 3 5.95

Num. classes 12 3

Num. methods 63 21

Measures in TABLE II were derived using the same tools

and have the same meaning as the measures in TABLE I.

V. COMPARISON OF MEASURES

The measures reported in the previous section show that
we can have two applications that have the same functional
size, but very different code size (the Gomoku applications
are over four times as big as the Tic-tac-toe application).
Considering the nature of these applications, the difference
in code is largely explained by the different amount of
processing required. In the case of Tic-tac-toe, the number of
possible moves is very small, as is the number of different
possible configurations that can be achieved by means of a
move: hence, every move computation has to explore a very
small space. The contrary is true for the Gomoku application.
The consequence is that Gomoku requires an amount of code
devoted to move computation that is over 6 times the code
required by Tic-tac-toe (or 4.5 times, if we consider the
number of statements instead of LoC).

These observations suggest two important considerations:
1. The definitions of Function Point Analysis and the

COSMIC method do not properly take into account
the amount of processing required by software
functional specifications.

2. If we assume –as is generally accepted– that the
effort required to implement a software application
is related to the number of Lines of Code to be
written, the possibility of having widely different
sizes in LoC for applications that have the same
functional size means that functional size is not a
good enough predictor of development effort.

The observation reported at point 2 above does not apply
only to the coding phase. The difference in the number of
classes and methods suggest that also the effort required by
design and testing activities is better estimated based on
measures that represent the size of the code structure –like
the number of classes– rather than the functional size.

As a final remark, we can observe that McCabe
complexity is similar for the two considered applications.
This means that Gomoku does not need more complex code,
but just more code. In other words, it is the difference in the
amount of data processing, not in the complexity of the
processing that is relevant, and that existing functional size
fail to represent.

VI. DISCUSSION: WHAT SOLUTIONS ARE POSSIBLE?

The usefulness of the evidence given in this paper stems
from a few well-known facts:

407Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

− We need to estimate, during the early phases of a
project, the overall software development effort.

− Development effort has been widely reported to be
directly related to the size in LoC of software.
Unfortunately, the size in LoC is not available in the
early phases of projects, when estimates are most
needed.

− Therefore, we need FSM methods, i.e., we need
measures of functional specifications, because
specifications are available in the early phases of
projects.

− In this paper, we provide some evidence that current
FSM methods appear limited in representing the amount
of data processing required by functional specifications.
Therefore, we need to somehow enhance FSM methods
to remove such limitation.

So, we are facing the following research question: how
can we improve FSM methods so that the delivered
functional size measures account for the amount of data
processing described or implied by the functional
specifications?

This is an open research question. Providing a final
answer to it can be achieved after a substantial amount of
further studies. In the following sections, we report a few
observations, ideas and evaluations that could be useful
considering when tackling the problem.

A. Software Models

FSM methods –like any measurement method– are
applied to models of the object to be measured. Hence, a
rather straightforward consideration is that data processing
must be represented in the model that describes the software
application to be measured.

We can observe that the conceptual model of software
proposed in the COSMIC method includes data processing,
but no criteria or procedures for measuring data processing
are given in the context of the COSMIC method.

In COSMIC, data processing is a sub-process of a
functional process. Therefore, functional processes should be
described in a manner that makes it possible to identify and
measure the extent of data processing that occurs within a
functional process.

Given the similarity of COSMIC functional processes
and FPA elementary processes (or transactions) any
technique used to enhance the expressivity of COSMIC
models as far as data processing is concerned should be
readily applicable to FPA models as well.

B. Software Specifications

A question that should be considered is if the information
required for identifying and measuring data processing is
always available from the software specifications that are
derived from user requirements.

Functional Size Measurement methods use models of
functional specifications: if functional specifications do not
include information on data processing, neither will their
models, and FSM methods will not be able to account for
data processing.

So, another open question is the following: is it necessary
to go beyond user requirements related specifications to be
able to represent data processing? In other words: should
elements of design be anticipated, to get better measures of
the amount of data processing to be implemented?

C. Qualitative Knowledge

Current FSM methods are inherently quantitative. Even if
some measurement activities –like deciding if two sets of
data should be two RET of a unique logic file or they should
belong to separate logic files– involve some subjectivity,
they are always meant to provide measures (the number of
ILF, RET, etc.) according to ratio scales.

One could wonder if the use of more qualitative
knowledge, derived through inherently subjective
evaluations and expressed via ordinal scales, would more
suitable for expressing the relevant information concerning
data processing.

For instance, after talking with stakeholders, an analyst
could easily classify the functional process “Make a move”
of the Tic-tac-toe application as very simple, while the same
process of the Gomoku application could be classified as
very complex.

D. Towards a Measure of Data Processing

As mentioned above, proposing a solution to the problem
outlined above is very difficult. Here we outline a couple of
directions to be considered when addressing the problem.

A first consideration concerns the level of description of
data processing. At a high level, the complexity of the
processes in terms of number of different cases to be
considered could easily determine the amount of data
processing required. Consider for instance a process that
starts by identifying users: if the specifications indicate that
the user can be identified in three different ways (e.g., by
name, by social security number, and by email address) it is
likely that it will have to process three times as much data as
a process that identifies users in a single way.

Another observation concerns how to differentiate
functionalities. A possibility is to account for the internal
states a function has to deal with. In the case of tic-tac-toe,
the number of states in which the game can be is quite small;
on the contrary, the states of a Gomoku game are very
numerous. Accordingly, the amount of computation could be
proportional to the number of states, since the function has to
properly deal with all states. However, the quantification of
data processing could be further complicated by the presence
of equivalent states, i.e., sets of states that are managed in the
same way, so that having N or N+1 states in such sets would
not affect the amount of processing required. For instance, a
data increase function has to account for months having 28,
30, or 31 days: the fact that there are 7 months having 31
days and just one having 28 days is irrelevant.

VII. RELATED WORK

Although several FSM methods (e.g., Mark II FP,
NESMA and FiSMA) have been proposed as extensions or
replacements of Function Point Analysis, very little attention
has been given to the measurement of data processing.

408Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Function Point Analysis and other methods –like Use
Case Points [5]– introduce a mechanism for “adjusting” the
size measure to take into account additional complexity
factors that are likely to increase the effort required for
implementation. In fact, among FPA value adjustment
factors (VAF) we find “Complex processing,” which
represents to what degree the application includes extensive
logical or mathematical processing. This mechanism is
similar to what we need, but has a few shortcomings,
including:

− In FPA the considered VAF’s value increases the
application size by 5%: two orders of magnitude less
than needed in the Tic-tac-toe vs. Gomoku case.

− The VAF applies to the whole application, so that it is
not possible to distinguish simple and complex
processes.

The measure of Path [6][7] represents the complexity of
processes in terms of the number of execution paths that are
required for each process. Although this measure proved
fairly effective in improving effort estimation based on
functional size measures, it is not applicable in cases like
those considered in this paper, since the alternative courses
of the specified processes are not known.

VIII. CONCLUSIONS

In this paper, we have shown by means of examples that
functional size measurement methods fail to represent the
amount of data processing required by software functional
specifications.

Since we discussed just one example, one could wonder
how general are the results reported in the paper. As to this
issue, it is easy to see that the limits of FSM discussed in the
paper apply to several programs. Consider for instance
software measurement programs: from the point of view of
functional size, all the measurement functions that read a set
of source files and deliver a numeric value are equivalent.
However, it is clear that measuring LoC is easier (i.e., it
involves less data processing) than computing McCabe
complexity, which in its turn is easier to compute than most
coupling measures.

The work reported in the paper indicates that we need a
measure that can complement Function Points or COSMIC
Function Points to represent the amount of data processing
that is required to provide the required functionality.

We are interested to represent and quantify the amount of
data processing not because of an abstract interest in the
definition of functional size measures, but because –as
shown in the paper– data processing is logically related to
code size, which is known to determine the amount of
development effort required to build a software application.

How to measure the amount of data processing required
by the specifications of a software application is an open
research question of great practical interest that should
receive much more attention than it currently does.

ACKNOWLEDGMENT

The work presented here has been partly supported by the
FP7 Collaborative Project S-CASE (Grant Agreement No
610717), funded by the European Commission and by
project “Metodi, tecniche e strumenti per l’analisi,
l’implementazione e la valutazione di sistemi software,”
funded by the Università degli Studi dell’Insubria.

REFERENCES

[1] A. J. Albrecht, “Measuring Application Development
Productivity”, Joint SHARE/ GUIDE/IBM Application
Development Symposium, 1979, pp. 83-92.

[2] International Function Point Users Group. Function Point
Counting Practices Manual - Release 4.3.1, January 2010.

[3] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual, Geneva: ISO, 2003.

[4] COSMIC – Common Software Measurement International
Consortium, The COSMIC Functional Size Measurement
Method - version 3.0.1 Measurement Manual, May 2009.

[5] G. Karner, “Resource estimation for objectory projects”.
Objective Systems SF AB, 17. 1993.

[6] G. Robiolo and R. Orosco, “Employing use cases to early
estimate effort with simpler metrics”. Innovations in Systems
and Software Engineering, 4(1), 2008, pp. 31-43.

[7] L. Lavazza and G. Robiolo, “Introducing the evaluation of
complexity in functional size measurement: a UML-based
approach”. ACM-IEEE Int. Symp. on Empirical Software
Engineering and Measurement, September 2010.

[8] http://algojava.blogspot.it/2012/05/tic-tac-toe-game-
swingjava.html.

[9] https://github.com/whsieh/gomoku

409Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

