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We develop an extension of the infinite swapping and partial infinite swapping techniques [N. Plat-
tner, J. D. Doll, P. Dupuis, H. Wang, Y. Liu, and J. E. Gubernatis, J. Chem. Phys. 135, 134111 (2011)]
to curved spaces. Furthermore, we test the performance of infinite swapping and partial infinite swap-
ping in a series of flat spaces characterized by the same potential energy surface model. We develop
a second order variational algorithm for general curved spaces without the extended Lagrangian for-
malism to include holonomic constraints. We test the new methods by carrying out NVT classical
ensemble simulations on a set of multidimensional toroids mapped by stereographic projections and
characterized by a potential energy surface built from a linear combination of decoupled double wells
shaped purposely to create rare events over a range of temperatures. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4855675]

I. INTRODUCTION

The rare-event sampling problem in Monte Carlo
methods1–4 continues to provide extraordinary challenges,
and at the same time, fertile ground for the development
of clever simulation strategies. A recent significant contri-
bution to a long list of such approaches5–25 is the work of
Plattner et al.24 Like parallel tempering,18–23 j-walking,13 and
other related methods, the Infinite Swapping24 (INS) and Par-
tial Infinite Swapping (PINS) strategies provide a systematic
way of improving sampling in particularly challenging Monte
Carlo simulations. The work of Plattner et al.24 focuses on the
stochastic estimation of a physical property f over a distribu-
tion π (x, Tk) at temperature Tk, by the following configuration

integral:

〈 f 〉k =

∫
π (x, Tk) f (x) dx∫

π (x, Tk) dx

. (1)

The sampling challenges for Monte Carlo methods can be
gleaned from graphs of the distribution, π (x, Tk), which at
temperatures near phase changes and rare events, are sparse
and have disconnected domains around potential minima.24

INS and the related PINS strategies replace π (x, Tk) with a
symmetrized joint probability distribution for N temperatures
and N independent systems with coordinates xn,

〈 f 〉k = 1

N !

∑
m

∫
Pm [π (x1, T1) π (x2, T2) · · · π (x,N TN )] f

(
xidnx(n,k)

)
dX∫

Pn [π (x1, T1) π (x2, T2) · · · π (xN, TN )] dX
, (2)

where

dX = dx1dx2 · · · dxN,

Pn is the permutation operator, and idnx(n, k) is the pointer
to all the permutations in the coordinate-temperature list as-
sociated with temperature k.24 The symbol xi is used to no-
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tate the n-dimensional set of coordinates x1, . . . , xn for the ith
walker, and the superscripts on x are not powers, rather they
are used to distinguish the degrees of freedom. The authors
of Ref. 24 demonstrate that the symmetrized distribution in
Eq. (2) is highly connected if the range of temperatures is
selected carefully. Infinite swapping and the partial infinite
swapping methods24 have been subjected to rigorous tests us-
ing systems like the well known LJ38 cluster, and the authors
have reported that partial infinite swapping can be made more
efficient than parallel tempering with reasonable means. The
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development of INS and PINS24 is particularly timely, given
our own interests in simulating molecular clusters,26–41 and
the difficulties we have encountered in the process. Molecu-
lar clusters seem to have a much richer set of rare-event like
thermodynamic behaviors compared to an atomic cluster of
equivalent size.42–68 Our experience with ammonia clusters,
for example, suggests that as few as 11 ammonia molecules27

can cause significant sampling difficulties and slow converg-
ing results in regions of temperature dominated by phase
changes, even when using state of the art methods like par-
allel tempering.

In a recent investigation,25 we have identified a set of
multidimensional potential energy surfaces of sufficient com-
plexity to make the convergence of parallel tempering signif-
icantly difficult and unfeasible for sufficiently large number
of dimensions. At the same time, the model is sufficiently
simple to allow for the computation of all the relevant ther-
modynamic properties by deterministic methods. Our aim
was to develop strategies to improve the severe sampling
problems we encounter in simulating ammonia clusters, and
we succeed in identifying smart darting5–7 as a method that
can be implemented successfully in diffusion Monte Carlo
simulations since the number of minima contributing to the
ground state wave function may be relatively small and many
complications7 can be avoided. The potential we develop25 in
the course of that work is a linear combination of decoupled
double wells [(DDW)n]

V (x1, . . . , xn) =
n∑

i=1

V1(xi), (3)

where

V1(x) = ax4 + bx3 + cx2 + 1, (4)

and a, b, c are parameters used to shape the function con-
tinuously from a symmetric double well with a barrier of 1,
(b = 0, c = −a) to a family of potentials with a minimum
at a higher energy relative to the other. The function V1 is a
member of a family of quartic double wells used by Frantz
to test j-walking.13 The (DDW)n family of potentials can be
fully characterized for any given value of n by using deter-
ministic methods. The classical thermodynamic properties for
(DDW)n, such as the average potential, 〈V (x1, . . . , xn)〉 can
be recast in terms of their monodimensional counterpart,

〈V (x1, . . . , xn)〉 = n〈V1(x)〉, (5)

〈E(x1, . . . , xn)〉 = n

2
kBT + n 〈V1 (x)〉 , (6)

CV

kB

= n

2
+ n

〈
V 2

1 (x)
〉 − 〈V1 (x)〉2

(kBT )2 . (7)

One may compute the integrals such as the monodimensional
partition function

Q(1) =
∫ ∞

−∞
dx exp [−βV1 (x)] , (8)

and those for 〈V 2
1 (x)〉, and 〈V1 (x)〉, by using standard quadra-

ture techniques.
For a given value of n, there are 2n minima in total, and

n2n − 1 first order saddles. Therefore, the stochastic evalua-

tion of thermodynamic properties for (DDW)n, via Eq. (1)
with parallel tempering, can quickly become prohibitive as
the size of the system n increases. We have shown25 that the
set (DDW)n creates serious challenges for parallel tempering
simulations when n > 20. For these systems we have been
unable to converge any parallel tempering simulations with
feasible walk lengths and using the best of our abilities to
optimize all the parameters of the simulation including the
choice of the temperature schedule.25

The prime objective of the present work is to extend the
INS and PINS methods to curved spaces. The larger goal we
hope to achieve eventually is to extend the present reach of
classical and quantum Monte Carlo methods into the emerg-
ing frontier of condensed molecular matter. In this article we
report on the initial steps taken along this path. Simulations
of complex molecular systems must often employ holonomic
constraints, especially when the methods include quantum
corrections, hence the need to explore curved spaces in gen-
eral. The rationale for testing INS and PINS for these systems
lies in the indication that the PINS algorithms may perform
better than parallel tempering for extremely challenging
systems. The INS and PINS methods24 seem to be most
successful and easier to implement when the sampling of the
symmetrized joint probability in Eq. (2) is performed by dy-
namic methods.69–71 With a view of employing more flexible
sampling approaches, the methods72–74 (vide infra) used in
this work are evolved from the generalization of SMC and
based on the recognition that a step of the latter is equivalent
to a resampling of the degrees of freedom conjugated mo-
menta with the appropriate Boltzmann distribution followed
by a single trajectory integration step (carried out with the
velocity Verlet’s method75). Given the ease with which the
appropriate deterministic benchmarks can be generated, and
the fact that the convergence of parallel tempering on these
systems has been measured carefully in previous studies25 it
behooves us to carry out tests on the PINS methods to explore
strategies, test numerical integrators and determine the set of
parameters that creates the best convergence properties for
this class of algorithms.

The rest of this article is organized as follows: In Sec. II
we report the results of a number of tests performed on the
(DDW)n family of potentials in flat spaces mapped by Carte-
sian coordinates. Since it is relatively simple to generate con-
verged results with deterministic methods, we use flat spaces
in our preliminary numerical work to test our codes and to
optimize the details of the algorithms before tackling the
more complicated problems in curved manifolds. We believe
that this further characterization of INS and PINS in spaces
mapped by Cartesian coordinates could prove useful to a
much larger community of researchers. In Sec. III we develop
a generic integrator for systems in curved spaces based on the
variational approach. The numerical tests on curved spaces
are reported in Sec. IV and our conclusions are in Sec. V.

II. INFINITE SWAPPING AND PARTIAL INFINITE
SWAPPING IN Rn

Infinite swapping and partial infinite swapping are rela-
tively new developments, and have never been tested with the
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surface in Eq. (3) in Rn mapped with Cartesian coordinates.
To sample the symmetrized joint probability distribution in
(2) one defines24 the quantity

μ (X) =
∑
m

Pm [π (x1, T1) π (x2, T2) · · · π (xN, TN )] , (9)

then, ∫
Pm [π (x1, T1) π (x2, T2) · · · π (xN, TN )] dX

= 1

N !

∫
μ (X) dX, (10)

since all the terms of the sum on the right are identical. Con-
sequently, Eq. (2) becomes

〈 f 〉k = 1

N !

∫
μ (X)

∑N!
m=1 ρm(x) f (xidnx(n,k)) dX∫

μ (X) dX

, (11)

where

ρm (X) = Pm [π (x1, T1) π (x2, T2) · · · π (xN, TN )]

μ (X)
. (12)

The authors of Ref. 24 explain in detail the INS approach
using three temperatures as example, and for the sake
of completeness we briefly repeat the outline here. With
three temperatures we compute a total of nine values of
π (xk, Tk), i.e., all the possible permutations of the coor-
dinates associated with the three temperatures, π (x1, T1) ,

π (x1, T2) , . . . π (x3, T3) . From these we obtain the six terms
of the sum of Eq. (12) by first computing the products,
π (x1, T1) π (x2, T2) π (x3, T3) , and the remaining five pos-
sible permutations of the coordinates, leaving the tempera-
tures in the same order, e.g., π (x2, T1) π (x1, T2) π (x3, T3) ,

etc. Once these products are formed, μ(X) is computed with
Eq. (9), and the weights ρn with Eq. (12). To move we select a
particular coordinate-temperature association according to the
values ρn, following the standard procedure to sample sums
over arbitrary distributions.4

Once a particular coordinate-temperature association is
chosen, moves are made at all the temperatures. These can
be performed by the Metropolis algorithm,1–4 or with other
strategies such as the Smart Monte Carlo.69–71 In this work,
we opted for using the isothermal molecular dynamics (IMD)
by Andersen,72, 73 which is an evolution of SMC and equiva-
lent to hybrid Monte Carlo in the limit of no rejection.74 No-
tice that the theoretical basis for the generalization of SMC
to more than a single trajectory integration step (kmax > 1)
leading to IMD had already been hinted in Refs. 69–71, and
it is based on the equivalence of the single step SMC indi-
cated in Sec. I and the phase space volume conservation of
dynamical trajectories. To implement the IMD method in this
work, we closely follow the suggestion made in Ref. 73 to
sample the configuration Boltzmann distribution for a given
potential energy. In practice, we use the temperature to scale
Gaussian random numbers so to generate new momenta dis-
tributed according to the correct Boltzmann distribution and
that, combined with the current position of the walker, be-
come the starting point for a classical trajectory propagated

by kmax steps using �t as the time increment. The integra-
tor we use in flat spaces is the Candy-Rozmus algorithm, a
fourth order method. We note that INS3 works quite well for
the monodimensional case and that its performance is insensi-
tive to the parameters of the integrator �t and kmax , provided
the integrator produces a stable numerical solution.

Practical applications of INS and PINS require many
more temperatures, and coding the general PINS needs some
additional automation to generate the n! possibilities when n
temperatures are involved. To this end, we formulate an al-
gorithm to create a matrix representation of the permutation
operators Pk of a list of k objects, using the following steps:

1. Initialize N! square matrices, N × N is size: �l, l = 1, 2,
. . . , N!. The first N(N − 1)/2 + 1 of these are filled by
placing a 1 along all the diagonal entries and zero every-
where else. The first one, �1, is the identity operator.

2. For all values of l = 2 to N(N − 1)/2 + 1, replace the i, i
and j, j entries in �l with zeros, and the i, j and j, i entries
with one for i = 1 to k and for j = i + 1 to k.

3. Compute the product of all the distinct pairs of all the
matrices obtained in the previous step.

4. Augment the set of distinct operators and repeat step 3
until all k! operators have a matrix representation.

For the N = 3 example, a total of six permutation oper-
ators are formed. With �1(123) = (123), as the identity, and
with �2(123) = (213), �3(123) = (321), and �4(123) = (132),
as obtained in the second step, one can construct the following
multiplication table:

�1 �2 �3 �4

�1 �1 �2 �3 �4

�2 �2 �1 �5 �6

�3 �3 �6 �1 �5

�4 �4 �5 �6 �1,

(13)

where �5(123) = (231) and �6(123) = (312) are the remain-
ing distinct permutation operators that consist of two consec-
utive single permutations obtained with a single iteration of
step 3. The operators �l generated by the algorithm presented
earlier are used to find the set of N! vectors with entries per-
muted by the set �l to compute μ(X) with Eq. (9) and the
weights ρn with Eq. (12) for the general case. Furthermore,
the coordinate index associated with the averages at tempera-
ture Tj in Eq. (11) is computed from the permutation operators
as well. For a given temperature Tj, there are (N − 1)! permu-
tations that associate x1 with Tj, (N − 1)! permutations that
associate x2 with Tj, etc. The averages at temperature Tj in
Eq. (11) are the weighted average of all N! permutations as-
sociated as described. These associations are used to construct
the idnx array for the general case. For the N = 3 example and
the �1 − 6 as defined earlier, at T1, the walker array pointer is
idnx(n, 1) = 1, 2, 3, 1, 2, 3, at T2, it is idnx(n, 2) = 2, 1, 2, 3,
3, 1 and so on.

In Fig. 1, the heat capacity of several INS and PINS sim-
ulations is compared for the n = 2 case. The continuous lines
in the heat capacity are obtained with Eqs. (5)–(7). The INS6
simulation in Fig. 1 (green circles) uses the following val-
ues of kBT: 0.01, 0.03, 0.06, 0.09, 0.12, and 0.15 hartree. The
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FIG. 1. Classical NVT heat capacity for a particle in R2, with 1 a.u. of mass,
subjected to the double well in Eq. (3) at several values of kBT.

INS7 simulation in Fig. 1, uses 0.01, 0.025, 0.050, 0.075,
0.095, 0.115, and 0.13 hartree as the values of kBT. Both INS6
and INS7 results are obtained by averaging 15 independent
blocks of 107 moves, each move being composed of a resam-
pling of the momenta and a trajectory integration using the
fourth order Candy-Rozmus integrator with �t = 0.01 a.u.
and kmax = 10. All error bars in Fig. 1 represent a 95% confi-
dence interval computed with the appropriate student-t distri-
bution value.

A simulation with n > 2 requires more than 10 temper-
atures, and an infinite swapping simulation requires a sym-
metrized joint distribution with more than 3.6 × 106 permuta-
tions for N = 10. To handle the factorial growth, the authors24

of the infinite swapping techniques have developed a “dual
chain” process by which a N-temperature set is partitioned in
two distinct ways. Each chain of temperatures is divided into
blocks of relatively small size, to reduce the local shuffling
to a manageable task. This is accomplished by symmetrizing
only within the blocks of each chain. By carefully selecting
the two partitions so as to not leave common gaps between
temperature blocks, and by exchanging configurations from
one chain to the other after every move, PINS generates the
fully symmetrized distribution in Eq. (11) asymptotically.24

We experiment with several possibilities, including a 25
temperatures PINS(1-3|3-1) scheme. The notation PINS(1-3|
3-1) in conjunction with the number of temperatures indicates
that the first chain of temperatures contains one block with
one temperature and eight consecutive blocks with three tem-
peratures, while the second chain contains eight consecutive
blocks with three temperatures followed by one block with the
highest temperature. Therefore, the two chains do not have a
common temperature gap between the blocks. The 25 tem-
peratures PINS(1-3|3-1) scheme succeeds for relatively small
size systems (among which the (DDW)2 in Fig. 1). Increasing
the dimensionality of the system simulated, however, causes
the convergence of PINS(1-3|3-1) to slow down considerably,
and with as few as 10 dimensions parallel tempering yields
better results with 106 potential points per temperature, com-
pared to the equivalent PINS(1-3|3-1).

To improve on the situation described above, a new set of
temperature schedules is developed and tested. The PINS54
data in Fig. 1 (and also vide infra Figure 2) are from 20 tem-
perature simulations created with a dual chain, one composed
of consecutive blocks of five temperature, the other with con-
secutive blocks of four temperatures. The first common tem-
perature gap in a general PINSnm scheme occurs at the lowest
common multiple of n and m. The first common temperature
gap occurs after 20 temperatures for the PINS54 case. Notice
how the standard error associated to the PINS54 data is much
reduced compared to INS ones as it is for PINS(1-3|3-1).

The reduction of the standard error associated to the
heat capacity when a properly chosen temperature schedule is
employed does not, however, necessarily indicate that PINS
is more efficient than other methods, like the Replica Ex-
change (RE), for example. To gauge the possible gains in effi-
ciency, we compare quantitatively the convergence properties
of PINS54 and replica exchange (both using 10 steps for ev-
ery move) in R30, a situation in which parallel tempering is
already known to fail.25 We do this by computing the ergodic
measure77 for several values of the number of dynamic seg-
ments k each comprised of kmax steps,

dk = 2

M (M − 1)

M∑
i=2

i−1∑
j=1

[
V

(i)
k − V

(j )
k

]2
, (14)

with M being the number of independent random walks per-
formed. dk is the mean square deviation of the potential en-
ergy average computed with k steps:

V
(i)
k = 1

k

k∑
j=1

V
(
x

(j )
k

)
, (15)

and x
(j )
k is the configuration after j segments in walk i. Here,

replica exchange is a procedure equivalent to parallel tem-
pering with respect to temperature swaps, but it differs in the
fact that the exploration of the configurational space is car-
ried out using trajectories of a predefined number of steps
rather than random displacements. When the integration is
carried out with only one step (kmax = 1) after a resam-
pling of the momenta, the procedure is strictly equivalent to
a SMC simulation for each temperature despite the fact that
no rejection check is carried out in RE as the �t is chosen
small enough to guarantee energy conservation. Notice that
SMC is usually considered able to explore more efficiently
the configuration space than standard Monte Carlo with ran-
dom displacements.69, 70

The graphs in the top panel of Fig. 2 display the expected
behavior21

dk = Ak

1

k
+ Bk + γk, (16)

where Ak and γ k are the short time constant and the noise, re-
spectively, whereas Bk is a slowly decreasing function of k. As
a simulation converges, the first two terms on the right-hand
side of Eq. (16) should drop below the noise. The two sets
of simulations compared in Fig. 2 clearly demonstrate that
the short time constant is comparable among them. However,
the long time contribution to the ergodic measure for parallel
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FIG. 2. Top: Ergodic measure for PINS54 and replica exchange (units of hartree2) for (DDW)30 as a function of the number of dynamic segments k. Bottom:
classical NVT heat capacity for a particle in R30, with 1 a.u. of mass, subjected to the double well in Eq. (3) at several values of kBT. A replica exchange and
a partial infinite swapping simulations requiring the same amount of time are compared. Both sets of results are obtained by running 22 independent samples
each with 107 trajectories with kmax = 10, after a “warm up run” of equal length.

tempering (Bk) is at least one order of magnitude greater than
the same quantity for PINS54.

The differences in Bk and γ k between PINS54 and RE,
evident from the previous tests may have important conse-
quences when computing observables that are sensitive to the
sampling ergodicity. In the bottom panel of Fig. 2 we com-
pare the heat capacity computed for (DDW)30 using RE76 and
PINS54 simulations with the results expected from the de-
terministic computation in Eq. (7). In this case, the replica
exchange simulation results are obtained by running 22 inde-
pendent samples each with 107 kmax = 10 segments, after a
“warm up run” of equal length. This simulation is approxi-
mately equally expansive as the PINS54 simulations with 107

moves and a kmax = 10. The error bars represent the 95% con-

fidence interval and are obtained from the averages of each
sample. The PINS54 results are created by averaging 22 inde-
pendent samples each consisting of 107 moves, after a “warm
up run” of equal length. The IMD trajectories used in both RE
and to sample the PINS54 distribution are propagated by the
fourth order Candy-Rozmus integrator with �t = 0.01 a.u. as
in Fig. 1.

The data in the bottom panel of Fig. 2 show that PINS54
is more accurate than replica exchange for the same num-
ber of moves. The data points for the latter are significantly
and systematically below the deterministic results between
the melting peak and the equipartition limit. Thus, while
PINS(1-3|3-1) performs worse than the PT simulation when
N > 10 as indicated, PINS can be systematically improved,
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and PINS54 seems already to be better than the RE simula-
tions in Fig. 2.

Additional computational experiments were carried out
to gain a better understanding of the performance obtainable
while using PINS54. Thus, we found that the proper walk
length for PINS54 to converge results for (DDW)40 is con-
siderably longer: based on the data trends at the lowest tem-
peratures we estimate that as many as 3× 109 moves may
be needed to obtain comparable accuracy to the (DDW)30

case. We also discovered that the success shown by PINS54 in
Fig. 2 depends on optimizing kmax, and �t. A calculation with
kmax = 1, for example, does not converge any better on R30

than replica exchange, while it does so when kmax = 10 (see
Fig. 2). We learned that kmax has to be sufficiently large to al-
low those trajectories that start with sufficiently large momen-
tum to overcome the barriers. A �t ten times smaller would
require a kmax ten times larger to create the same opportuni-
ties. We did not systematically characterize the behavior of
PINS54 with sets of �t and kmax. Instead, we choose as large
a �t as possible, that provides a reasonable energy conserva-
tion, and determine the smallest value of kmax needed to travel
from a minimum to the farthest transition state that leads to
another minimum of statistical importance. Above n = 20,
for each dimension, there is a minimum walk length required
to reach convergence regardless of the value chosen for kmax

and �t. A PINS54 simulation with kmax = 10 and �t = 0.1
a.u. in R40 is statistically identical and equally off the mark,
as a PINS54 simulation with kmax = 10 and �t = 0.01 a.u.
with equal number of moves, for example.78

III. A VARIATIONAL INTEGRATOR
FOR CURVED SPACES

The results in flat spaces encourage us to continue in our
goal to extend the PINS methods to curved spaces. From the
simulations in flat spaces we learn that IMD with a number
of steps is necessary to converge asymptotically with reason-
able means, for extremely challenging rare events. We learn
that energy conservation is crucial for the optimal function-
ing of the PINS algorithm. There are methods for integrat-
ing Euler-Lagrange’s equations for systems subjected to holo-
nomic constraints. The SHAKE79 and RATTLE80 algorithms
are two popular examples. These are variational algorithms
derived by using augmented Lagrangian functions to intro-
duce the constraints. In this paper, we are interested in more
general curved spaces beyond those generated by holonomic
constraints,81, 82 as these may arise in path integral simula-
tions, for example.83, 84 In a recent application of Ring Poly-
mer Dynamics to curved spaces,84 we develop a method to
integrate directly from generalized coordinates, and we ob-
serve that direct application of traditional symplectic integra-
tors gives rise to numerical methods with significant amount
of energy drift. The method we have developed in Ref. 84
to improve the long term energy drift of the symplectic in-
tegrator is to compute the state vector by using the Liouville
operator. The latter is not split as customary. Rather, to accom-
modate the momenta-coordinate coupling that takes place in
general curved spaces, we create a Krylov space using a ma-
trix representation of the Liouville operator. Let H represent

the Hamiltonian of the system, q the set of generalized coordi-
nates, and p the corresponding canonical conjugate momenta.
Then, the phase space vector is updated with

(
q
p

)
t+�t

=
(

q
p

)
t

+ �t

⎛
⎜⎜⎜⎝

∂H
∂p

−∂H
∂q

⎞
⎟⎟⎟⎠

+ 1

2
�t2

⎛
⎜⎜⎜⎜⎝

−∂H
∂p

∂2H
∂p∂q

∂H
∂q

∂2H
∂q∂p

⎞
⎟⎟⎟⎟⎠ + . . . + O(�t3). (17)

The first two terms of Eq. (17) can be derived with the
split operator approach. The last term in Eq. (17) vanishes in
Rd , or in spaces endowed with a uniform metric, and would be
absent even when the mixed partial derivatives are not zero if
we had split the Liouville operator. This approach was tested
by developing a series of algorithms that converge to higher
and higher order. However, we have noted that the energy
conservation property (E − E0)/E0, where E0 is the energy at
t = 0 always scales as �t, and that there is always a measur-
able amount of drifting regardless of the order of integration.
Yet, the class of Hamiltonians we use is invariant under time
translation, therefore the energy should be strictly conserved
by a “good” algorithm, and this property is desired for the
present application. Therefore, we are pushed to develop new
alternatives. The approach we develop below is a generaliza-
tion of the variational method used to derive RATTLE and
SHAKE, but it makes no use of Lagrangian multipliers, and
integrates directly the phase space state expressed with the
generalized coordinates and momenta. Integrators derived di-
rectly from Hamilton’s principle are automatically endowed
with a number of desired properties.82 In particular, they pre-
serve momenta associated to symmetry elements of the sys-
tem, display excellent longtime energy conservation when the
Hamiltonian is time invariant, and are symplectic in nature.
Additionally, the variational methodology allows one to de-
rive good integrators for systems characterized by extremely
complex geometries81, 82 as we have in the present case.

We begin with the discrete Euler-Lagrange equations,

D2Ld (qk−1, qk,�t) + D1Ld (qk, qk+1,�t) = 0. (18)

These are central to the implementation of variational algo-
rithms, and are derived by approximating the variation of the
classical action integral

δS = δ

∫
L (q (t) , q̇ (t)) dt = 0, (19)

with a quadrature. Di represents the derivative of the dis-
cretized Lagrangian Ld, with respect to the ith argument, and
the notation qk is used to represent the entire set of coordinates
qμ μ = 1, 2, . . . n at a finite value of time t = tk. In this article,
Greek superscripts are used as contravariant labels for coor-
dinates, and for tensor quantities that transform contravari-
antly under a change of coordinates rather than represent-
ing powers. Greek subscripts are used as covariant labels for
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conjugate momenta or n-forms.81 The discretized Lagrangian
Ld is obtained by approximating the velocity space q̇ with a
finite difference, and it represents the quadrature estimate of
the integral in Eq. (19). Even ordered algorithms that propa-
gate trajectories from the initial momentum and position (p0,
q0) can be derived by using the discrete version of the mo-
mentum as defined from the derivatives of Ld,

pk = −D1Ld (qk, qk+1,�t) , (20)

pk+1 = D2Ld (qk, qk+1,�t) . (21)

Setting k → k − 1 in Eq. (21) and substituting the result in
Eq. (18) yields Eq. (20). This proves that both the discrete
Euler-Lagrange equations and the discrete version of the mo-
mentum pk and pk + 1 are self consistent. Generally, one de-
rives a variational-type integration algorithm by solving for
the set qk + 1 from Eq. (20) and uses the values of qk + 1 to
compute the set pk + 1 with Eq. (21).

We seek to produce a second order integrator in position
momentum form using the following general Lagrangian for
systems in curved spaces,

L (q, q̇, t) = 1

2
gμν q̇μq̇ν − V, (22)

where the 2-form gμν is the metric tensor of the space. In
Eq. (22), we are making use of Einstein’s shorthand for sum-
mation over repeated Greek indices in the upper and lower
position. The kinetic energy term in this, contains an implied
double sum over μ and ν from 1 to the dimension of the space
n. The metric tensor gμν becomes a diagonal matrix with the
mass as the element in flat spaces mapped by Cartesian coor-
dinates. In curved spaces, the metric tensor typically depends
on the generalized coordinates qμμ = 1, 2, . . . n coupling the
coordinates and the momenta as a consequence. When we
apply the trapezoid rule to the integral in Eq. (19) and use
Eq. (22) we obtain the following expression:

Ld (qk, qk+1,�t) = �t

2
L

(
qk,

qk+1 − qk

�t

)

+�t

2
L

(
qk+1,

qk+1 − qk

�t

)
. (23)

The elements inside the parenthesis ( ) are the arguments of
the functions Ld and L. We introduce the following shorthand
gμν k = gμν(qk) and Vk = V (qk) to represent the metric ten-
sor elements and the potential energy, respectively, evaluated
at a finite value of time t = tk. The metric tensor and the po-
tential do not need to depend explicitly on time, but they do
depend on it implicitly via the dependence of the coordinates
qμ. Inserting Eq. (22) into Eq. (23) gives

Ld (qk, qk+1,�t)

= �t

4
gμν k

(
q

μ

k+1 − q
μ

k

�t

)(
qν

k+1 − qν
k

�t

)
− �t

2
Vk

+�t

4
gμν k+1

(
q

μ

k+1 − q
μ

k

�t

) (
qν

k+1 − qν
k

�t

)
− �t

2
Vk+1.

Equations (20) and (21) become

pμ k = 1

2
gμν k

(
qν

k+1 − qν
k

�t

)
+ 1

2
gμν k+1

(
qν

k+1 − qν
k

�t

)

− �t

4
∂μ gσν k

(
qσ

k+1 − qσ
k

�t

)(
qν

k+1 − qν
k

�t

)
+ �t

2
∂μVk

(24)
and

pμ k+1 = 1

2
gμν k

(
qν

k+1 − qν
k

�t

)
+ 1

2
gμν k+1

(
qν

k+1 − qν
k

�t

)

+�t

4
∂μ gσν k+1

(
qσ

k+1 − qσ
k

�t

)(
qν

k+1 − qν
k

�t

)

−�t

2
∂μ Vk+1. (25)

Equation (24) represents a set of n independent coupled non-
linear algebraic equations. The root q

μ

k+1 depends, in gen-
eral, on the values of all the other roots, and the solution for
such nonlinear coupled system can only be found iteratively.
A good starting point for q

μ

k+1 can be supplied by Eq. (17).
For flat spaces mapped by Cartesian coordinates, xμ ∈ Rn the
metric tensor is simply the mass associated with the ith degree
of freedom,

gμν k → m δμν, (26)

and Eqs. (20) and (21) simplify to

pμ k = m δμν

(
xν

k+1 − xν
k

�t

)
+ �t

2

∂Vk

∂x
μ

k

(27)

and

pμ k+1 = m δμν

(
xν

k+1 − xν
k

�t

)
− �t

2

∂Vk+1

∂x
μ

k+1

. (28)

The resulting method is the position-momentum version of
the variational Verlet algorithm85 and its convergence displays
second order behavior in �t.

IV. NUMERICAL TESTS IN Tn

In the following, we present a set of tests carried out on
the new variational integrator scheme to confirm its perfor-
mances. Also, the new integrator would be applied to carry
out the trajectory evolution needed in IMD and for the appro-
priate sampling in PINS simulations.

A. Variational integrator

For a particle in a ring (x2 + y2 = R2), mapped with a
stereographic projection ξ , defined by the map 
 : T → R2,

x = 4R2ξ

ξ 2 + 4R2
, y = ξ 2 − 4R2

ξ 2 + 4R2
R, (29)

the metric tensor has a single element,

g =
(
4R2

)2

(ξ 2 + 4R2)2
, (30)
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and Eq. (22) reads

L
(
ξ (t) , ξ̇ (t)

) = 8mR4

(ξ 2 + 4R2)2
ξ̇ 2 − V (ξ ) . (31)

The conjugate momentum p is

p = ∂L
∂ξ̇

= 16mR4

(ξ 2 + 4R2)2
ξ̇ . (32)

When we apply the trapezoid rule, the discretized
Lagrangian is

Ld (ξk, ξk+1,�t)

= �t

2

8mR4(
ξ 2
k + 4R2

)2

(
ξk+1 − ξk

�t

)2

− �t

2
V (ξk)

+ �t

2

8mR4(
ξ 2
k+1 + 4R2

)2

(
ξk+1 − ξk

�t

)2

− �t

2
V (ξk+1) ,

(33)
and, Eqs. (20) and (21) become

pk = 8mR4

(
ξk+1 − ξk

�t

)[
1(

ξ 2
k+1 + 4R2

)2 + 1(
ξ 2
k + 4R2

)2

]

+ 16mR4ξk(
ξ 2
k + 4R2

)3

(ξk+1 − ξk)2

�t
+ �t

2

dV (ξk)

dξk

, (34)

pk+1 = 8mR4

(
ξk+1 − ξk

�t

) [
1(

ξ 2
k+1 + 4R2

)2 + 1(
ξ 2
k + 4R2

)2

]

− 16mR4ξk+1(
ξ 2
k+1 + 4R2

)3

(ξk+1 − ξk)2

�t
− �t

2

dV (ξk+1)

dξk+1
. (35)

The potential used to test the method is in Eq. (4) with
xi = ξ , and with the parameters a = 1.02651, b = −0.05302,
and c = −1.97349. The units of these parameters are hartree
bohr−4 for a, hartree bohr−3 for b, etc. The graph of the quar-
tic polynomial in Eq. (4) with these choices has an asymmet-
ric double well feature with the lowest minimum V1 = 0 at
ξ = 1, a higher energy minimum V1 = 0.1 at ξ = −0.96126
bohr, and a barrier of 1 hartree at ξ = 0.

We test the algorithm using a particle of unit mass in
a ring with a radius of 0.7 bohr. The graph in Fig. 3(a)
is the phase space profile of a single trajectory started at
ξ = 1.03634 bohr, p = 0.684556 a.u., and propagated for
105 consecutive segments using a �t = 0.01 a.u. Bracket-
ing is used to solve for ξ k + 1 from Eq. (34). The bracketing
procedure is iterated 40 times reducing the uncertainty in the
root, typically, to less than one part in 1012. We find that this
amount of precision is necessary to achieve the proper stabil-
ity (i.e., lack of energy drift), and we adopt this procedure in
all consecutive tests. The graph in Fig. 3(b) is the relative en-
ergy difference as a function of time, (E − E0)/E0, where E is
computed with

E =
(
ξ 2 + 4R2

)2

8mR4
p2 + V (ξ ) , (36)
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FIG. 3. Single trajectory for a particle in a ring, 1 a.u. of mass, and a radius
of 0.7 bohr mapped with a stereographic projection coordinate. The poten-
tial energy is the double well in Eq. (4) and �t = 0.01 a.u. (a) Phase space
projection. (b) Relative energy difference as a function of time.

and E0 is the energy at t = 0. We repeat these calculations
using higher energies where the barrier crossing takes place.
The results are in Fig. 4. The phase space trajectory is shaped
with the expected double feature, while the (E − E0)/E0 graph
looks nearly identical to the one in Fig. 3(b). By running a 106

step trajectory with �t = 0.001 a.u., [red line in Fig. 4(b)] we
observe a factor of one hundred reduction in amplitude of the
relative energy difference over time. Therefore, the algorithm
converges quadratically both on the trajectory and on the cor-
rect energy and it represents a substantial improvement over
the previous methods we have proposed for direct integrations
in curved spaces using non-Cartesian coordinates. In all cases,
we find no evidence of energy drift over time. The iterative
nature of the method we develop here does add some compu-
tational overhead compared to a second order integrator in flat
spaces. However, the present method does not require any ad-
ditional potential (or derivative) evaluations when compared
with its equivalent integrator in flat spaces, and therefore, for

-1 0 1
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FIG. 4. Single trajectory for a particle in a ring, 1 a.u. of mass, and a radius
of 0.7 bohr mapped with a stereographic projection coordinate. The potential
energy is the double well in Eq. (4) and the energy is greater than the barrier
height. (a) Phase space projection. (b) Relative energy difference as a function
of time with �t = 0.01 a.u. for the black line, and �t = 0.001 a.u. for the red
line.
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FIG. 5. Classical NVT heat capacity in units of the Boltzmann constant kB,
for a particle in a ring, 1 a.u. of mass mapped with a stereographic projection
coordinate ξ , for various values of the radius R.

expensive potential energy models, the added computational
cost can be a minimal fraction of the whole.

B. IMD

The next set of numerical tests consists of computing the
NVT ensemble properties for a particle of unit mass in a ring
with a radius of 0.7 bohr for several values of kBT between
0.02 hartree and 0.4 hartree. The family of monodimensional
configuration integrals,

〈f 〉1 =

∫ ∞

−∞
dξ

(
ξ 2 + 4R2

)−1
exp (−βV ) f∫ ∞

−∞
dξ

(
ξ 2 + 4R2

)−1
exp (−βV )

, (37)

with β = (kBT)−1, can be relatively easily computed with the
trapezoid rule. From these it is simple to construct the canon-
ical average energy 〈E〉 n = n〈E〉1 for the monodimensional
case.

In Fig. 5 we graph the deterministic value of CV

= (kBT )−2(〈E2〉1 − 〈E〉2
1), in units of the Boltzmann con-

stant kB, for a particle in a ring, 1 a.u. of mass mapped with
a stereographic projection coordinate ξ , for various values
of the radius R for the monodimensional case. The graph of
this quantity suggests that the impact of the topology on the
thermodynamic properties can be substantial. As R → ∞,
g → 1, the manifold becomes a flat space, and the results in
Ref. 25 are reproduced exactly. We use the deterministic re-
sults to test the IMD approach in curved spaces.72, 73

To compute the integral over the phase space

〈f 〉1 =

∫ ∞

−∞
dp dξ exp (−βH (ξ, p)) f∫ ∞

−∞
dp dξ exp (−βH (ξ, p))

, (38)

stochastically, with the Hamiltonian given as

H (ξ (t) , p (t)) =
(
ξ 2 + 4R2

)2

8mR4
p2 + V (ξ ) , (39)
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FIG. 6. Classical NVT ensemble averages for a particle in a ring of radius
0.7 bohr, 1 a.u. of mass mapped with a stereographic projection coordinate
for various values of kmax , the total number of dynamic steps. The potential
energy is the double well in Eq. (4). The time steps and the temperature are
�t = 0.01 a.u., kBT = 0.2 hartree, respectively. (a) The number of trajecto-
ries from the 106 ensemble that cross the barrier exactly once. (b) Canonical
average energy in hartree. (c) Canonical average potential energy in hartree.
(d) Heat capacity in units of the Boltzmann constant kB.

we run 106 trajectories, evaluating for each the following av-
erages:

f i =
1

τ

∫ τ

0
dtf (ξ (t) , p (t)) , ξ (t = 0) , p (t = 0) = ξi, pi,

(40)

〈f 〉 = 1

M

M∑
i=1

f i. (41)

The variational integrator developed here is used to propagate
each trajectory from the final position ξ i of the previous tra-
jectory, and a randomly selected initial value of the momen-
tum p = pi for a number of steps kmax , therefore τ = kmax �t.
For this step, a Gaussian distribution with a standard deviation
σ given by

σ = 4mR2(
ξ 2
i + 4R2

)√
kBT , (42)

is sampled using the Box-Muller algorithm.4

To demonstrate that the procedure indicated above con-
verges to the correct results, in Fig. 6 we graph the Classi-
cal NVT ensemble averages for a particle in a ring of radius
0.7 bohr, 1 a.u. of mass mapped with ξ for several values of
kmax , �t = 0.01 a.u., and kBT = 0.2 hartree. The reported val-
ues are the mean of ten block averages with each block con-
sisting of 106 trajectories. The error bars are the standard devi-
ations computed from the individual block averages. At kmax

= 80, kBT = 0.2 hartree, 〈E〉 is 0.2612 ± 0.0011 hartree, 〈V 〉
is 0.1611 ± 0.0011 hartree, and CV /kB is 1.2837 ± 0.0076.
These values are in excellent agreement with the determin-
istic ones, 0.26133 hartree, 0.16133 hartree, and 1.28247,
respectively.

Providing a more thorough test, the graphs in Fig. 7 are
for the classical NVT heat capacity at several values of kBT,
for a particle in a twenty-dimensional toroid, T 20, with 1
a.u. of mass, a radius uniform in all dimensions and equal to
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FIG. 7. Simulated heat capacity for a particle in T 20, with 1 a.u. of mass,
a radius uniform in all dimensions equal to 0.7 bohr, and subjected to the
double well in Eq. (3).

0.7 bohr mapped with stereographic coordinates. The space
is characterized by the double well model in Eq. (3). The de-
terministic values of the heat capacity (dark line) are com-
pared with the partial infinite swapping PINS65 simulations
(white squares). The PINS65 results are created by averag-
ing 22 independent samples each consisting of 105 moves,
after a “warm up run” of 2.3 × 106 moves. These are neces-
sary to reach convergence in the range of kBT between 0.02
and 0.05 hartree, the left side of the heat capacity peak. The
trajectories for IMD are propagated by the second order vari-
ational integrator of Sec. III with �t = 0.01 a.u. and kmax

= 100. The values of kmax considered in Figs. 6 and 7 are
larger than needed for the present applications. However, test-
ing with larger kmax gives us assurance that our approach will
be applicable to more complex problems than those consid-
ered here. From the results in Fig. 7 we can conclude that the
PINS65 reaches the desired accuracy with a reasonably short
simulation.

V. CONCLUSIONS

We succeed in accomplishing the two objectives set forth
for the present work. We show that the INS and PINS meth-
ods can be extended to curved spaces, and we perform several
numerical tests with INS and PINS on the family of decou-
pled double wells potentials in flat and curved spaces which
have previously proved to be challenging testing grounds. In
spite of the comparison made in Fig. 2, our objective is not to
compare INS or PINS with parallel tempering or replica ex-
change. Albeit we made some effort in defining efficiency for
these classes of algorithms to better understand their general
performance, in our opinion one should not attempt to simu-
late rare events with the PINS method without trying paral-
lel tempering first. This is, at least, because the latter is less
demanding to implement. However, the data in Figs. 2 and 7,
coupled with the knowledge gained in our previous work with
the (DDW)n system,25 provides evidence that for those cases
where PT or RE has difficulty converging, PINS may improve
the situation significantly.

There are several classes of problem where either the ge-
ometry is too complex, or the set of classical equations is too
stiff for dynamic simulations to be efficient sampling meth-
ods. For these, parallel tempering is the only efficient sam-
pling strategy. One example of a class of problems relevant to
molecular physics where the geometry is too complex, is the
class of systems that make use of Ramachandra space.86 The
number of holonomic constraints needed to simulate a poly-
mer chain, for example, is so numerous that the Ramachan-
dra space is best constructed from parameters of continuous
Lie groups. A similar comment can be made with large ag-
gregates of small rigid rotors requiring ellipsoids of inertia,
and systems where a combination of the two must be con-
sidered. A second example of a possibly stiff problem arises
when Path Integral simulations are carried out at cold tem-
perature. The Matzubara frequencies grow linearly with the
Trotter number.84 The main contribution we make in this ar-
ticle is the development of an efficient integrator for spaces
generally constructed from the parameters of continuous Lie
groups and implement these into RE, INS, or PINS strategies
to simulate molecular aggregates with curved spaces.

The results in Fig. 2 are particularly compelling and push
us to develop the methods we propose in Sec. III. For n = 30,
there are on the order of 1 × 109 minima in the potential en-
ergy surface of Eq. (3), and 1.6× 1010 first order saddles that
connect them. These relatively large numbers create the sam-
pling challenges that can be appreciated in Fig. 2. The PINS54
simulation converges with only 10 × 106 moves, and 108

potential and gradient points per temperature. The graph in
Fig. 2 is the best case scenario we encounter in characteriz-
ing the thermodynamics of the multidimensional double well
system. For the n = 40 system, for example, PINS requires a
significantly longer random walk before reaching the asymp-
totic distributions and the growth in effort with system size
does not appear to be linear.

We learn that to extend the INS and PINS methods to
curved spaces, we need to develop an integration method that
conserves the energy reasonably well. Our method makes no
use of extended Lagrangian, propagates directly in the coor-
dinate set used to map the manifold, has second order con-
vergence properties in regard to energy conservation, and is
derived by treating the least action principle variationally. De-
spite the new integrator, the numerical gain over parallel tem-
pering is less substantial for the curved spaces when com-
pared to the flat ones. For the numerical tests in R30 we use a
fourth order algorithm; therefore one may speculate that an in-
tegrator in curved spaces with higher order convergence could
further improve the INS and PINS performance measured in
the present work, and this will be the subject of our investi-
gations in the near future. Additional work beyond the refine-
ment of integrators in curved spaces will be necessary as well.
Nevertheless, the development of the PINS method in curved
spaces is an important step toward achieving the larger goals
formulated in the introduction of this article.
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