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ABSTRACT: Fast and strongly exothermic emulsion polymerization processes are particularly difficult to optimize from both
safety and productivity points of view because of the occurrence of a number of undesired side reactions (e.g., propagation of
tertiary radicals, chain transfer to monomer, backbiting, termination by disproportionation, etc.) and the triggering of boiling
phenomena with consequent stable foam formation under atmospheric pressure. Therefore, it would be useful to develop a
suitable combined theoretical and experimental procedure able to detect both the optimum process dosing time and initial
reactor temperature. In this work, it is discussed how an extended version of the topological criterion theory, originally developed
for isoperibolic semibatch reactors, can be used to safely optimize an indirectly cooled isothermal semibatch reactor. Moreover,
such a methodology is applied to a case study represented by the synthesis of poly(butyl acrylate) through the radical emulsion
polymerization of butyl acrylate.

1. INTRODUCTION

Runaway phenomena are a very common problem in pharma-
ceutical and fine chemical industries. However, despite only a
small number of these accidents injuring workers or the inha-
bitants of the neighborhood of the damaged factory, when strong
runaways occur, the consequences can be really serious. This has
motivated the great amount of work that has been done on
runaway phenomena for batch (B) and semibatch (SB) reactors
during the last 30 years.1−11 Particularly, a general criterion able
to detect the so-called “runaway boundary” in multiple reaction
systems and different reactor typologies is the generalized param-
etric sensitivity criterion.4 This criterion identifies the runaway
boundary looking for themaximumof a suitable objective sensitivity
coefficient, the normalized sensitivity coefficient of the maximum
reactor temperature with respect to any operating parameter. A
different general criterion for determination of the runaway boundary
is the divergence criterion.5−7 This criterion states that if the systemof
ordinary differential equations (ODEs) that describes the analyzed
process exhibits positive divergence, the synthesis is operating under
runaway conditions. The criterion shows the relevant advantage of
being usable for both online and offline evaluations.
However, from a practical point of view, the optimization of all

(or some) operating parameters (e.g., coolant temperature and
dosing time) is the relevant aspect. Knowing the runaway boundaries
allows one to avoid the selection of potentially hazardous operating
conditions, but it does not allowone to optimize the analyzed process.
The first combined “safety-optimization” approach for isoperibolic
semibatch reactors (SBRs) was developed by Hugo and Steinbach.1

Their work, based on homogeneous systems, introduced the

accumulation criterion for analysis of SBR thermal behavior:
coreactant accumulation into the system, which arises from a
nonegligible characteristic time of the chemical reaction with
respect to that of the coreactant supply, must be kept at suffi-
ciently low values to avoid the reactor thermal loss of control
(runaway). According to this criterion, operating conditions
characterized by a sufficiently low coreactant accumulation are
considered not only safe but also productive. Steensma and
Westerterp2 extended the results obtained by Hugo and Steinbach1

to heterogeneous (liquid−liquid) SBRs, introducing the concept of
target temperature and producing the so-called boundary diagrams
(BDs) for single reactions of (1,1) reaction-order kinetics. Parti-
cularly, such diagrams are generated in a suitable dimensionless
space that allows end users to easily discriminate between safe
(“quick onset, fair conversion, and smooth temperature profile”,
QFS) and excessive accumulation operating conditions. According
to the BD method, the QFS region is considered the most safe and
productive for an exothermic SBR.However, it can be noted that the
definition of such a region is somehow arbitrary.3 The problem of
having an arbitrary definition of the QFS conditions was discussed
by Aloś et al.,3 who proposed, for reacting systems involving a single
reaction, a definition of QFS using a suitable objective function.
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In particular, the QFS of an isoperibolic SBR is individuated, for a
given value of the dosing time, by the coolant temperature in
correspondence with which the objective function “time at which
the maximum reactor temperature occurs” exhibits a local minimum.
The intrinsic nature of this criterion can be proven by using param-
etric sensitivity. Recently, amore general optimization criterion, based
on topological tools and able to consider different reactor typologies
and temperature control modes, has also been developed.12,13

Polymerization processes are one of the industrial processes
most frequently involved in thermal runaway accidents14 (that is,
accidents involving an exothermic phenomenon caused by a loss
of reactor temperature control that occurs whenever the heat
evolution rate is higher than the removal one provided by a
dedicated cooling system) for three main reasons: (1) polymer-
izations can exhibit high reaction enthalpies15 (up to 110 kJ/mol);
(2) huge free-radical accumulation, due to both a termination
reaction rate decrease and a propagation reaction rate increase
(Trommsdorff or gel effect16,17), causes an autoacceleration of
heat evolution; (3) under atmospheric pressure, boiling phenomena
followed by stable foam formation can be triggered above a
threshold temperature [in the following, referred to as MAT, the
“maximum allowable temperature”18 (note that the MAT value
could also be lower than such a value when reaction mixture
decompositions or unwanted side reactions, such as the cross-
linking ones) is triggered at lower temperatures], which is char-
acteristic of the analyzed reacting system. Therefore, it is difficult
to find a scale-independent optimization procedure able to identify
the optimum values of the relevant operating variables (e.g., for a
SBR, the dosing time and initial reactor temperature values) in order
to maximize both reactor safety and productivity.
Among all polymerization processes, emulsion polymerization

is widely diffused around the world to produce waterborne resins
with a great variety of colloidal and physicochemical properties.
Particularly, colloidal properties of latex products are of great
importance from both academic and industrial viewpoints.19

A generic heterogeneous free-radical polymerization involves
emulsification of a relatively hydrophobic monomer in water by
an oil-in-water emulsifier [e.g., sodium lauryl sulfate (SLS)], fol-
lowed by the initiation reaction with either a water-soluble initiator
[e.g., sodium persulfate or potassium persulfate (KPS)] or an oil-
soluble initiator [e.g., 2,2′-azobis(isobutyronitrile) (AIBN)]. It is
a complex process because nucleation, growth, and stabilization
of polymer particles are controlled by the free-radical polymerization
mechanisms in combination with various colloidal phenomena. The
most striking feature seems to be the free-radical segregation among
monomer-swollen polymer particles: this phenomenon greatly
reduces the bimolecular termination probability and, therefore, it
results in a faster polymerization rate and higher polymer molec-
ular weight.19 This advantageous characteristic of emulsion poly-
merization cannot be achieved simultaneously in bulk or solution
polymerization.
Industrially, because of the exothermic nature of free-radical

polymerizations and the limited heat-transfer capacity in large-
scale reactors, most commercial latex products are manufactured
by semibatch or continuous reaction systems. One of the main
differences among the polymerization processes cited above is
the growing particle residence time distribution within the
reactor. Particularly, residence time distribution broadness is, in
decreasing order, continuous > semibatch. As a consequence, the
resultant particle size distribution broadness is, in decreasing
order, continuous > semibatch. On the contrary, the polymer-
ization rate generally follows the trend semibatch > continuous.
Furthermore, at the full-plant scale, reproducibility of emulsion

polymerization processes within a narrow range is desirable; this
means that the final solids content should be constant within
±1%, the particle size, emulsion viscosity, and polymer average
molecular mass should vary little, and any residual monomer
should be maintained within minimum possible narrow limits
(<0.5%). In order to achieve these conditions, the formulation of
the emulsion polymerization (namely, the recipe) should not be
subject to variations such asminor changes of either rawmaterials or
operative conditions.20 Anyway, a certain degree of operational
flexibility is usually permitted, and both semibatch and con-
tinuous emulsion polymerization processes can produce latex
products with controlled polymer composition and particle
morphology even if subjected to the minor changes cited above.
Moreover, other restrictions apply on an emulsion polymer-

ization process in industrial practice: the process should be
completed in the shortest possible time, and the latex con-
centration must be as high as possible. With regard to time, if the
process is operated discontinuously, an overall time including
loading of the chemicals, polymerizing, cooling, and unloading
should be within 8−12 h to allow two or three shifts per day; on
the contrary, if the process is operated continuously, the reactor
residence time should be as short as possible, once taking into
account a suitable reaction time. With regard to the latex con-
centration, it is desirable to prepare latex at the highest concentra-
tion possible to save time in production, unlike most theoretical
works in laboratories.20 The upper limit of the maximum solids
content is generally the high viscosity of the latex product, which
prevents proper stirring and heat transfer, and the reactor
temperature operatingmode (e.g., the solids content for isoperibolic
processes should be under 35%, while for isothermal ones, it can be
up to 55%).
Poly(butyl acrylate) (PBA) lattices are an interesting case

study to investigate in detail the safe optimization of a generic
emulsion polymerization process because its synthesis involves
lots of substance loadings, heating and cooling steps, a quite high
propagation reaction enthalpy, and a huge tendency to accumulate
free radicals.
In this work, the topological criterion theory12,13 originally

developed for isoperibolic SBRs has been extended to SBRs
operated in the isothermal temperature control mode and, then,
used to safely optimize the free-radical emulsion homopolymeriza-
tion of butyl acrylate (BA) thermally initiated by KPS. Particularly,
an indirectly cooled SBR (RC1, 1 L, Mettler Toledo) operated in
the isothermal control mode (which is safer than the isoperibolic
one for fast and exothermic polymerizations) has been chosen for
the laboratory tests aimed to validate the developed optimization
procedure. Because such an optimization procedure is scale-
independent, it can be easily used to identify the optimum operating
conditions even for a full-plant reactor.

2. EXTENDED TOPOLOGICAL CRITERION AND
OPTIMIZATION PROCEDURE

The topological criterion theory12,13 states that, for a semibatch
process carried out under isoperibolic temperature control mode,
the boundary between “runaway” (RW) and QFS21−25 conditions
with respect to a desired product X (QFSX) is identified by an
inversion of the topological curve (TC) showing a concavity
toward the right. Furthermore, as discussed in detail else-
where,12,13 this curve shows all of the possible thermal behavior
regions of an isoperibolic SBR obtainable by varying one system
constitutive parameter (e.g., the dosing time) or initial condition
(e.g., the initial reactor or coolant temperature) in a suitable
range. The TC can be drawn by solving material and reactor
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energy balance equations describing the analyzed system for each
investigated value of the generating parameter and then
reporting onto a 2D diagram the ratio of the obtained reactor
temperature maxima to the initial reactor temperature, ψmax,theo =
Tmax,theo/T0, versus the conversion with respect to the desired
product in correspondence with such maxima, ζX(ψmax,theo). In
the presence of only one exothermic reaction (in the polymer-
ization cases, the “global” propagation reaction), such a curve can
be generated also experimentally25 by measuring, through a set
of isoperibolic tests carried out in a laboratory calorimeter, the
maximum reactor temperature, Tmax,exp, and the enthalpic
conversion in correspondence with such a maximum, ζcal,max =
∫ 0
tmaxQ̇rxn(t) dt/ΔĤrxnm.
Moreover, it can be shown that, whenever a TCwhose generating

parameter is the dosing time exhibits an inversion with concavity
toward the left, one of the following system thermal behavior
boundaries is encountered: transition (the system thermal loss of
control shifts its occurrence from times lower/larger than the
dosing period to times larger/lower) or starving (the system state
shifts from QFS conditions to low-productivity operating con-
ditions characterized by a squared pseudostationary reactor tem-
perature profile and a forced linear conversion during the dosing
period).
It has been also demonstrated26 that the topological criterion

theory for QFS detection does not depend on the particular
system of ODEs used to describe the process dynamics provided
that only two dependent variables contribute effectively to char-
acterize the system thermal behavior: temperature and con-
version with respect to the desired product X. Such variables
appear in all possible systems of equations writable to describe a
generic-complex-controlled process: they can be referred to as
“core constants”. Accounting for this feature, dosing stream and
jacket temperature control equations, mixing rules for volume
determination, global material, and jacket energy balance
equations can be added to the system of ODEs describing an
isoperibolic SBR without invalidating the topological criterion;
this leads to an “extended form” of the topological criterion.
Accordingly, in this paper the topological criterion has been

extended to optimize semibatch processes operated in the iso-
thermal temperature control mode. Along the same lines as those
used for developing the original topological criterion, the developed
optimization procedure is based on analysis of the TC: the QFS
inversion is considered to be a boundary beyond which the opti-
mum operating conditions (that is, the dosing time and initial
reactor temperature) can be searched, accounting for both the
MATvalue and all of the desired productivity and quality constraints.
Moreover, because we are dealing with controlled isothermal

processes, we expect that before the QFS inversion, a “loss of
control” (LoC) happens involving a more general behavior than
that identified for isoperibolic SBRs, where the loss of thermal
control is always associated with a sharp temperature peak. In
controlled isothermal SBRs, a loss of thermal control can lead
either to a sharp temperature peak or simply to a loss of the tem-
perature set point. The latter situation is obviously less dangerous
than the first one, where a real thermal explosion can arise if the
venting system is not able to deal with the reactor pressurization,
but it cannot be considered suitable for operating the reactor
from neither a product quality nor a safety point of view.
Because no real control systems can maintain the reactor

temperature value exactly equal to the set point, it is necessary to
define a range around the set point beyond which a LoC is
assumed. In this work, a maximum reactor temperature fluc-
tuation of 2.5 °C has been assumed as the threshold value that, if

overcome, evidences a LoC situation independently on the tem-
perature versus time profiles.
The combined theoretical−experimental optimization proce-

dure proposed for a controlled isothermal SBR involves six main
steps, and it is summarized in the synoptic of Figure 1.

Step 1. Definition of the recipe. Provided that the reactor
typology (semibatch) and the temperature control mode
(isothermal) are given, the operational list (that is, the recipe)
has to be defined together with the successive computation of the
cooling system characteristics (e.g., jacket volume, coolant flow
rate, coolant saturation temperatures, etc.). This information will
be used for both theoretical simulations and laboratory tests.
Step 2. Execution of calorimetric screening tests. This step

allows for both characterization of all substances thermal be-
havior in the selected temperature range and MAT determi-
nation.
In particular, dynamic and isothermal differential scanning

calorimetry (DSC) experiments must be performed on reactants
and additives to detect if any thermal decomposition or oxidation
can be triggered. Moreover, a set of batch isoperibolic syntheses
at different coolant temperatures should be carried out to detect
the minimum temperature in correspondence with which the
reaction mixture, under atmospheric pressure, starts to boil,
vigorously forming foams. Batch conditions have been selected
because it is known that they are the most dangerous from the
thermal stability point of view.
Step 3. Estimation of reaction rate parameters and mass-

transfer coefficients. This step can be performed either experi-
mentally (through a data fitting of adiabatic, isoperibolic, or

Figure 1. Isothermal optimization procedure scheme.
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isothermal tests) or theoretically (looking for the required
parameters in the literature).
With regard to the experiments, a single isoperibolic laboratory

test (RW and starving conditions must be obviously avoided)
must be carried out with RC1 equipment. However, if the
isoperibolic test does not cover the full temperature range of
interest, either PHI-TEC II or ARC adiabatic tests can be used
for to obtain the data needed for kinetic parameter fitting in the
entire range of normal and upset operating temperatures. How-
ever, if the process is critical from the thermal stability point of
view and neither adiabatic nor isoperibolic tests can be carried
out safely, also isothermal tests at different initial reactor
temperatures can be used for data fitting.
Step 4. Determination of the optimum initial reactor

temperature−dosing time couple at the laboratory scale. This
is the core of the optimization procedure. It must be carried out
through the simulation model until convergence is reached, and
it is based on the following substeps.
Substep a. Definition of suitable initial reactor temperature

(T0,min and T0,max) and dosing time (Tdos,min and Tdos,max] ranges
and selection of the iterating parameter in the optimization
procedure and of the generating parameter of the TC. It should
be noted that because polymerization reactions require a high
product quality (e.g., peaked molecular weight distribution, high
average molecular weight, little branching, etc.), which can be
obtained only by limiting as much as possible temperature
fluctuations, the initial reactor temperatures are forced to vary
into a narrow range. For this reason, the initial reactor tem-
perature is not a suitable parameter for generating a TC because
the generating parameter must be varied in a sufficiently wide
range (conversely, the TC would be incomplete and, consequently,
useless). Therefore, the dosing time, which can be varied in a wide
range, has been chosen as the generating parameter of the TC, and
the initial reactor temperature has been selected as the iterating
parameter in the optimization procedure.
Moreover, a minimum threshold value for the conversion of

species X at the end of the dosing time, ζX,min, has to be defined.
Substep b. Identification of the dosing time values for QFSX

(tdos,QFSX) and for starving (tdos,STV) conditions in the TC. Through
the procedure discussed elsewhere12,13 and using a given temper-
ature value (starting from the lower one allowed), a TC has to be
generated to bind theQFSoperating region (namely, the onewhose
dosing time ranges between tdos,QFSX and tdos,STV), where the opti-
mum dosing time at the current reactor temperature has to be
searched for.
Substep c. Verification of the MAT constraint. For increasing

dosing times into the QFS operating region, the computed
maximum reactor temperatures, Tmax,j, have to be checked for
fulfillment of the constraint:

<T MATjmax , (1)

If it is found that, for all of the allowed dosing times, Tmax,j >
MAT, the initial reactor temperature should be increased and
substep b repeated with this new value.
Substep d. Verification of the LoC constraint. In this substep, it

is necessary to check that the following constraint is fulfilled,
where Tmax,j is the computed maximum reactor temperature and
Tmax,j the computed minimum reactor temperature:

Δ = − ≤ °T T T C2.5j jmax , min , (2)

If it is found that this constraint is not fulfilled, the dosing time
has to be increased and substep c repeated with this new value.

Substep e. Verification of the ζX,min constraint. As a final check,
conversion of the target species X at the end of the dosing time,
ζX,dos,j, is required to be larger than a given threshold value, ζX,min:

ζ ζ≥jX,dos, X,min (3)

If this is not true, the dosing time has to be increased and substep
c repeated. If all ζX,dos,j < ζX,min, the initial reactor temperature
should be increased and substep b repeated.
Step 5. Stop time determination. Once the optimum initial

reactor temperature and dosing time have been determined, the
maximum time at which the process has to be stopped must be
identified. Such a time can be defined as that corresponding to
conversion variations lower than 0.0001 min−1, that is, to a negli-
gible production rate. Experimentally, such a time can be identified
when there are no more reactor temperature fluctuations (that is,
temperature fluctuations are within normal temperature back-
ground noise). From a practical point of view, in these conditions,
the process may be meaningless and the real stop time (lower than
both of these two values) should be determined by a cost/benefit
analysis.
Step 6. Experimental validation at laboratory scale. Finally, the

optimum laboratory initial reactor temperature and dosing time
must be experimentally validated through an isothermal RC1 test
carried out at these operating conditions.
Once the procedure has been validated for the recipe of

interest, it is possible to take advantage of its scale insensitivity to
repeat steps 1, 4, and 5 for identifying the optimum operating
parameters for the real-scale SBR.

3. RESULTS

Asmentioned before, the BA emulsion polymerization case study
has been investigated to assess the practical feasibility of the
optimization procedure proposed in section 2 and to validate its
results.

3.1. Experimental Setup. In order to perform a PBA
laboratory synthesis as close as possible to that usually carried out
at an industrial scale, RC1 equipment (MP06, 1 L, Mettler
Toledo), indirectly cooled by means of an external jacket, has
been used with the following operational list: (1) distilled water
(W, continuous medium), SLS (surfactant), and sodium
carbonate (Na2CO3, buffer) loaded into the reactor and then
heated to a reactor set-point temperature (70, 75, or 78 °C) in
35−40 min, activating an isothermal temperature control mode;
(2) reaction mixture kept at the set-point temperature for 20−30
min in order to facilitate SLS micelles formation; (3) KPS loaded
in one shot into the reactor, providing a waiting time of 20 min to
allow for the reactor temperature reequilibration at its set-point
value; (4) BA dosed through a pump.
Reactants and reactor characteristics are summarized in Table 1.
3.2. Calorimetric Screening Tests. In order to characterize

the thermal behavior of all of the substances involved in the
process and to identify the MAT value, DSC tests and a set of 50
mL scale isoperibolic syntheses at different coolant temperatures
have been carried out.
In particular, dynamic DSC tests have been performed on KPS

and SLS (as discussed elsewhere27), while a set of isothermal
DSC tests have been carried out on BA (Figure 2) using aMettler
Toledo DSC 823 apparatus and stainless steel, medium-pressure
Viton/120 μL crucibles. All DSC tests have been performed
under a nitrogen atmosphere to avoid eventual oxygen contributions.
It has been found that KPS exhibits an exothermic effect in cor-

respondence with 188 °C. Such a phenomenon can be ascribed
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to thermal decomposition of the crystalline solid. On the
contrary, SLS exhibits two endothermic effects (the former at
about 47 °C and the latter at about 92 °C). Such phenomena
correspond to a solid-phase transition between two different
crystalline phases and a melting phase, respectively.27

With regard to BA, it can be observed from the isothermal
DSC test reported in Figure 2A that no self-initiated polymer-
ization reactions occur at the selected temperature (70 °C) for all
of the investigated time; it is necessary to add an organic-soluble
initiator (in this case AIBN) in order to observe a polymerization
reaction (see Figure 2B). The same behavior is observed at 75
and 78 °C.
With particular reference to the MAT parameter determi-

nation, a set of three isoperibolic 50-mL-scale tests at different
coolant temperatures, respectively 70, 75, and 78 °C, have been

carried out. Particularly, a 100 mL flask (supplied with a thermo-
couple connected with an automatic temperature data recorder
and a magnetic stirrer) has been inserted into a thermostatic
water bath, whose temperature has been maintained at the
desired set-point temperature (to realize the isoperibolic mode),
and loaded with 24.25 g of a water/SLS emulsion previously
prepared. When water bath and flask thermocouple equilibria are
reached, 17 g of monomer is loaded into the flask, and a new
thermocouple equilibration is expected. Then 0.1 g of KPS are
added in one shot.
The main experimental conditions and results are summarized

in Table 2, which lists the recipe, set point of the coolant

temperatures for each synthesis, and temperature values at which
boiling phenomena (if any) have been observed. It is possible to
see that the minimum temperature at which the reaction mixture

Figure 2. Isothermal DSC characterization of BA in a nitrogen
atmosphere: (A) without initiator, sample amount = 4.98 mg, and
investigated temperature = 70 °C; (B) with AIBN as the initiator, sample
amount = 2.5 mg, and investigated temperature = 70 °C.

Table 2. Process Recipe and Coolant and Reaction Mixture
Boiling Temperatures for the Investigated 50-mL-Scale BA
Emulsion Homopolymerization Synthesis

Recipe

24.0 g water 0.10 g KPS
0.25 g SLS 17.0 g BA
0.07 g Na2CO3

Set of 50-mL-Scale Synthesis

run Tcooling (°C) Tboiling (°C)

1 70 85.2
2 75 86.2
3 78 85.9

Table 1. Process Recipe and Reactor Characteristics for the
Free-Radical Emulsion Homopolymerization of BA
Thermally Initiated by KPS

Initial Load
283 g water 0.5 g Na2CO3

3.0 g SLS 1.2 g KPS
Dosed Stream

200 g BA
Reactor and Cooling System

reactor nominal
volume

1.0 × 10−3 m3 jacket nominal
volume

5.0 × 10−4 m3

cooling external
jacket

coolant flow rate 5.0 × 10−4

m3/s
coolant silicon oil UA0 2.33−2.43

W/K

Table 3. Constitutive Model and Kinetic Parameters for the
Free-Radical Emulsion Homopolymerization of BA
Thermally Initiated by KPSa

Ai s−1 8.00 × 1015 28
Ei kJ/kmol 1.62 × 105 28
f 0.60 28
Ap
s 3/(kmol s) 2.21 × 107 29

Ep
s kJ/kmol 1.79 × 104 29

Ap
t m3/(kmol s) 1.52 × 106 30

Ep
t kJ/kmol 2.89 × 104 30

Abb m3/(kmol s) 4.84 × 107 30
Ebb kJ/kmol 3.17 × 104 30
At
ss m3/(kmol s) 1.34 × 109 31

Et
ss kJ/kmol 5.60 × 103 31

At
st m3/(kmol s) 2.74 × 108 30

Et
st kJ/kmol 5.60 × 103 30

At
tt m3/(kmol s) 1.80 × 107 30

Et
tt kJ/kmol 5.60 × 103 30

knucl,omo 6.01 × 10−3 this work
f nucl,mic 1.00 × 10−5 this work
kcoal m3/s 2.80 × 10−28 this work
Ddiff,wp m2/s 3.91 × 10−10 this work
Ddiff,pw m2/s 3.10 × 10−10 this work
ΔHrxn kJ/mol 64.6 this work
ε 0.6964 this work
RH 0.5613 this work
UAext 0.4200 this work
α 0.1530 this work
rmic M 2.50 × 10−9 32
Ew,sat kmol/m3 2.43 × 10−9 32

aIn the last column, “this work” means that the value has been
estimated by fitting a set of isothermal RC1 data.
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starts to boil vigorously is equal to about 85 °C. Such a
temperature can be considered, as a first approximation, to be the
MAT parameter value because no other side reactions, such as
cross-linking reactions, have been observed (these reactions start
to occur at temperatures much higher than 85−90 °C and,
therefore, they can be disregarded without a loss of reliability of
the kinetic model).
3.3. Kinetics Determination. Because the adiabatic temper-

ature rise for this BA emulsion polymerization is equal to about
95 °C, it is not possible to perform an adiabatic RC1 test to
determine the reaction kinetics because boiling phenomena
would start before the reaction completion. The same risk can be
encountered even with an isoperibolic RC1 experiment (see
section 3.2 with regard to isoperibolic tests at 50 mL scale);
therefore, a series of three isothermal tests at different initial
reactor temperatures and dosing times (that is, 70 °C and 60min,
75 °C and 40 min, and 78 °C and 30 min) have been carried out.
Using these RC1 tests and the mathematical model reported in
Appendix A, a data fitting of the constitutive model parameters
summarized in Table 3 has been performed. It is worthwhile to
note that the mathematical model used in this work (see equa-
tions in Appendix A) is able to fully represent the polymerization
process in an isothermal SBR, including dosing policy, tem-
perature control loop, volumetric mixing rules, and polymer
particle radius evolution.
3.4. Process Optimization. Using the model parameters

summarized in Table 3, a series of TCs have been generated
(see Figure 3) by solving the equations summarized in Appendix

A for different initial reactor temperatures (that is, 70, 75, and
78 °C, respectively) and using dosing times as TC generating

parameters (from tdos,min = 5 min up to tdos,max = 60 min, with
steps of 150 s).
We can see that for T0 = 70 °C neither transition, QFS, nor

starving inversions occur in the investigated dosing time range.
Such a thermal behavior indicates that the reaction is always
carried out under high accumulation conditions because the set
point of the reactor temperature is too low and, consequently,
LoC operating conditions always dominate and no optimum
dosing time can be detected. However, for TC generated at
T0 = 75 and 78 °C, there is a clearQFS inversion, in correspondence
with which there is a transition between LoC and QFS con-
ditions. No starving inversion has been detected in the investigated
dosing time range for analyzed initial reactor temperatures.
After this preliminary evaluation aimed at characterizing the

analyzed system thermal behavior, it is possible to perform the
optimization procedure previously presented. Therefore, an
optimum dosing time has been iteratively searched for, starting
from T0 = 70 and 78 °C, by checking constraints (1)−(3) from
the dosing time at which the QFS inversion occurs, tdos,QFS (QFS
point in Figure 3) to tdos,max (because no starvation inversion has
been detected). For T0 = 70 °C, no QFS inversion can be
detected, and therefore the optimization algorithm continues to
increase the initial reactor temperature. For T0 = 75 °C, the QFS
boundary is detected for a dosing time equal to 40 min. In
correspondence with this point, a local minimum (because it
refers to the investigated dosing time range) of the conversion
with respect to the desired polymer species has been observed.
The minimum dosing time, able to satisfy constraints (1)−(3),
has been found to be equal to 60 min. This dosing time can
be considered optimized from both safety (Tmax,theo = 76 °C <
MAT = 85 °C) and productivity (ζdos,theo = 0.937 > ζmin = 0.930)
points of view. Moreover, the run can be considered to be
controlled (that is, no LoC is evidenced) becauseΔT∼ 1.5 °C≤
2.5 °C.

3.5. Stop-Time Determination. The time at which the
batch period (which follows the dosing period) can be termi-
nated is referred to as the stop time, and it is defined as that
corresponding to a conversion variation lower than 0.0001min−1. In
this case, it is equal to about 70 min. Using the aforementioned
experimental criterion related to the temperature fluctuations, the
stop time has been found to be equal to about 75 min, in fair
agreement with the value predicted by the model. Of course, as
previously mentioned, the real stop time can be lower than these
values, and it must be determined by a cost/benefit analysis.

3.6. Experimental Validation. Both the theoretical TC and
optimum (T0,opt and tdos,opt) couple have been validated through a
set of isothermal RC1 runs, whose initial reactor temperature and
dosing time values cover the range used to generate the TC.
In particular, seven isothermal experiments, summarized in

Table 4, have been carried out. The corresponding experimental

Figure 3. TCs (, LoC region; - - -, QFS region) at different initial
reactor temperatures for the free-radical emulsion homopolymeri-
zation of BA thermally initiated by KPS. T0 = 70, 75, and 78 °C,
tdos = 5−60min, andmodel parameters as in Table 3. Experimental runs are
reported according to the following criterion: (○) LoC run; (●) QFS run.

Table 4. Comparison between Model Predictions and Experimental Results for the Free-Radical Emulsion Homopolymerization
of BA Thermally Initiated by KPSa

run T0 (°C) tdos (min) ΔT (°C) ζmax,cal ζdos,exp exp class model class notes

1 70 10 30.2 0.908 0.005 LoC LoC strong boiling and foam formation
2 70 20 30.1 0.883 0.000 LoC LoC strong boiling and foam formation
3 70 60 16.7 0.286 0.937 LoC LoC moderate boiling and foam
4 75 20 4.2 0.913 0.840 LoC LoC no boiling, no foam
5 75 40 2.9 0.056 0.934 LoC LoC/QFS no boiling, no foam
6 75 60 1.8 0.955 0.936 QFS QFS no boiling, no foam
7 78 30 3.3 0.931 0.884 LoC LoC incipient boiling, no foam

aThe consequences of each run have been reported by specifying the level of risk associated with the specific operating conditions.
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temperature and enthalpic conversion versus time profiles are
shown in Figure 4, while Table 4 also reports, for each experiment,

the difference between the maximum and minimum reactor tem-
peratures (ΔT = Tmax,exp − Tmin,exp) and the enthalpic conversion
corresponding to both the time at maximum temperature (ζcal,max)
and the end of the dosing period (ζdos,exp).Moreover, the same table
also compares the theoretical and experimental classification of each
run in terms of thermal behavior (LoC or QFS). Each (Tmax,exp and
ζcal,max) couple has been located on the diagram reported in Figure
3. From these results, we can see that T0,opt = 75 °C and tdos,opt =
60 min, which are the optimum operating parameter values
calculated from the optimization procedure and are identified as
optimal also from the experiments because all thermal, productivity,
and control definition constraints are fulfilled (see Table 4).
Moreover, the boundary between the LoC and QFS thermal
behavior is the same from both model and experimental analysis, as
can be seen in Figure 3. These cross-validations strongly support the
reliability of the obtained results.

4. CONCLUSIONS
In this work, it has been shown that the topological criterion theory,
originally developed for isoperibolic SBRs, can be successfully
extended to isothermal reacting systems when providing all of the
necessary equations (e.g., the temperature control mode) needed
to simulate the whole process. Moreover, a suitable combined
experimental−theoretical optimization procedure has been
developed and validated using several RC1 tests at different initial
reactor temperatures and dosing times. Particularly, the case study

of BA emulsion homopolymerization thermally initiated by KPS
has been analyzed showing a good agreement between the theo-
retical predictions (namely, the shape of the TC and its thermal
behavior regions) and the experimental results.

■ APPENDIX A: MATHEMATICAL MODEL
The following kinetic scheme summarizes the main reactions
considered in the PBA synthesis:
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where I represents the initiator species (in this case, KPS), Rs =
∑n=1

∞ Rs,n is a pseudoradical that represents all radical species of type
s (secondary radicals) independent of their chain length (as usual
assumed in the frame of the so-called “terminal kinetic model”,
TMK), Rt = ∑n=1

∞ Rt,n is a pseudoradical that represents all radical
species of type t (tertiary radicals) independent of their chain
length, M is the monomer (in this case, BA), and P represents the
dead polymer chain (neither branching nor molecular weight
distribution analysis haas been considered according to the TMK
theory). For the sake of simplicity, it is possible to consider all
reaction rates corresponding to the above reactions independent by
the phase (aqueous or polymer) where they occur. According to
such a hypothesis, reaction rates can be expressed as follows:
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The reactive steps (dosing and curing) can be modeled through the
following system of differential−algebraic equations (DAEs; see the
Nomenclature section for the meaning of the different symbols):
dosing policy (first equation), isothermal temperature proportional−
integral-derivative control loop (second equation), energy balances
on both the jacket (third equation) and reactor (fourth equation),
global material balance (fifth equation), mixing rule (sixth equation),
polymer particle concentration (seventh equation), radius evolution
(eighth equation), micelle conversion (ninth equation), and all
component [initiator (10th equation), radicals (11th through 14th

Figure 4. Experimental temperature (A) and enthalpic conversion (B)
versus time profiles for the free-radical emulsion homopolymerization of
BA thermally initiated by KPS (experimental details as in Tables 3 and 4).
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equations), and monomer (15th equation)] material balances (for
each required phase, aqueous and polymeric).
In the time range 0 ≤ ϑ < 1:
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This DAE system has to be solved together with the following
initial conditions for ϑ = 0:
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Note that radical diffusion (inside and outside the micelle/
polymer particles) and homogeneous (in water) and micelle
nucleation with polymer particle coagulation phenomena
have also been considered.32 Moreover, in the energy balance
equation, the following heat contributions have been considered:
heat accumulation (left-hand side) responsible for the temper-
ature increase during the process, heat evolution (first term on
the right-hand side) accounting for the heat developed by all
exothermic reactions (in this case, only the propagation
reaction), heat removal due to the dosing stream action (second
term on the right-hand side, which disappears for times larger
than the dosing one), heat removal due to the cooling jacket
action (third term on the right-hand side), and heat removal due
to both ambient dispersions and evaporation losses (fourth term
on the right-hand side).
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■ NOMENCLATURE
A preexponential factor [s−1 or m3·s/kmol] or area

[m2]
Cdiff,pw kdiff,wp,0 × 4πrmic

2NA[I]0tdos, global constant for
radical diffusion from polymer particles to water

Cdiff,wp kdiff,wp,0 × 4πrmic
2NA[mic]0tdos, global constant for

radical diffusion from water to polymer particles
Cδ kp,riftdos[εmp/(1 − εmp)](ρM/ρP)(1/NA)(1/4πvmic),

volume increase constant for a polymer particle
cp̂ specific heat capacity [J/(kg·K)]
Ddiff diffusion coefficient [m2/s]

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie302356s | Ind. Eng. Chem. Res. 2013, 52, 8625−86348632

mailto:renato.rota@polimi.it


Dabb kbb,riftdos, Damköhler number for the backbiting
reaction

Dacoal kcoal([I]0V0NA)
1/2[mic]0V0tdos, Damköhler number

for coalescence of the polymer particles
Dadiff,pw kdiff,pw·[mic]0

2 × 4πrmic
2tdos/[I]0NA, Damköhler

number for radical diffusion from polymer particles
to water

Dadiff,wp kdiff,wp × 4πrmic
2[mic]0tdos, Damköhler number for

radical diffusion from water to polymer particles
Dai fwki,riftdos, Damköhler number for the initiation

reaction (in water)
Danucl,mic 4πDdiff,wprmic f nucl,mic[mic]0tdos, Damköhler number

for micellar nucleation
Danucl,omo knucl,omokp,rif[M]w,sattdos, Damköhler number for

homogeneous nucleation
Danucl,omo,bis knucl,omokp,rif[M]w,sat([I]0NA/[mic]0)tdos, Damköhler

number for homogeneous nucleation (variation)
DapM kp,riftdos, Damköhler number for the global prop-

agation reaction
Dap,p kp,rif[M]p,sattdos, Damköhler number for the prop-

agation reaction in the polymeric phase
Dap,w kp,rif[M]w,sattdos, Damköhler number for the prop-

agation reaction in the aqueous phase
Datc,p (kic,rif/vmicNA)tdos, Damköhler number for the

termination reaction in the polymer phase
Datc,w ktc,rif[I]0tdos, Damköhler number for the termination

reaction in the aqueous phase
Eatt activation energy [kJ/kmol]
f nucl,mic micellar nucleation efficiency
fw initiator thermal decomposition efficiency (in

water)
ΔH̃rxn jth reaction enthalpy [J/kmol]
KdT derivative time [s]
KiT 60, reset time [s]
KpT 6, proportional gain
k A exp(−Eatt/RT), kinetic constant [s−1 or m3·s/

kmol]
kcoal kinetic constant for polymer particle coalescence
kdiff kinetic constant for radical diffusion [m/s]
knucl,omo constant for homogeneous nucleation
I initiator species
m total reacting mass [kg]
M monomer species
MAT maximum allowable temperature [°C or K]
MW molecular weight [kg/kmol]
n run index, number of monomer units in a radical

chain, number of moles [kmol], or number of
species units

NA 6.022 × 1026, Avogadro’s number [kmol−1]
NTU UA0tdos/pĉoolcp̂,coolVcool), number of transfer units
P dead polymer chain
R gas constant = 8314 [J/(kmol·K)] or generic

pseudoradical species
RH cp̂,dos/cp̂,mix, heat capacity ratio
RW runaway operating conditions
r particle radius [m]
STV starving conditions
St UA0tdos/p0̂cp̂,mixV0 or Stanton number
Stext UAexttdos/p0̂cp̂,mixV0 or Stanton number referred to

ambient dispersion and evaporation losses
t time [s]
T temperature [K]
U overall heat-transfer coefficient [W/(m2·K)]

V volume [m3]
V̇ volumetric flow rate [m3/s]
v V/V0, dimensionless reactor volume
vdos Vdos/VTOT,dos, dimensionless dosing volume

Subscripts and Superscripts
att activation energy
ad adiabatic
cool coolant or external jacket
dos dosing stream or dosing time
ext external heat losses
in inlet stream
i initiation reaction
j index of the dosing times
max maximum value of a quantity or at the maximum value of a

quantity
min minimum value of a quantity or at the minimum value of a

quantity
mic micelles
mix reaction mixture
p propagation reaction or polymer particles
QFS “quick onset, fair conversion, and smooth temperature

profile”
rif reference conditions
S, s radical species of type s
sat saturation value
set desired set point
T, t radical species of type t
TOT total amount
w continuous phase (water)
0 start of the dosing period

Greek Symbols
α 1 − p ̂M/p ̂P, volume contraction when monomer is

converted in a dead chain
Δτad −ΔH̃rxn[M]dos)/p0̂cp̂,mixTrif, dimensionless adiabatic tem-

perature rise
δ r/rmic, dimensionless polymer particles radius
εmp [M]p,satMWM/pM̂, ratio between themonomer volume and

polymer particle volume when the monomeric phase still
exists

γ Eatt/RTrif, dimensionless activation energy
ε mTOT,dos/m0, relative mass increase at the end of the

semibatch period
ζ dimensionless concentration or conversion of a generic

species
η [P]w/[mic]0, dimensionless polymer particle concentra-

tion (in water)
κ exp[γ(1 − 1/τ)], dimensionless kinetic constant
ρ p ̂/p0̂, dimensionless reaction mixture density
p ̂ reaction mixture density [kg/m3]
θ V̇cooltdos/Vcool, dimensionless coolant contact frequency

into the jacket
ϑ t/tdos, dimensionless time
τ T/Trif, dimensionless temperature
Ψ T/T0, dimensionless temperature with respect to the initial

reactor temperature
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