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We present a CAT (Constant Amortized Time) algorithm for generating all plane partitions
of an integer n, that is, all integer matrices with non-increasing rows and columns having
sum n.
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1. Introduction

Integer partitions of a positive integer n are well known and widely studied combinatorial objects. Defined as non
increasing sequences of integers (called parts of the partition) whose sum is n, they can be found in several contexts and
problems of bijective combinatorics.

Plane partitions are their natural two-dimensional generalization. A plane partition of an integer n is indeed a matrix
a = (ai,j) with non-increasing rows and columns (ai,j ≥ ai,j+1 and ai,j ≥ ai+1,j) and such that


i,j ai,j = n. When necessary,

we will use the term linear partition to denote ordinary partitions, in order to distinguish them from plane partitions.
The number of linear partitions (and a fortiori of plane partition) grows exponentially with respect to n. It is hence

imperative to have efficient algorithms if one needs to generate them all; more precisely, algorithms which run in constant
amortized time (CAT).

Algorithms for the exhaustive generation of linear partitions are known since the 18th-century [1]. There have been deep
investigations of the subject, providing several efficient algorithms (see, for instance, Section 7.2.1.4 of [2] and [3,4]). Quite
surprisingly, the same problem for plane partitions seems to bemuch harder. Indeed, no CAT algorithm for generating plane
partitions seems to be known (for instance, the problem is missing in [2,4]), although efficient algorithms for generating
particular classes of integer matrices exist (a CAT algorithm for generating Young Tableaux is given in [4]).

On the other hand, together with some other researchers, the authors have been recently interested in the exhaustive
generation [5] of the accessible configurations of a discrete dynamical system called the Ice Pile Model (IPMk(n)), describing
the evolution of a granular environment (such as heaps of sand grains or snow flakes). Here, n is the number of ‘‘grains"
composing the system and k a parameter expressing the ability of the grains to slide on each other. In this system, grains
are stacked in adjacent columns (initially, they are all in the first column) and, under certain conditions, a grain on top of a
column can be moved to the top of another column on the right.

Such configurations can be represented by linear partitions of the integer n. The space of all accessible configurations for
a fixed n gets larger when k increases and, when k is sufficiently large, it includes all linear partitions of n. Therefore, the
algorithm presented in [5] provides an alternative CAT method to generate all linear partitions of an integer n.

Ice piles can also be defined adding one further dimension [6]. In this case, the configurations of the system are
represented by plane partitions. When the authors started looking for a CAT algorithm for the exhaustive generation of
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bidimensional ice piles, it became apparent that it would have been useful to start from a CAT algorithm for generating
plane partitions. This paper does exactly that.

Thus, we design an algorithm for generating plane partitions by properly interleaving several CAT processes (one for
each row) which generate linear partitions satisfying suitable conditions. Indeed, each row defines a linear partition which
‘‘covers’’ the partition identified by the row below (columns are non-increasing from top to bottom). This naturally leads to
a binary relation between linear partitions that we have to consider when generating all possible values for a row. Hence, in
Section 2we dealwith covering partitions and the associated generating problem, showing that a CAT algorithm for covering
partitions exists.

It is straightforward to see that a plane partition can be classified according to the linear partition of n whose parts are
obtained by summing all elements on each row. We call this the horizontal projection of the plane partition. Therefore, the
Massazza–Radicioni CAT algorithm [5] can be used to generate all possible horizontal projections. The problem then boils
down to generating all plane partitions having a fixed linear partition π as horizontal projection. Section 3 illustrates the
solution of that subproblem.

A generation tree associated with a given horizontal projection is defined, where the number of levels is equal to the
number of rows and each node corresponds to a CAT process which generates covering partitions. So, a recursive algorithm
which traverses the tree can solve the problem.We provide the pseudocode togetherwith a description of the data structure
used to represent plane partitions.

Lastly, the complexity of the algorithm is analysed in Section 4, where it is shown that the proposed algorithm is CAT.

2. Preliminaries

2.1. Linear partitions

A linear partition of n is a non-increasing sequence of nonnegative integers with sum n. We indicate by LP(n) the set
of the linear partitions of n and by SLP(n) the subset consisting of strictly decreasing sequences. For any x, p ∈ N, with
p > 0, we denote by x[p] the sequence (x, . . . , x  

p

) and by · the catenation product of sequences. The length and the weight of

s = (s1, . . . , sl) ∈ LP(n) are l(s) = l and w(s) = n, respectively. Note that s can be written as s = s[m1]
1 · s[m2]

j2
· . . . · s[mk]

jk
with s1 > sj2 > · · · > sjk , that is, s is univocally determined by a pair (v,m) with v ∈ SLP(n1), n1 ≤ n and m ∈ Nl(v). The
following notations are useful when dealing with sequences,

• s<i = (s1, . . . , si−1);
• s≤i = (s1, . . . , si);
• s>i = (si+1, . . . , sl);
• s≥i = (si, . . . , sl).

The set LP(n) can be ordered with respect to the negative lexicographic order, nlex for short, defined as follows.

Definition 1. Let s, t ∈ LP(n). Then s <nlex t if and only if there is i such that s<i = t<i and si > ti.

We consider a binary relation between linear partitions, called covering.

Definition 2. Let s ∈ LP(n) and t ∈ LP(m). We say that s covers t , denoted as s ◃ t , if and only if for all j ≥ 1 one has sj ≥ tj.

s = (5, 3, 2, 2, 1, 1) covers t = (3, 2, 2, 1)

Obviously, if s◃t thenn ≥ m. For any t ∈ LP(m), the set of the linear partitions ofn covering t is LP(n|t) = {s ∈ LP(n)|s◃t}.
We can think of LP(n|t) as the set of reachable states of a simple discrete dynamical system which can be used to describe
how ice grains move on a hillside. The initial state of the system consists of one column of ice grains at the top of the hill.
Then the system evolves and the grains move to the first position to the right with a lower potential. More formally, we
define a partial function Move with parameters t , s and i, denoting the profile of the hillside, the profile of the ice pile and
the position of the grain to move (see Fig. 1), respectively.

Definition 3. Given t ∈ LP(m), s ∈ LP(n|t) and i ∈ N, let k be the smallest integer greater than i such that si − sk ≥ 2 and
si − sh = 1 for all hwith i < h < k (if such an integer does not exist k is undefined, k = ⊥). Then

Move(s, t, i) =

s<i · (si − 1, si+1, . . . , sk−1, sk + 1) · s>k if k ≠ ⊥ ∧ si > ti
⊥ otherwise.
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Fig. 1. Graphical representation of a move.

Note. The definition of Move, as well as its name itself, are directly inspired by the Ice Pile Model mentioned in the
introduction and in which grains move from one column of the pile to the other. In that context, it is possible to provide a
graphical description of a Move and the way it affects the partition s (the parts of s correspond to the height of the columns
of the pile).

Whenever t is clear from the context, we write s i
⇒ v if v = Move(s, t, i). For any s ∈ LP(n|t), the set of linear partitions

obtained from s is

G(s|t) = {v ∈ LP(n|t)| ∃i1, i2 . . . , ir ∈ N s.t. s
i1
⇒ w

i2
⇒ · · ·

ir
⇒ v}.

Given t ∈ LP(m), it is immediate to see that min <nlex(LP(n|t)) = (t1 + n−m) · t>1. Moreover, the following lemma states
that LP(n|t) is the set of states which can be reached from min <nlex(LP(n|t)).

Lemma 1. Let t ∈ LP(m). Then, for any n ≥ m one has LP(n|t) = G(s|t) where s = min <nlex(LP(n|t)).

Proof. Suppose G(s|t) ( LP(n|t) and let v = min<nlex(LP(n|t) \ G(s|t)). Consider the largest integer i such vi > ti. If i = 1
one has v>1 = s>1 and then v = s. Otherwise, let j1 = min{k ≤ i|vk = vi} and j2 = min{k < j1|vk = vj1−1}.

Consider the linear partition w = v<p · (vp + 1, vp+1, . . . , vi−1, vi − 1) · v>i where either p = j1 (if j1 < i) or p = j2
(otherwise) and notice that w ∈ LP(n|t) and w <nlex v. This implies w ∈ G(s|t). Lastly, the contradiction v ∈ G(s|t) follows
from w

p
⇒ v. �

The set of moves of s ∈ LP(n|t) is defined as the set of integers M(s|t) = {i|Move(s, t, i) ≠ ⊥}. In LP(n|t) there is only one
linear partition v such that M(v|t) = ∅, called the fixed point of LP(n|t). This partition obviously belongs to G(s|t) for any
s ∈ LP(n|t) and is characterized as follows.

Lemma 2. Let t ∈ LP(m) and v ∈ LP(n|t). If M(v|t) = ∅ then v = t · 1[n−m].

Proof. Obviously, if {i|i ≤ l(t) ∧ vi > ti > 0} ≠ ∅ then M(v|t) ≠ ∅. Therefore, one has v = t · z with z ∈ LP(n − m) and
M(z|0[n−m]) = ∅. This holds if and only if z = 1[n−m]. �

The following picture shows an example of a fixed point.

the fixed point of LP(14|(3, 2, 2, 1))

Lemma 2 implies that the tail of s ∈ LP(n|t) beyond the rightmost possible move, is equal to that of t , followed by some
1s, as shown in Fig. 2. Thus, one has:

Corollary 1. Let t ∈ LP(m), s ∈ LP(n|t) and i = max(M(s|t)). Then, there is c ≥ 0 with c ≤ n−m, such that s>i = t>i · 1[c].
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Fig. 2. The tail beyond the rightmost move.

Fig. 3. (6, 3, 2, 1, 1) ∈ LP(13|(5, 3, 2)) and its grand ancestor.

Among the elements of LP(n|t), there are some partitions which play a special role and are defined as follows.

Definition 4. Let t ∈ LP(m), s ∈ LP(n|t) and i = max(M(s|t)). The grand ancestor of s is the linear partition

An
t (s) = min <nlex{v ∈ LP(n|t)|i ∈ M(v|t) ∧ v≤i = s≤i}.

The characterization of grand ancestors is given in

Lemma 3. Let t ∈ LP(m), s ∈ LP(n|t) and i = max(M(s|t)). Then, there are p, q with p ≥ 0 and either q = 0 or ti+p+1 ≤
q < si − 1 such that An

t (s) is the linear partition

v = s≤i · (si − 1)[p] · q · t>i+p+1.

Proof. Choose p as the largest integer such that
p

j=1(si − 1 − ti+j) ≤ w(s>i) − w(t>i), and let q = w(s>i) − p(si − 1) −
w(t>i+p+1). Then, note that v ∈ LP(n|t), i ∈ M(v|t) and v≤i = s≤i. Thus we have only to prove that v is the smallest linear
partition with such properties. In fact, suppose there is z ∈ LP(n|t) such that z <nlex v, z≤i = s≤i and i ∈ M(z|t). Let j be the
smallest integer such that zj > vj (obviously j > i+ p) and see that


e>j ze <


e>j ve =


e>j te. This implies z ̸◃t . �

Informally, the grand ancestor of s is obtained by replacing the tail beyond the rightmost move, s>i, with the smallest linear
partition of height si − 1 and weight w(s>i) which covers t>i (see Fig. 3).

Clearly, one has An
t (s) ≤nlex s. In particular it is immediate to see that s = An

t (s) if and only if for i = max(M(s|t)) one
has either s>i = t>i or s>i = t>i · 1 and t>i = (si − 1)[a], with a > 0, or si = 2, s>i = 1[c] and t>i = 1[b], with b > 0 and
c > b+ 1. These three cases are illustrated below.

Given s ∈ LP(n|t) we denote by s′ the successor of s in LP(n|t) (w.r.t. <nlex). Moreover, we indicate by T (n, t) the tree
with nodes in LP(n|t) and edges identified by the function defined below, which provides the parent of a node.

Definition 5. Let f : LP(n|t) → LP(n|t) ∪ {⊥} be the function defined as

f (s) =

⊥ if s = min <nlex(LP(n|t))
An
t (v) where v′ = s otherwise.

Thus, the root of T (n, t) is min <nlex(LP(n|t)) = (t1 + n−m) · t>1. A node of T (n, t) is a grand ancestor if and only if it is an
internal node. In particular, s is the parent of s′ whenever s = An

t (s). Moreover, Lemma 3 implies that the degree of a node
in T (n, t) is at most 3. In fact, if there are i, p > 0 such that s = s≤i · (si− 1)[p] · q · t>i+p+1, with ti+p < si− 1 and ti+p+1 < q,
then s turns out to be the grand ancestor of the three linear partitions s≤i · t>i ·1[a], s≤i+p · t>i+p ·1[b] and s≤i+p+1 · t>i+p+1 ·1[c],
for suitable a, b, c > 0.

Fig. 4 illustrates the tree T (13, t) for t = (5, 3, 2). All the edges denote legal moves, with full edges representing the
parent–child relationship (expressed by the function f ).
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Fig. 4. The tree T (13, t) for t = (5, 3, 2).

2.2. Exhaustive generation of covering partitions

In this section we show how the ordered sequence of elements in LP(n|t) can be generated by an approach which is
similar to the one used in [5] to generate particular linear partitions known as ice piles. In fact, the following lemma states
that the successor of s is obtained by moving a grain in the grand ancestor of s.

Lemma 4. Let t ∈ LP(m), s ∈ LP(n|t) and i = max(M(s|t)). Then, one has

s′ = Move(An
t (s), i).

Proof. Let v = Move(An
t (s), i) and suppose s′ <nlex v. Clearly, one has s′<i = v<i = s<i. If s′i = si then we necessarily

have s′j < sj for a suitable j > i: this leads either to the contradiction s′ ̸◃t or to s′ /∈ LP(n), since Corollary 1 states that
s>i = t>i · 1[c] for a suitable c ≥ 0.
Thus, we have s′i = vi = si − 1 and we consider the smallest j > i such that s′j > vj, together with the first k > j such that
s′k < vk. By recalling Lemma 3, we have

v = s<i · (si − 1)[p+1] · (q+ 1) · t>i+p+1.

Thus, one necessarily has j > i+ p and k > i+ p+ 1, getting the contradiction s′ ◃̸t , since s′k < tk. �

By Definition 5 and Lemma 4, it follows that every node s ∈ T (n, t) is obtained by moving a grain in its parent. Moreover,
Lemma 4 directly leads to Algorithm1,which iteratively generates the ordered sequence (w.r.t.<nlex) of elements in LP(n|t).

Algorithm 1 Exhaustive generation of LP(n|t).
1: Procedure LinPartGen(n, t)
2: v :=Min(n, t); {v = min <nlexLP(n|t)}
3: whileM(v|t) ≠ ∅ do
4: i :=Max(M(v|t));
5: GrandAnc(v, i, t); {v = An

t (v)}
6: Move(v, i, t); {v = Move(v, i, t)}
7: UpdateMoves(M(v|t));
8: end while
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Example 1. The ordered sequence generated by LinPartGen(13, (5, 3, 2)) (see Fig. 4) is

832, 742, 733, 7321, 652, 643, 6421, 6331, 6322, 63211, 553,
5521, 544, 5431, 5422, 54211, 5332, 53311, 53221, 532111.

Note that this corresponds to a preorder traverse of T (13, (5, 3, 2)) if we consider it as an ordered tree and set v < z for
any two nodes v, z with the same parent, s = f (v) = f (z), such that v = Move(s, i) and z = Move(s, j) with i > j.

With respect to the time and space complexity, we have the following result.

Theorem 1. LinPartGen(n, t) runs in time O(♯LP(n|t)) using O(
√
n) space.

Proof. We provide here an outline (see [5] for full details). First, let us consider the space complexity and note that the
algorithm needs space for t and for the latest generated element in LP(n|t)). These are linear partitions which can be easily
represented by two linked lists of length O(

√
n), (see Section 3.1 of this paper). Moreover, the set M(v|t) can be represented

as an ordered stack of O(
√
n) links to nodes in the list of v (with the link to the node corresponding to the rightmost move

in v at the top). Hence the overall space is O(
√
n).

Then, the time complexity can be determined by noting that

• the number of iterations is ♯LP(n|t)− 1;
• the symmetric difference M(s′|t) �M(s|t) is a set with O(1) elements;
• Max, Move and UpdateMoves can be easily implemented such that they always run in time O(1);
• the construction of the grand ancestor made byGrandAnc(v, i, t) runs in O(d)where d is the distance in T (n, t) between

v and An
t (v);

• if v, w are leaves of T (n, t) then the two paths pv, pw , from v to An
t (v) and from w to An

t (w), respectively, do not have
common edges.

So, the generation of LP(n|t) by means of Algorithm 1 requires time
♯LP(n|t)−1

i=1

O(1)+


v is a leaf

length(pv) = O(♯LP(n|t))+ O(♯LP(n|t)) = O(♯LP(n|t)). �

3. The main problem

A plane partition of n is a matrix a of nonnegative integers that are non-increasing from left to right and from top to
bottom and such that their sum is exactly n,

ai,j ≥ ai+1,j, ai,j ≥ ai,j+1,

i,j

ai,j = n.

We denote by a(i) the i-th row of a and by PP(n) the set of the plane partitions of an integer n. The horizontal projection of
a ∈ PP(n) is defined as the sequence of integers hp(a) = (s1, . . . , sl) where si =


j ai,j. It is immediate to verify that

• hp(a) ∈ LP(n);
• if si = sj then a(i)

= a(j);
• a(1) ◃ a(2) ◃ · · · ◃ a(l).

Given s ∈ LP(n), the set of plane partitions with horizontal projection s is PPs(n) = {a ∈ PP(n)|hp(a) = s}. Clearly, one has
PP(n) =


s∈LP(n) PPs(n).

We are interested in defining a total ordering on PP(n)which naturally extends the negative lexicographic on LP(n). Thus,
we have:

Definition 6. Let a, b ∈ PP(n). We let a < b if and only if either hp(a) <nlex hp(b) or hp(a) = hp(b) and there is k such
that a(k) <nlex b(k) and a(i)

= b(i) for i > k.

Then, we consider the following problem:

Problem: Plane Partition Generation (PPG)
Input: an integer n;
Output: the ordered sequence of plane partitions in PP(n).

Our approach is that of producing the sequence

[n], [n− 1, 1], . . . , [1, . . . , 1],


n− 1
1


, . . . ,


2
1
...
1

 ,


1 1
1 0
...

...
1 0

 ,

 1
...
1
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Fig. 5. The generation tree associated with (6, 5, 2).

by a two-steps process:

1. generate the ordered sequence (w.r.t.<nlex) of all s ∈ LP(n);
2. for each s, generate the ordered sequence of elements in PPs(n).

Given s = (s1, . . . , sl) ∈ LP(n), we recall that for a ∈ PPs(n) one has a(1) ◃ a(2)
· · · ◃ a(l) and a(i)

= a(j) if and only if si = sj.
Thus, let n̄ =


i|si>si−1

si ≤ n and consider the set SLP(n̄) of strictly decreasing sequences of weight n̄. Then, we associate
with s a sequence s̄ ∈ SLP(n̄) and a multiplicity vector m ∈ Nl(s̄) such that if a value, say sk, appears r times in s and is
preceded by p different values, then s̄p+1 = sk and mp+1 = r . In other words, we represent s by the pair (s̄,m) and we
reduce the problem of generating PPs(n) to the problem of generating all the pairs (a,m) with a ∈ PPs̄(n̄) (we interpret mi
as the multiplicity of row a(r), with r = 1+


j<i mj). This leads to Procedure GeneratePP shown below.

Algorithm 2 Generation of plane partitions
1: Procedure GeneratePP(n);
2: s := (n); m := [1];
3: GenerateHProj(n, s,m);
4: whileM(s|0[n]) ≠ ∅ do
5: s :=Next(s, 0[n]); {s← s′}
6: (n̄, s̄,m) :=StrictDec(s); {s̄ ∈ SLP(n̄)}
7: GenerateHProj(n̄, s̄,m);
8: end while

So, without loss of generality, we suppose that the horizontal projection s is strictly decreasing and we show that the
generation of PPs(n) (i.e. Procedure GenerateHProj) follows from a recursive scheme which is illustrated by means of the
generation tree associated with s, defined as follows.

Definition 7. Let s = (s1, . . . , sl) ∈ SLP(n). The generation tree associated with s is an ordered tree of height l−1 such that:

1. the root (level 0) contains the ordered sequence of elements in LP(sl) and has ♯LP(sl) children;
2. for all i, with 0 < i < l, if v is a node at level iwith j brothers at its left, then it contains the ordered sequence of the linear

partitions in LP(sl−i|t), where t is the (j+ 1)th element of the sequence contained in the parent of v;
3. if a node is at level i, with i < l− 1, and contains a sequence of p elements then it has p children.

We define the size |v| of a node v in a generation tree as the length of the sequence contained in v. Fig. 5 illustrates the
generation tree associated with the horizontal projection (6, 5, 2). As it is shown hereinafter in Lemma 6, the complexity of
Procedure GenerateHProj, used to generate PPs(n), depends on the following two properties of generation trees.

Proposition 1. In a generation tree, any node v which is not the root satisfies the condition |v| ≥ 2.

Proof. By definition, each linear partition of the sequence contained in v belongs to LP(sl−i|t), where t is a suitable linear
partition of sl−i+1 contained in the parent of v. Hence, since sl−i > sl−i+1, one has |v| = ♯LP(sl−i|t) ≥ 2. �

Corollary 2. Let Vi denote the set of nodes at level i in a generation tree. Then, for any i > 0 one has
v∈Vi

|v| ≥

i−1
k=0


v∈Vk

|v|.

Proof. We argue by induction. If i = 1, by property 1 in Definition 7 one has
v∈V1

|v| ≥ ♯V1 = ♯LP(sl) =
1−1
k=0


v∈Vk

|v|.
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Thus, let i > 1 and suppose that the statement holds for i. By Proposition 1 and property 3 in Definition 7 we have
v∈Vi+1

|v| ≥ 2♯Vi+1 = 2

v∈Vi

|v|.

Lastly, by induction hypothesis we get

2

v∈Vi

|v| ≥

v∈Vi

|v| +

i−1
k=0


v∈Vk

|v| =

i
k=0


v∈Vk

|v|. �

Note that there is a one to one correspondence between PPs(n) and the elementswhich appear in the sequences contained in
the leaves of a generation tree. So, we can easily solve PPG by traversing the generation tree using amethodwhich resembles
the preorder visit. The only difference is that a node is visited each timewe return from a subtree (p times if it has p children),
with the jth visit which sets the corresponding row of the plane partition to the jth element of the sequence associated with
the node.

Example 2. With respect to Fig. 5, the visit of the tree outputs the sequence

6
5
2

,

5 1
5
2

,

5 1
4 1
2

,

4 2
4 1
2

,

4 1 1
4 1
2

,

4 2
3 2
2

, . . . ,

1 1 1 1 1 1
1 1 1 1 1
1 1

3.1. The data structures

In order to manipulate a plane partition, we define a data structure consisting of an array of rows, where each row is
implemented as a doubly-linked list. Thus, the ith row a(i)

= (ai,1, . . . , ai,ji) is represented by a doubly-linked list having as
many nodes as different values in a(i), that is, li = ♯{e|ai,e > ai,e+1} nodes. Each node of the ith row contains two integers: a
value in a(i) and the index of the rightmost columnwhere it appears in row i. Hence, the sequence of nodes representing a(i)

(vi,1, ki,1), (vi,2, ki,2), . . . , (vi,li , ki,li),

satisfies the following relations

• vi,1 > vi,2 · · · > vi,li ;
• vi,1 = ai,1 = ai,ki,1 ;
• for all e > 1, vi,e = ai,ki,e−1+1 = ai,ki,e .

According to this representation, the linear partition (6, 6, 6, 5, 5, 3, 2, 2, 2, 2, 1, 1) is represented by the list of nodes
((6, 3), (5, 5), (3, 6), (2, 10), (1, 12)).
Moreover, eachnodeof the list representing a(i) is also connected to a node of the list representing a(i+1), as follows: (vi,p, ki,p)
has a link to (vi+1,q, ki+1,q) such that ki+1,q ≥ ki,p and ki+1,q−1 < ki,p. In other terms, (vi,p, ki,p) has a link connecting it to the
node of the (i+ 1)th row having the value ai+1,ki,p as first entry. This is useful to know in time O(1) the value ai+1,j below a
value ai,j such that ai,j > ai,j+1.

Indeed, each node of the ith row corresponds to a position of the linear partition a(i) where a move may be applied. The
only condition to verify to ensure that such amove can indeed be applied is that the observed value is greater than the value
immediately below in a(i+1) (in the same column). Fig. 6 illustrates this representation for a non trivial plane partition.

Wewill implement a plane partition as an array R of links (one for each row). An array of stacks St is also used to represent
the set of all possible moves applicable to a given plane partition at a given time. Each stack St[i] (possibly empty) contains
the set of themoves for a(i), with the rightmost move always at the top. Eachmove is stacked as a link to the node (of the list
representing a row) corresponding to the columnwhere themovewill be applied. Note that when a(i) needs to be initialized
as the smallest (w.r.t. to <nlex) linear partition that covers a(i+1), its corresponding stack (St[i]) has to contain exactly one
entry, the link to the first node of the ith list. Indeed, at this stage, only a move in column 1 is possible for the ith row.

We will show later how our procedures modify such structures and what is the complexity of such modifications.

3.2. The algorithm

According to Algorithm 2, given a horizontal projection s ∈ LP(n) identified by (s̄,m) (s̄ ∈ SLP(n̄), n̄ ≤ n and m ∈ Nl(s̄)),
the visit of the generation tree for PPs(n) is done by calling Procedure GenerateHProj(n̄, s̄,m) shown below. Note that a
plane partition a ∈ PPs(n) will be represented by the pair (ā,m), where ā ∈ PPs̄(n̄) has l(s̄) different rows.

The procedure initializes all the data structures used for generating plane partitions, that is, the array R of links to rows,
the array M of multiplicities (of rows) and the array St of stacks. A row l + 1 with value 0 in the first column is also added
for technical reasons. Then, the root of the generation tree is created by calling InitRow(s, l), which sets up the last row of
the plane partition. Finally, the (recursive) visit is started with the call GenerateRow(l, s).
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Fig. 6. Representation of a plane partition.

Algorithm 3 Generation of plane partitions with given horizontal projection.
1: Procedure GenerateHProj(n, s,m)
2: l :=Length(s);
3: for i := 1 to l do
4: St[i]:= EmptyStack();
5: R[i] := null;
6: M[i] := mi;
7: end for
8: R[l+ 1] :=CreateNode();
9: R[l+ 1] →item:= (0, 1);

10: R[l+ 1] →next:=null;
11: R[l+ 1] →pred:=null;
12: R[l+ 1] →below:=null;
13: M[l+ 1] := 1;
14: InitRow(l, s);
15: GenerateRow(l, s);

For any i, with 1 ≤ i ≤ l(s̄), the process of initializing the ith row of ā ∈ PPs̄(n̄), provided that rows i+ 1, i+ 2, . . . , l(s̄)
are already properly represented as doubly-linked lists, consists of creating the list representation of the smallest linear
partition in LP(s̄i|ā(i+1)), that is, (āi,1 + s̄i − s̄i+1, āi,2, . . . , āi,ji) (see Lemma 1), and assigning the address of the first node to
R[i]. Moreover, the below fields of all the nodes in row i are set to point to the associated nodes in row i+ 1 (as explained in
Section 3.1). This is what InitRow(i, s̄) does, together with the initialization of the stack of moves of row i. As noted in the
previous section, only the move associated with the first node needs to be stacked at this stage.

GenerateRow(i, s̄) assumes that rows i+ 1, . . . , l(s̄) have a value (i.e. for all jwith i ≤ j ≤ l, R[j] points to the first node
of the list representing ā(j)) and that ā(i) is equal to min <nlex(LP(s̄i|ā

(i+1))). Then, for each v ∈ LP(s̄i|ā(i+1)), it recursively
generates all possible values for the rows i− 1, i− 2, . . . , 1. Thus, if i = 1 (that is, a leaf is being visited) it simply generates
the ordered sequence of elements in LP(s1|ā(2)). Otherwise (an internal node is being visited), the visit of the subtrees has
to be interleaved with the process which generates the linear partitions in LP(s̄i|ā(i+1)) (the possible values for the ith row).

4. Complexity

Our algorithm consists of several functions and procedures, which are independently analysed in order to compute their
complexity.

Procedure StrictDec(s) (used in Algorithm 2) computes the linear partition s̄ associated with s (by eliminating repeated
entries) and themultiplicity vectorm in timeO(ls), where ls is the length of the linked list representing s (note that ls = l(s̄)).
As a matter of fact, InitRow(i, s) (see Algorithm 4) makes a copy of the list representing a(i+1), while possibly adding a new
node. Then, it follows that it runs in time O(li+1) where li+1 is the length of the list for a(i+1). For two partitions s and t such
that s◃t , the boolean function IsBottom(s, t) returns true if nomove is possible on s. Thus, IsBottom(a(i), a(i+1)) simply tests
in time O(1) whether the stack St[i] is empty. Lastly, it is immediate to see that the most important function is Next (used
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Algorithm 4 Initialization of a row.
1: Procedure InitRow(i, s)
2: R[i] :=Copy(R[i+ 1]);
3: d := si − si+1;
4: (x, y) := R[i] → item;
5: if y = 1 then
6: R[i] → item= (x+ d, y);
7: t1 := R[i];
8: else
9: HeadInsert(R[i], (x+ d, 1));

10: R[i] → below := R[i+ 1];
11: t1 := R[i] → next;
12: end if
13: t2 := R[i+ 1];
14: while t1 ≠ null do
15: t1 → below := t2;
16: t1 := t1 → next;
17: t2 := t2 → next;
18: end while
19: Push(St[i], R[i]);

Algorithm 5 Recursive generation of rows.
1: Procedure GenerateRow(i, s)
2: if i = 1 then
3: while not IsBottom(a(1), a(2)) do
4: a(1)

:= Next(a(1), a(2));
5: end while
6: else
7: while not IsBottom(a(i), a(i+1)) do
8: InitRow(i− 1, s);
9: GenerateRow(i− 1, s);

10: a(i)
:= Next(a(i), a(i+1));

11: end while
12: GenerateRow(i− 1, s);
13: end if

in algorithms 2 and 5), that is, the iterator which is used to pass through the ordered sequence of covering linear partitions;
the analysis of its complexity is provided in the following lemma.

Lemma 5. The amortized cost of Next is O(1).

Proof. First, note that a call Next(s, t) needs to

1. identify the position of the next movem to apply to the partition s;
2. compute the grand ancestor of s;
3. update the current partition, by applying the movem to the grand ancestor of s;
4. update the stack of moves of the partition after the move.

These steps correspond exactly to the four instructions at lines 4–7 of Algorithm 1. Hence, by Theorem 1, we know that
♯LP(n|t) − 1 iterations of the instruction s :=Next(s, t), (starting from s = min <nlex(LP(n|t))) pass through the ordered
sequence of linear partitions in LP(n|t) in time O(♯LP(n|t)). �

For the sake of completeness, it is worthwhile to go into details of steps 1–4 cited above, especially to understand the role
played by the data structures of Section 3.1. In particular, our calls to Next always have the form Next(a(i), a(i+1)), therefore
step 1 can be performed simply by consulting the top of the stack St[i].

Step 2 is the only step which possibly needs more than a constant time. Recall that for any e > 0, immediately before the
eth call Next(a(i), a(i+1)) the row a(i) is the eth element of LP(si|a(i+1)). Since a(i) and its grand ancestor Asi

a(i+1)
(a(i)) have the

sameprefix up to the position j = max(M(a(i)
|a(i+1))), only the suffix of the grand ancestor needs to be reconstructed. As a di-

rect consequence of Corollary 1 and Lemma 3, this reconstruction can be done in a time proportional to C = ♯{k > j|a(i+1)
k >

a(i+1)
k+1 }, that is, the number of nodes representing a(i+1)

>j . Notice that w(a(i)
>j)− w(a(i+1)

>j ) ≥ 1 and then Corollary 1 implicitly
states that C is smaller than the distance between a(i) and its grand ancestor in T (si, a(i+1)) (see the proof of Theorem 1).
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Fig. 7. The move is applied to the third column of the third row. No new node.

Fig. 8. The move is applied to the third column of the third row. One new node.

Step 3. A move at position j of a linear partition represented as a doubly-linked list, concerns only a small number of
nodes in the neighbourhood of the node having its second entry equal to j, and hence can be performed in constant time
(note that this would not be true if we had used other data structures such as an array of integers to represent the partition).
In pictures 7 and 8, we have illustrated this in two particular cases, one in which no new node needs to be created and
another where the creation of a node is necessary (when the column whose height is increased by the move is the only one
with that height after the move). These pictures also illustrate the process of initializing the rows above the one where the
move is performed: this leads to the successor of the current plane partition.

Note that this presentation is not exhaustive of all possible cases, since, for instance, some nodes (at most two, those
corresponding to the two columns whose height is modified by the move) may have to be deleted from the list.

Lastly, step 4, is performed in constant time. In fact, after the rightmost move at j (a pop has been executed on the stack
St[i] to obtain the link to the node associated with j) the remaining entries in St[i] are still valid, with the top indicating a
move in position k ≤ j − 1 of the current partition. By considering the profile of the grand ancestor (see Lemma 3), it is
immediate to see that at most three new moves need to be pushed onto the stack: one possibly associated with a position
h, with k < h ≤ i, and two possibly associated with the suffix starting at i+ 1.
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Now, let us consider the procedure GenerateHProj(n, s,m) which is used to generate all plane partitions with a given
horizontal projection in constant amortized time, as stated in the following:

Lemma 6. GenerateHProj(n, s,m) runs in time O(♯PPs(n)).

Proof. The block of instructions from line 1 to line 14 is executed in time O(l(s)). Thus, we need only determine the cost
of GenerateRow(l, s). This call consists of the (implicit) visit of the generation tree associated with s, where each node
corresponds to one recursive call to GenerateRow. Since each element of PPs(n) corresponds exactly to one element in a
leaf (and vice versa), in order to prove that GenerateHProj(n, s,m) runs in time O(♯PPs(n)) it is sufficient to prove that:

1. each sequence in a node is CAT generated;
2. the leaves contain a number of elements which is larger than the number of elements in internal nodes.

Thus, statement (1) follows from Lemma 5, while Corollary 2 implies (2). �

As a consequence, one has that the set of all plane partitions of n can be generated in constant amortized time.

Theorem 2. Procedure GeneratePP is CAT.

Proof. Let C(n) and D(n, s) be the running times of GeneratePP(n) (see Algorithm 2) and GenerateHProj(n, s,m),
respectively. First, by Lemma 5, the generation of LP(n) = LP(n|0[n]) by iterating ♯LP(n) − 1 times the instruction s :=
Next(s, 0[n]) (line 5 of Algorithm 2) requires time O(♯LP(n)). Therefore, one has C(n) = O(♯LP(n))+


s∈LP(n) D(n, s). Lastly,

since ♯PP(n) =


s∈LP(n) ♯PPs(n), by Lemma 6 we obtain

C(n) = O(♯LP(n))+


s∈LP(n)

O(♯PPs(n)) = O(♯LP(n))+ O(♯PP(n)) = O(♯PP(n)). �

5. Conclusions

We have shown that the problem of the exhaustive generation of all plane partitions of an integer n can be solved by a
CAT algorithm which works (in some sense) by operating a reduction from two-dimensional objects (plane partitions) to
one-dimensional ones (covering partitions). In particular, we point out that the method of generating covering partitions
by extending the approach in [5] seems to have interesting applications in contexts where the objects to be generated can
be expressed in terms of a finite number of linear partitions together with a finite number of binary relations on them.
For instance, a CAT algorithm for generating parallelogram polyominoes of size n is shown in [7], where a slightly different
binary relation between linear partitions leads to a representation of a parallelogram polyomino by means of two suitable
partitions.
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