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Vapor phase Beckmann rearrangement of cyclohexanone oxime to e-caprolactam has been studied using high
silica zeolite catalysts. Catalysts with different crystal sizes and gel-ageing times have been activated by ionic
exchange in different conditions by means of a highly basic solution and a nearly neutral solution both
containing ammonium salts. Samples have been calcined at different temperatures in order modify the number
of defective sites. We observed that samples exchanged by means of a highly basic solution (pH > 10)1,2 and
calcined at a relatively lower temperature (450 �C) show the most interesting catalytic results. X-ray powder
diffraction patterns of these samples show2 retention of the unit cell symmetry (orthorhombic cell) if compared
to the dried sample. NH3-TPD confirms the low acidity of high silica zeolites, however a higher amount of
desorbed ammonia is observed for the samples exchanged at higher pH and calcined at 450 �C. Due to silanol
nests the IR spectra of the same samples show the formation of Si–NH2 bonds which are absent in the
same material exchanged by other methods. Such sites seem to promote the high stability of the high silica
zeolite catalysts also to the regeneration which is needed to remove the heavy carbonaceous compounds
from the catalyst surface.

Introduction

The last step of caprolactam commercial production is
obtained, nowadays, in liquid phase by means of Beckmann
rearrangement of cyclohexanone oxime, with oleum as pro-
moter. Such a process is energy consuming and co-produces
stoichiometric ammonium sulfate quantities.3 Thus driving
forces of new researches are the tuning of alternative paths
with a lower environmental impact (no ammonium sulfate
production and no sulfuric acid use) and energy saving
(lower number of steps of reaction and decrease of the
volume of solvents used).5–7 The first researches started in
the sixties but only recently Sumitomo Inc. found that high
siliceous silicalites, a peculiar MFI structure, are highly active
and selective towards Beckmann rearrangement in vapor
phase.4,8 Said catalysts show long-lasting tests and for this
reason a 5000 t year�1-demonstration plant has been started,
however by the end of year 2003 the build-up of a produc-
tion plant, in Japan, has been announced.9 Main physico-
chemical characteristics of high-silica silicalites are silanol
nests which contribute, with a relatively low acidity, to the
good selectivity of the final product.8,10 Even though recent
papers describe the possible reaction mechanism of cyclohexa-
none oxime on high siliceous silicalites8 little is still available
on the reaction mechanism. In the present work we study the
effect of physico-chemical parameters of silicalite-1 catalyst on
the vapor phase Beckmann rearrangement. We investigate
on the role of structural defective sites and crystal dimensions
on caprolactam selectivity and the effect of acid sites distribu-
tion on catalytic performances. This work focuses, especially,

on the understanding of the effect of the activation method
on the structural arrangement of silicalite-1 and on its cata-
lytic performances. One of the methods we applied induces
a different unit cell geometry organization and a different
acid site distribution.

Experimental

High silica MFI zeolite materials were prepared according to
procedures reported in literature.11 Four samples with different
crystal sizes (2.5 mm, 10 mm, 30–50 mm and 70 mm) were
studied in detail. The samples were calcined at two different
temperatures: lower temperature (about 450 �C) and higher
temperature (about 550 �C). Then they were activated, to get
the protonic form, using NH4Cl or alkaline-NH4NO3 solution
by usual procedure. Catalysts were characterized by means
of different techniques. Catalyst texture was determined by
nitrogen adsorption at �176 �C with a Micrometrics Porosi-
meter ASAP 2010 after treatment of the samples at 200 �C
under vacuum. X-ray powder diffraction (XRD) was carried
out by a Philips X’pert Pro diffractometer between 4 and 40�

2y angle. IR spectra were obtained on a Nicolet Nexus FT-
IR spectrometer equipped with a MCT (Hg/Cd/Tl) detector
being the IR source made of CSi. Solid state Magic Angle
Spinning (MAS-NMR) spectroscopy was used to characterize
the local Si environments in the samples. Spectra were
recorded on a Bruker MSL 400 spectrometer working at 79.4
MHz (29Si) a pulse length of 6 ms and a repetition time between
acquisition of 60 s, the reference at 0 ppm being taken as
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Si(CH3)4 (TMS). Cross-polarization NMR (CP-NMR) was
performed in the same MAS-NMR conditions with a contact
time of 5 ms. NH3-Temperature programmed desorption
(NH3-TPD) was carried out on a 1100 Thermofinnigan
TPD/RO instrument, the catalyst was pre-treated from 20 to
450 �C with an isotherm at 450 �C for 60 min and adsorption
occurred at 100 �C followed by desorption step from 100 to
450 �C at a rate of 10 deg min�1.
Beckmann rearrangement of cyclohexanone-oxime to capro-

lactam was carried out in a glass fixed-bed microreactor,
packed with inert material (glass spheres). The reaction tem-
perature ranged between 300 �C and 400 �C and weight hourly
space velocity (WHSV) was 1.2 h�1. A solution of cyclohexa-
none-oxime, methanol and toluene, in a flow of nitrogen,
was utilized as the feed. The products were determined by
gas chromatography.

Catalyst preparation

The investigated catalysts were prepared according to the
composition reported in Table 1.
The samples were calcined in order to eliminate the tem-

plate. After calcination they were exchanged by aqueous solu-
tions in order to obtain the protonic form and finally calcined
again to stabilize the structure. The catalyst nomenclature is
arranged according to three numbers (xyx); the first number
refers to the calcination temperature (1 ¼ 450 �C, 2 ¼
550 �C), the second number indicates the aqueous exchange
solution (1 ¼ NH4NO3 , 2 ¼ NH4Cl), the third number
represents the last calcination temperature which is always
the same as the first one. Thus, for example, catalyst
1793-212 has been calcined at 550 �C and exchanged by a
NH4NO3 solution. The different activation solutions are char-
acterized by a relevant pH difference, pH > 9 for NH4NO3

and pH ¼ 7 for NH4Cl.

Results and discussion

Catalyst physical-chemical properties

By means of X-ray powder diffraction we observed the typical
silicalite-1 pattern. All dried samples show reflections attribu-
ted to the template molecules and a single reflection at 24.4�

2y angle typical of the silicalite-1 orthorhombic unit cell. After
calcination we observe a double reflection, at the same 2y
angle, attributed to a change of the unit cell towards a mono-
clinic symmetry which is thermally more favored than the
previous one12 as reported in Fig. 1.
All catalysts retain monoclinic symmetry, but after activa-

tion the samples calcined at 450 �C and treated by an alkaline
NH4NO3 solution modify again the unit cell towards an
orthorhombic symmetry. While the samples activated by a
NH4Cl solution maintain the monoclinic symmetry. In Fig. 2
we display the unit cell evolution of the same sample after dif-
ferent thermal treatments and activation procedures. The same
behavior as Fig. 2 is observed for all samples (1792, 1793,
1795, 1796).
We suggest that thermal treatment at 450 �C followed by

exchange with a NH4NO3 alkaline solution promotes a struc-
tural rearrangement towards an orthorhombic unit cell sym-
metry which usually is less favored thermally, in silicalite-1
materials, than the monoclinic one. As a matter of fact by
FT-IR spectroscopy we verify that all samples calcined at
450 �C and activated by the NH4NO3 alkaline solution
(�111 samples) show a band at 953 cm�1 typical of Si–N
stretching mode,13 as shown in Fig. 3.
The Si–NH2 bond is characterized by other vibrations at

3540 and 3450 cm�1 which are probably hidden by the wide
band between 3600 and 3200 cm�1. The band at about 953
cm�1 is typical of Si–O–M (where M ¼ heteroatom) vibra-
tion,14 and in silicalite-1 this vibration could be also attributed
to the Si–O–Na bond which yet is not present in activated sam-
ples as the �111 catalysts. Hence, FT-IR spectra of samples
exchanged by a NH4Cl solution (�121) do not show such a
vibration, see Fig. 3b, this result further confirms our findings.
The evaluation of OH stretching signals shows one broad

band with maximum at 3400 cm�1 and a shoulder at 3617
cm�1 and one IR signal at 3723 cm�1. These bands are attrib-
uted, according to the literature,5,15 to nests of silanols,
bridged hydroxyl and terminal silanols, respectively. We also
investigated the Si chemical neighborhood by solid state
NMR spectroscopy. By 29Si MAS-NMR we were able to dis-
tinguish the defective sites from the perfect tetrahedral SiO4 ,
These defective sites represent a small percentage of total
silicon atoms present in the lattice. As a matter of fact we
measured a maximum of 8 defective sites per unit cell with

Fig. 1 XRD pattern of 1793 catalyst: evolution upon thermal treatment and activation method to obtain silicalite-1 protonic form. + template,
˙ orthorhombic, S monoclinic cell.

Table 1 Silicalite-1 composition and crystal size. TPABr: tetrapropyl-
ammoniumbromide

Catalyst Starting gel composition

Crystallite

diameter

1792 0.08Na2O–0.08TPABr–1SiO2–20H2O 10 mm
1793 0.08Na2O–0.08TPABr–1SiO2–20H2O.Gel

ageing for 5 days at room temperature.

2.5 mm

1795 0.04Na2O–0.08TPABr–1SiO2–20H2O 30–50 mm
1796 0.02Na2O–0.08TPABr–1SiO2–20H2O 70 mm
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respect to the 32 theoretical defective sites of silicalite-1 unit
cell. 29Si MAS-NMR shows a higher defective sites percentage
for samples calcined at 450 �C and activated by alkaline
NH4NO3 solution. However using 29Si–CP–NMR we could
detect two different kinds of defective sites. The first one with
a chemical shift of �93 ppm is attributed to terminal silanols,
the second one at �103 ppm is related to nests of silanols or
bridegd silanols. While �113 ppm is the chemical shift of
SiO4 groups. Such sites are represented in Fig. 4.
By 29Si–CP–NMR analysis we detected, in general, a higher

amount of H- bonded silanols, with chemical shift at �103
ppm, than terminal silanols at �93 ppm. In addition, regard-
less of calcination temperatures, samples activated by the alka-
line NH4NO3 solution show a higher H-bonded silanol
percentage. Samples with the same active site amount, but
treated with NH4Cl, are characterized by a lower H-bonded
silanol percentage than samples treated with NH4NO3 . For
example, both 1792-212 and 1792-222 samples have three
defective sites per unit cell, however the ratio between
H-bonded silanols and terminal silanols is 10.6 and 1.52,
respectively.
In table 2 we report the percentage of defects per unit cell

and the ratio between H-bonded silanols and terminal silanols,
this ratio represents a relative value for it is referred to the
percentage of defective sites per unit cell.

Since samples treated at 450 �C and activated by a NH4NO3

alkaline solution show a different crystallographic unit cell
(orthorhombic symmetry) and a higher defective sites and
H-bonded silanols distribution, we suggest that: (i) calcination
temperature has a determinant effect on the total number of
defective sites (higher calcinations temperatures promote sila-
nols condensation, with elimination of H2O molecules), (ii)
the pH of the NH4NO3 solution is of basic importance for
the formation of H-bonded silanols for NH3 reacts with
Si–O–Si bonds to give Si–NH2 groups (as demonstrated by
IR-spectroscopy).
Terminal and H-bonded silanols, according to literature5,16

determine the acidity of silicalite-1 materials whose peculiarity
is the presence of weak Brønsted acid sites. By NH3-TPD we
determined the strength, the amount and distribution of
Brønsted acid sites (Figs. 5 and 6).
We observe three peaks. Two of them are observed during

temperature rate, in the region between 180–200 �C and 250–
300 �C, respectively. The third one is located in the isothermal
zone at 450 �C and is caused by diffusion phenomena and can
be ascribed to the peak at 250–300 �C. Hence we attribute the
peaks to terminal silanols (very weak acid sites) and H-bonded

Fig. 2 XRD patterns for catalyst 1792 after calcination and activation, ˙ orthorhombic, S monoclinic.

Fig. 3 FT-IR of silicalite-1 sample (a) after calcination at 450 �C and
activation by a NH4NO3 solution (pH > 10) (b) after calcination at
450 �C and activation by a NH4Cl solution (pH� 8). The band at
953 cm�1 represents the stretching of Si–NH2 bondings.

Fig. 4 Scheme representing the silanols groups detected by 29SiCP-
NMR spectroscopy.

Table 2 Percentage of defects per unit cell and H-bonded vs. terminal
silanol ratio

Sample

Defective

sites per unit

cell I (%) I�103,H-bonded I�93,terminal

IH-bonded/

Iterminal

1793-111 4 33 1 33.0

1793-121 3 48 14 3.4

1793-212 3 54 7 7.7

1793-222 1 34 14 2.4

1792-111 8 50 8 6.2

1792-121 3 42 20 2.1

1792-212 3 53 5 10.6

1792-222 3 41 27 1.5

1795-111 6 48 2 24.0

1795-212 4 57 3 19.0
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silanols (weak acid sites), respectively, in agreement with the
NMR results.
In Table 3 we report the total amount of desorbed ammonia

per gram of catalyst and an evaluation of acid site distribution.
We observe low total acidity for all catalysts, however the

samples treated at 450 �C and activated by a NH4NO3 alkaline
solution (-111 samples) are characterized by a higher total
acidity than the same samples treated in the other conditions.
In addition, the evaluation of acid site distributions, on the
basis of the areas of the peaks distinguished by TPD profiles
shows, for all samples, a higher amount of weak acid sites
(H-bonded silanols) with respect to very weak acid sites (term-
inal silanols). Said distribution is especially remarkable for the
-111 catalysts, this result is in agreement with the NMR data.
In particular, sample 1793-111 shows a relative higher acid-

ity, when compared to other 1793 catalysts, the first TPD peak
(terminal silanols) has its maximum at 180 �C, while a shoulder
attributed to H-bonded silanols is detected at 290 �C. 1793-212
is characterized by the same behavior as sample 1793-111,
however it shows a lower acidity which, according to Zecchina
et al.,15 may be attributed to the decrease of stronger vicinal
silanols because of the higher number of hydroxyl-group con-
densations during calcination at 550 �C. Catalysts 1793-222
has a higher percentage of very weak silanols, such a result
is related to the higher calcinations temperature which is
responsible for the decrease of the number of defective sites,
and by the method of catalyst activation. This hypothesis is
supported by the decrease of total number of silanol groups
and by the higher percentage of terminal–OH groups in sample
1793-121 than in 1793-111. These results are confirmed also by
the characterization of the other samples. Sample 1796 shows
the same silanol distributions observed for the other materials,
but its acidity is consistently lower. This is caused by the low
number of defective sites which are affected by the low miner-
alizing agent quantity (Na2O) used during its preparation.

Catalytic activity

Crystal dimensions play an important role on the Beckmann
rearrangement catalytic activity of silicalite-1. For this reason
four catalysts 1792-111, 1793-111, 1795-111, 1796-111 with dif-
ferent crystal sizes were tested in the reaction at the conditions
reported in the experimental section at T ¼ 300 �C. Cyclohexa-
none oxime conversion and caprolactam selectivity are
reported in Fig. 7 as a function of crystal size.

Cyclohexanone oxime conversion reaches a maximum (90%)
for sample 1793-111 with the lowest crystal size (2.5 mm) and
undergoes a substantial decrease with increasing crystal dimen-
sion. A different behavior is observed for caprolactam selectiv-
ity, the minimum value (90%) is observed for catalyst with
crystals size 2.5 mm (1793-111), then the selectivity increases
progressively to achieve 100% with sample 1796-111. These
results are attributed to the different distribution of silanols
on the internal and external catalyst surface. Beckmann rear-
rangement to caprolactam is promoted by H-bonded silanols
which, according to Zecchina and Dalloro,5,15 are located in
the internal surface of the crystals, while terminal silanols
which are mainly distributed in the external surface affect the
non-selective conversion of cyclohexanone oxime. As a matter
of fact by increasing crystal size dimensions, the ratio between
internal/external surface increases, thus a higher number of H-
bonded sites are available for the selective conversion of cyclo-
hexanone oxime. Hence sample with the lowest crystal size
dimension (2.5 mm) displays the higher conversion but the
lower caprolactam selectivity because of the relative higher
amount of terminal silanols with respect to the amount of
H-bonded silanols. We observed the formation of the follow-
ing by-products: cyclohexanone, cyclohexen-1-one, trans pen-
ten-nitrile, aniline whose selectivities are rather low and have
a value, for each component, set around 1–2.5%.
The same cyclohexanone oxime conversion behavior is

observed also for catalysts -222 (1792-222, 1793-222, 1796-
222), its values are always lower than 35% as illustrated in
Fig. 8.
On the contrary, caprolactam selectivity shows a different

behavior, with increasing crystal size a decrease of caprolactam
selectivity is observed and the same behavior is shown by -121
and -222 samples. Usually caprolactam selectivity values are

Fig. 6 NH3-TPD profiles for silicalite-1 catalyst treated at 550 �C
with NH4Cl alkaline solution.

Fig. 7 Cyclohexanone oxime conversion and caprolactam selectivity
values as a function of crystal size for catalysts prepared according to
-111 method. Values are referred to the fourth hour of reaction.

Fig. 5 NH3-TPD profiles for silicalite-1 catalyst treated at 450 �C
with NH4NO3 alkaline solution.

Table 3 Total catalyst acidity and acid site distribution, very weak
(terminal silanols) and weak (H-bonded) silanols

Acidity/10�5

�mol NH3 g
�1

Very weak

acid sites (%)

Weak acid

sites (%)

1793-111 7.15 25 75

1793-121 5.53 35 65

1793-212 5.07 30 70

1793-222 5.30 39 61

1792-111 7.43 20 80

1792-121 7.00 30 70

1792-212 5.63 27 73

1792-222 4.02 32 68

1795-111 7.80 28 72

1795-212 5.86 35 65

1796-111 4.92 22 78

1796-121 4.55 27 73

1796-222 2.19 30 70
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much lower than those obtained on catalysts -111, as a matter
of fact, the highest value for -222 samples (80%) is observed for
catalyst 1793-222, the other catalysts show remarkably low
caprolactam selectivity values (about 58% for 1792-222 and
30% for 1796-222). The results for the -222 series are in good
agreement with those of Weitkamp et al.17 and are attributed
to the high calcination temperatures, which cause the conden-
sation of a higher number of silanols by elimination of water
molecules. Hence the number of defective sites decreases but
the catalyst is also less activated by the use of an almost neu-
tral NH4Cl solution. The different behavior of selectivity may
be explained by a different acid site distribution between the
external and internal surfaces, due to the different treatments
of samples. The good catalytic activity observed for catalysts
-111 has to be ascribed mainly to the activation with a
NH4NO3 solution for it is able to modify silicalite-1 structure
and promotes a higher H-bonded silanol amount than terminal
silanols, as reported in table 3.
Silanols distribution plays an important role in catalyst acid-

ity thus we carried out some tests in order to relate the catalytic
behavior to samples acidity. We compared the catalytic results
obtained on the 1793 samples series. In Fig. 9 we report cyclo-
hexanone oxime conversion and the caprolactam selectivity as
a function of catalyst total acidity.
Apparently no linear correlation occurs between sample

total acidity and catalytic performance, however it is possible
to point out two couples of data which are better reciprocally
correlated.
Samples calcined at the same temperature (1793-212, 1793-

222 at 550 �C and 1793-111, 1793-121 at 450 �C) and activated
by NH4NO3 alkaline solution and NH4Cl neutral solution,
respectively, show different results. Catalyst 1793-212 is char-
acterized by higher catalytic performances than 1793-222.
The same behavior is observed also for catalysts 1793-111
and 1793-121 but the catalytic results are much improved.
We verify that the activation by a NH4NO3 alkaline solution

improves catalysts physico-chemical properties and leads to
better catalytic performances. On the contrary, the increase
of calcinations temperature decreases the total acidity and also
catalytic performances.
In Fig. 10 we report caprolactam selectivity as a function of

the amount of H-bonded silanol groups.
By increasing H-bonded silanol percentage we observe an

increase of caprolactam selectivity from a value of 80%
(1793-222) to 90% (1793-111). These results confirm that active
sites towards caprolactam formation are H-bonded silanols,
which are located in the internal surface of the catalyst. The
catalytic tests were carried out at 300 �C to discriminate the
performances among the different samples.
The effect of reaction temperature on catalyst life and

catalytic performances are reported in Table 4 for catalyst
1792-212.
Cyclohexanone oxime conversion increases with increasing

temperature of reaction and at 400 �C it is complete, however
caprolactam selectivity increases from 85 to 90% when tem-
perature is raised from 300 �C to 350 �C, then it decreases to
80% (400 �C). This phenomenon can be ascribed to (i) a better
catalyst activation and (ii) an easier tars desorption from the
catalyst surface, nevertheless by increasing the temperature,
the thermodynamics of by-product formation is promoted
so, at 400 �C, we observe a decrease of caprolactam yield
and verify the formation of higher quantities of heavy volatile
products. In addition, when temperature is raised from 300 �C
we observe a relevant longer catalyst lifetime. This is attributed
to the improvement of catalytic performances and more
efficient heavy products desorption.
In order to verify the stability of silicalite-1 samples, we per-

formed some catalyst regeneration cycles at 450 �C in air. Such
operation is required to eliminate tars adsorbed on catalyst
surface, since tars formation occurs mainly on silicalite-1 exter-
nal surface. The dimension of silicalite-1 channels prevents
heavy product formation through a shape selective action, thus
catalyst deactivation occurs mainly through pores blocking
and cavities inaccessibility. This operating condition allows a
good catalyst regeneration and remove the organic residues.

Fig. 10 Catalytic performances of catalyst 1793 as a function of
weak H-bonded silanols distribution. Values are referred to the fourth
hour of reaction.

Fig. 8 Cyclohexanone oxime conversion and caprolactam selectivity
values as a function of crystals size for catalysts prepared according
to -222 method. Values are referred to the fourth hour of reaction.

Fig. 9 Catalytic performances of catalyst 1793 as a function of total
acidity. Values are referred to the fourth hour of reaction.

Table 4 Effect of reaction temperature on the catalytic activity for
1792-212 sample. Values reported to the fourth hour of reaction

Reaction

temperature/�C

Cyclohexanone

oxime conversion

(%)

Caprolactam

selectivity

(%)

Caprolactam

yield (%)

Life

time/h

300 59 85 50 7a

350 98 90 88 40b

400 100 80 80 40c

a Cyclohexanone oxime conversion 38%. b Cyclohexanone oxime conversion

75%. c Cyclohexanone oxime conversion 90%.
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Catalytic results for sample 1793-111 are rather high and we
do not observe any relevant difference between catalytic per-
formances. In table 5 we report the results for catalyst 1793-
111 after three regeneration cycles with operating temperature
350 �C.
The stability of catalytic activity is attributed to the Si–NH2

bondings which are co-ordinated to hydroxyl groups and leads
to a higher stability of silanol-nests since they are unaltered
after thermal treatment in air at 450 �C for 10 h.

Conclusions

High silica MFI zeolite lattice is formed by tetrahedral silicon
oxides and are characterized by defective sites namely H-
bonded silanols (vicinal or nests of silanols) whose amount
and distribution is modified by the different thermal treatment
and activation methods. By NH3-TPD analysis it is possible to
quantify catalysts total acidity and distinguish and quantify
different kinds of acid sites. Our silicalite-1 samples show a
very weak acidity in the range 7.0–5.0��5 mol NH3 g

�1 and
weak and very weak acid sites. Samples calcined at 450 �C
and activated by an alkaline NH4NO3 solution are character-
ized by a relatively higher acidity (7.15��5 mol g�1) and a
higher ratio between weak acid sites and very weak acid sites.
Said catalysts are very active in vapor phase Beckmann rear-
rangement and complete cyclohexanone oxime conversion
and caprolactam yield higher than 95% are achieved. It is
also demonstrated that a calcination temperature of 550 �C
promotes H-bonded silanols condensation, hence a decrease
of the amount of defective sites and a decrease of catalytic
activity.
Catalysts activation with an alkaline solution of NH4NO3

modifies the unit cell symmetry from monoclinic to ortho-
rhombic through Si–NH2 bondings formation and allows the
retention of a higher H-bonded silanol to terminal silanol
ratio. On the basis of structural features and catalytic results
we confirmed that Beckmann rearrangement reaction is pro-
moted by H-bonded silanols and especially by silanol nests
which are mainly located in the catalyst cavities. Caprolactam
selectivity shows a dependence with amounts of silanol nests.
Sample 1796 which has been prepared with a low quantity of
mineralizing agent shows a 29Si-MAS-NMR profile which is
not typical of silicalite-1 structures, in addition its total acidity
is lower than that of other catalysts.

Crystals size deeply affects catalytic performances for it
modifies the ratio between internal and external surface.
Caprolactam selectivity increases with increasing crystal size
for -111 samples, whereas cyclohexanone oxime conversion
decreases. On the contrary, other samples (-121,-212,-222)
show a decrease of both cyclohexanone oxime conversion
and caprolactam selectivity and a deactivation rate consis-
tently higher. Such a behavior has been explained by the differ-
ent acid sites distribution between internal and external
surface. As a matter of fact silanol nests which are located in
the channels of silicalite-1 undergo a slower deactivation for
the small channels dimensions, hinder tars formation through
a shape selective activity. Terminal silanols are mainly located
at the external surface of the catalysts, promote cyclohexanone
oxime non-selective conversion thus they quickly deactivate.
After regeneration upon 1793-111 catalyst, the catalytic activ-
ity is unchanged for thermal treatment in air removes tars and
leaves the silicalite-1 structure unchanged, we propose that
Si–NH2 bondings give to the silicalite-1 structure a higher
thermal stability.
We verified the effect of temperature and we found that for

silicalite-1 at T ¼ 350 �C the best equilibrium between capro-
lactam reaction activation energy and minimization of by-
products formation is reached, at this temperature the higher
caprolactam yield is obtained and the longer catalyst lifetime
achieved.
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Table 5 Catalytic performances for 1793-111 catalyst after one to
three regeneration cycles. Catalytic tests are carried out at 350 �C,
values are referred to the fourth hour of reaction

Fresh I cycle II cycle III cycle

Cyclohexanone oxime

conversion (%)

99.9 99.9 99.9 99.9

Caprolactam

selectivity (%)

94.0 91.8 94.0 91.3
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