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Carrier-envelope shearing and isolated attosecond pulse generation
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Conical Bessel-like pulses allow control of the propagation velocity of the main intensity peak. With few-cycle
pulses, this leads to a controllable shearing effect with respect to the carrier-phase oscillation and a consequent
variation of the instantaneous intensity during propagation. Numerical simulations highlight how this intensity
modulation directly controls the atomic dipole phase in the process of high-order harmonic generation and
isolates either the long or the short electron-trajectory contributions. We identify a propagation regime in which
the harmonic field takes the form of an isolated pulse of 300 as duration.
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I. INTRODUCTION

High-order harmonic generation (HHG) in gases has been
thoroughly characterized in terms of the spectral range,
brightness, spatial and temporal coherence, beam divergence,
and pulse duration of the harmonic emission [1–4]. High-order
harmonic generation is now used as a versatile and tunable
source for the synthesis of the shortest events ever produced
in a laser laboratory, lasting no more than tens to hundreds
of attoseconds (as) [5] which are in turn used as probes for
time-resolved studies of ultrafast dynamics of electronic wave
packets in various physical systems [6,7].

High-order harmonic generation and, more generally, non-
linear light-matter interaction driven with few-cycle laser
pulses, strongly depends on both (i) phase-matching [8,9],
as in all frequency conversion processes, and (ii) the carrier-
envelope phase (CEP) of the driver pulse (i.e., the relative shift
between the maximum of the real electric field and that of the
envelope). Below we will discuss these in turn.

(i) Phase-matching. The main contributions to the phase
mismatch in HHG arise from geometric dispersion (related to
the pulse-focusing properties), self-induced plasma dispersion,
gas dispersion, and the atomic dipole phase. The atomic
dipole phase is determined by the intensity gradient along the
propagation direction and it is related to the specific trajectory
the electron follows in the continuum, under the influence of
the driving electric field. Usually only the first two trajectories,
referred to as the long and short trajectories, are relevant in
HHG. The phase-matching conditions can be controlled to
some extent by balancing out the various effects. However, the
contribution of the atomic dipole phase term is usually directly
related to the focusing conditions when the beam is focused
in a gas jet [10,11] and cannot be tuned beyond moving the
relative position of the focus and the jet. Such a consideration
may not hold for very short pulses (e.g., shorter than 3–4
optical cycles, where effects related to the z variation of the
CEP may occur). In particular, the use of non-Gaussian pulses
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may allow the possibility of tuning such an effect by means
of the control of the local intensity of field extrema during the
propagation.

(ii) The carrier-envelope phase. At a given propagation
distance z, the CEP of a few-cycle driver pulse usually
undergoes shot-to-shot variations that severely affect HHG.
Recently a number of techniques have been introduced in order
to measure [12] and stabilize the CEP in time [13]. However,
very few attempts have been made to control the CEP, not only
from shot-to-shot, but also during the propagation of the light
pulse. In principle, this control may be obtained by tuning the
dispersion properties of the medium [14] or the properties of
the pulse itself [15].

In this paper, we propose a spatial control mechanism for
the phase-matching conditions in HHG by the use of intense
few-cycle driving pulses in the form of conical (i.e., Bessel-
like) wave packets (CWs), thereby allowing for predetermined
relative propagation velocities of the envelope and carrier
waves and tunable CEP along the propagation distance. Our
numerical simulations of HHG by intense few-cycle CWs
in a low-pressure argon gas exhibit a shearing effect that
acts directly on the atomic-dipole-phase term, which in turn
modifies the phase-matching conditions for the long and
short electron-trajectory contributions to the HHG process. By
controlling the amount of the CEP in shear, we also identify
conditions for which the harmonic field appears directly in
the form of an almost isolated pulse without any postprocess
synthesis (e.g., additional filtering or compression stages).

II. CONICAL WAVE PACKETS

Conical wave packets are the axisymmetric counterparts of
tilted pulses and may be viewed as a superposition of plane
waves with frequency-dependent transverse components of
wave vector k⊥ distributed over cones with axes along the
propagation direction z and angle θ (ω) (see Refs. [16,17]).
As schematically represented in Fig. 1, it is possible to
independently tune phase (vp) and envelope (ve) velocities
of the main-intensity peak of CWs by properly adjusting the
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FIG. 1. (Color online) Schematic propagation of a CW: the gray
dashed lines represent phase fronts and the red areas amplitude fronts.
θ0 and δ are the propagation and tilt angles, respectively. Note that
the quantities vp and ve refer to the main-intensity peak of the pulse,
represented in the figure by the blue Gaussian profile. On the right
there is a schematic representation of the PBB, BXP, and SLP cases,
as defined in the text.

propagation angle and angular dispersion. In particular, these
velocities read [16]

vp = ω0

k0 cos θ0
, (1)

ve = cos δ

k′
0 cos (θ0 + δ)

, (2)

with θ0 = θ (ω0) the mean cone angle, δ the tilt angle of
the amplitude fronts, and k

(n)
0 = ∂nk/∂ωn|ω=ω0 , where ω0 is

the central frequency of the wave packet. It is important to
emphasize that these velocities refer to the main-intensity peak
of the pulse and, in particular, that ve is not to be confused with
the group velocity at which the amplitude fronts propagate.

In the ideal case, the difference between phase and envelope
velocity determines a constant slipping of the field profile of
the pump under the envelope so that the local maxima seem
to be sheared by the motion of the envelope. This effect is
expected to crucially influence highly nonlinear processes such
as high-harmonic generation, since it introduces a modulation
of the field extrema [18].

III. NUMERICAL MODEL

Our model is adapted from that of Refs. [19,20] and relies
on a unidirectional propagation equation along the z direction
for the frequency components Ẽ(r,z,ω) of the electric field
E(r,z,t) of the laser pulse and of the harmonic field generated
by the pulse

∂Ẽ

∂z
= i

[
�⊥

2k(ω)
+ k(ω) − ω

vg

]
Ẽ + µ0ω

2k(ω)
(iωP̃NL − J̃ ), (3)

where we are considering the field in the reference frame
moving at the group velocity vg = (k′

0)−1. P̃NL(r,z,ω) and
J̃ (r,z,ω) are the Fourier-transformed nonlinear polarization
and current. The right-hand side of Eq. (3) models dif-
ferent effects depending on whether frequency components
correspond to the laser pulse (ω < 10ω0) or to the har-
monic field (ω > 10ω0). For the laser pulse, the nonlinear
polarization includes the optical Kerr response PKerr(r,z,t)
= ε0χ

(3)E3(r,z,t) described by the third-order susceptibility

χ3 (we used the value deduced from the measurements
of [21]) and the plasma-induced current which comprises
two parts: (i) Plasma-induced defocusing is accounted for
by JPlasma(r,z,t), where ∂JPlasma/∂t = (e2/me)NeE, Ne(r,z,t)
denotes the density of electrons generated by optical field
ionization and e and me denote the electron charge and
mass. (ii) Nonlinear losses are accounted for by JNLL(r,z,t)
where JNLL = [W (|E|)/|E|2]NArUiE, NAr(r,z,t) denotes the
density of nonionized argon atoms, Ui the ionization potential
of argon, and W (|E|) the field-dependent ionization rate.
Ionization is described by an evolution equation for the density
of argon atoms ∂NAr/∂t = −W (|E|)NAr, from which the
electron density is obtained by conservation Ne(r,z,t) = N0 −
NAr(r,z,t). For the harmonic field, the nonlinear polarization is
obtained from the time-dependent dipole moment, calculated
using the strong-field approximation [22] multiplied by the
density of argon atoms. Its implementation strictly follows
Ref. [19]. Dispersion of the pump field is calculated by means
of the formula given in [23], while dispersion and absorption
for the harmonic field come from the interpolation of the data
given in [24].

IV. SIMULATIONS AND DISCUSSION

Our calculations start with 800-nm laser pulses with
Gaussian 5-fs full width at half maximum (FWHM) temporal
profile and peak electric field E0 corresponding to an initial
cycle-averaged intensity of 2.7 × 1014 W/cm2, in the shape of
CWs multiplied by a spatial apodizing Gaussian function in
order to have finite total energy. We calculate the propagation
of these pulses and HHG following the model of Eq. (3).

We considered three particular cases of CWs, which
correspond to different values of the tilt angle for a given
propagation angle: a pulsed Bessel beam (PBB), a Bessel-X
pulse (BXP), and a superluminal pulse (SLP). More specifi-
cally, the plane-wave constituents of the PBB present equal
transverse components of the k vector (δ = −θ0) [16,25]
and those of the BXP present equal propagation angle for
each frequency (δ = 0) [26]. The PBB exhibits subluminal
velocity (i.e., its envelope velocity is smaller than its phase
velocity ve < vp) while the BXP exhibits luminal velocity
(i.e., ve � vp). BXPs are typically generated experimentally by
means of axicon lenses, while PBBs can be obtained by circular
diffraction gratings or by coupling Gaussian pulses into hollow
core fibers. We considered a third case, featured by δ = +θ0

(SLP), in order to have superluminal velocity ve > vp. To date,
SLP-like pulses have never been experimentally generated,
but they do appear spontaneously during filamentation of
ultrashort pulses in Kerr media [27]. For all cases, a cone
angle θ0 = 0.44◦ was used. The three types of input beams are
schematically represented in Fig. 1. Equation (2) shows that
the PBB and the SLP are merely particular cases of subluminal
and superluminal propagating CWs.

For the BXP case, a dominant factor in determining the
temporal profile of the generated harmonic field is the initial
CEP, which varies little during propagation since ve � vp.
Figures 2(a) and 2(b) show the evolution of the temporal-
envelope profile for the axial (r = 0) harmonic field as a
function of the propagation distance in a 1.3-cm long argon
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FIG. 2. (Color online) Axial time profile (linear scale) of the
harmonic field versus propagation distance z for the BXP case for
initial CEP (a) φ = π/2 and (b) φ = 0, synthesized with no further
spectral filtering other than a high-pass filter ω > 10ω0. The solid blue
curves and the dashed red curves show the propagation of the center of
mass (envelope peak) and the positions of squared field maxima of the
driving infrared pulse, respectively. The vertical dashed-dotted lines
mark the z positions of lowest ratio between the second most intense
peak and the main peak for the φ = π/2 case and the propagation
distance chosen for Fig. 4(b) in the φ = 0 case.

gas at 100 mbars for two values of the initial CEP, φ = π/2
and φ = 0, respectively. The solid blue curve marks the peak
of the envelope of the driving pulse; its slope is given by
1/ve(z) − 1/vg . The dashed curves of slope 1/vp(z) − 1/vg

mark the peaks of the driving field (maxima and minima)
which move at phase velocity vp(z). The slopes of dashed
and continuous lines are in agreement with the BXP property
ve � vp, except for effects related to the initial generation
of plasma, which tends to defocus the trailing portion of the
pulse, therefore shifting the position of the center of mass
of the envelope, and a small correction related to Gaussian
apodization [28]. The figures show a series of distinct extrema
for the harmonic-field intensity along the temporal coordinate
with durations of a few hundred attoseconds, which follow the
peaks of the pump field with almost constant temporal delay
along propagation. These harmonic bursts exhibit intensity
oscillations along the propagation distance, which are related
to phase-matching properties for the process.

We observe the generation of an almost isolated temporal
peak in the harmonic field for the φ = π/2 case, for which
the ratio between the main peak and the second-most intense
peak reaches the lowest value of 25% at z = 0.56 cm,
with a corresponding FWHM duration of 340 as. We note
that the selection of an isolated attosecond pulse would not
occur in the absence of ionization gating, which in our
case works mainly through the space- and time-dependent
plasma-dispersion term. The plasma-refractive index causes
a reshaping of the laser beam by advancing the peak of the
laser pulse on axis, which effectively shortens the intense part
of the pulse [29]. More importantly, the plasma contribution
to the phase mismatch is time dependent, which means that
the phase-matching conditions change from one half-cycle
of the laser field to the next [30,31]. In the φ = π/2 case,
this leads to good phase-matching predominantly during one
half-cycle of the driving field, whereas, in the φ = 0 case,
there are two half-cycles in which the harmonic radiation is
phase-matched which leads to two attosecond bursts. These
two bursts exhibit different time-frequency characteristics both
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FIG. 3. (Color online) Axial time profile (linear scale) of the
harmonic field versus propagation distance z for the (a) PBB and (b)
SLP cases described in the text, synthesized with all the frequency
contributions ω > 10ω0. The solid blue curves and the dashed curves
mark the propagation of the center of mass (envelope peak) of the
driving infrared pulse and the positions of its squared field maxima,
respectively. The vertical dashed-dotted lines mark the z positions
chosen for Figs. 4. (c) and (d) show the near-field (r,t) envelope
profile of the harmonic field (linear scale) for the PBB case at z = 1
cm and the SLP case at z = 0.74 cm, respectively.

in terms of their cutoff energy and in terms of the dominant
quantum path contributions, consistent with a rapidly changing
phase mismatch [31].

The results in Fig. 2 show that the generation of an isolated
attosecond pulse by the BXP depends sensitively on the initial
value of the laser CEP, just as in few-cycle Gaussian pulses.
We expect this to remain true for all pulses in which ve � vp.
However, in the following we will show that the situation will
differ substantially in the case when ve �= vp: then, the CEP
becomes a function of the propagation distance z so that at a
certain point during propagation, the optimal CEP for isolated
pulse generation will be encountered.

Figures 3(a) and 3(b) show the (z,t) evolution of the
envelope profile for the axial (r = 0) harmonic field, analogous
to Fig. 2 for the PBB and SLP cases, respectively. Note that
although the initial stage is affected by effects related to initial
strong-plasma generation or to the Gaussian apodization, the
slopes of the dashed and continuous lines (referring to the
driving infrared field) are in agreement with the predictions of
Eqs. (1) and (2) for the propagation of linear, nonapodized
CWs, thereby justifying the comparison with velocities of
ideal, infinitely extended CWs.

These figures clearly show effects related to the envelope
velocity (i.e., during propagation, the position of the envelope
maximum shifts and is sheared with respect to the carrier-wave
propagation). This, in turn, gradually modifies the intensities
of the field maxima and, accordingly, the related HHG process.
We observe that the harmonic field is still generated along the
isophase lines of the pump field in the (z,t) space, but the shift
of the pump envelope induces a shearing in the harmonic peak,
which is negative (i.e., delayed) for the PBB case and positive
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(i.e., advanced) for the SLP case. The harmonic field still
exhibits intensity oscillations along z, but these are displaced
following the direction of the pump envelope velocity. In the
BXP case, we do not observe this phenomenon because of
equal phase and envelope velocities.

This shearing effect, in turn, continuously modifies the
CEP of the pump wave packet and at a certain z position
along propagation it reduces to the optimal value for the
generation of an almost isolated temporal peak in the harmonic
field, similarly to Fig. 2(a). In particular, from the simulations
we observe a 350–400-as pulse for the PBB case between
z = 0.9 cm and z = 1.2 cm. The ratio of the second-highest
peak to the intensity of the main peak is below 35% and the
minimum ratio is 16% at z = 1 cm, with a corresponding
duration (FWHM) of 350 as. Note that we did not perform
any other spectral filtering on the harmonic field except for a
high-pass filter at 10ω0, mimicking the action of an aluminum
filter frequently used in experiments to separate the laser light
from the harmonic light. We obtained a 300–320-as pulse
for the SLP case between z = 0.65 cm and z = 0.9 cm, with
contrast below 35%, which reaches a minimum of 13.5% at
z = 0.74 cm, with a corresponding duration of 300 as.

The radial profiles of the envelope of the harmonic field
in the PBB and SLP cases are shown in Figs. 3(c) and 3(d),
respectively, highlighting the smooth spatiotemporal profiles
of the harmonic pulses that are spatially confined on axis within
a 20-µm radius. The total attosecond pulse energies are 23 pJ
and 8 pJ for the PBB and SLP cases, respectively.
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FIG. 4. (Color online) Temporal gated spectra of the harmonic
field (logarithmic scale over two decades) generated by CWs at given
propagation distance: (a) PBB at z = 1 cm, (b) BXP (φ = 0) at z =
0.64 cm, and (c) SLP at z = 0.74 cm. The dashed lines represent the
temporal-envelope profile of the harmonic field. (d) Instantaneous
values of E2 as a function of propagation distance for the pump peak
giving the main contribution to the almost isolated harmonic pulses,
in the PBB (black solid) and SLP (blue dashed) cases. The vertical
dashed-dotted lines mark the z positions of (a) and (c).

The shearing effect on HHG was further investigated by
considering the time-frequency dependence of the harmonic
field at the point of best contrast for the cases PBB and SLP,
and comparing it to the BXP case with φ = 0. We show
these spectra over two decades in Fig. 4. The dashed lines
represent the temporal-envelope profiles of the harmonic field.
The figures show that the shearing effect not only affects
the temporal profile of the harmonic field, but also acts as
a gating mechanism in the spectral domain. In particular,
in the BXP case [Fig. 4(b)], the portions of the spectrum
corresponding to the temporal peaks fall in the region around
the cutoff. These regions come from both short- and long-path
contributions [19]. In the PBB and SLP cases [Fig. 4(a)
and 4(c), respectively], the main contributions come from
regions near the cutoff, but may now be identified as
corresponding to long (PBB case) and short (SLP case)
paths. We also directly verified that the angular spread
(data not shown) in the PBB case (0.81 mrad) is slightly
larger with respect to the SLP case (0.73 mrad), in keeping
with the standard observation that contributions from long
trajectories exhibit a larger divergence than those of short
trajectories [19].

V. QUANTUM TRAJECTORY CONTRIBUTIONS

The selection of contributions of different quantum tra-
jectories may be explained qualitatively by considering the
evolution of the instantaneous intensity (squared electric
field) maxima of the driving field along propagation in the
different cases. In particular, the intensity of the pump peak
corresponding to the harmonic burst associated with the
isolated pulse is increasing versus propagation distance around
z = 0.74 cm in the SLP case and decreasing around z = 1 cm
in the PBB case, as illustrated by Fig. 4(d). This determines
different signs for the dipole-phase-contribution term for the
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FIG. 5. (Color online) Blue dashed line: electric field of the pump
(normalized; left axis); red continuous line: envelope of the harmonic
field (normalized; left axis); black dashed-dotted line: plasma density
(right axis), at r = 0 versus time for a) PBB at z = 1 cm and b) SLP
at z = 0.74 cm. The yellow areas represent the departure (dep.) and
recollision (rec.) times for the electrons in the two cases from the
classical approach. The vertical green dashed-dotted lines refer to the
trajectories whose return energy correspond to the cutoff.
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FIG. 6. (Color online) Temporal profile on axis of the envelope
of the harmonic field in the position of best contrast (z = 0.94 cm)
for the input case of a PBB with FWHM duration 7 fs.

different cases [32]. By adopting the sign convention of [19],
we may isolate each contribution to the phase-matching for
the harmonic field generation. The geometric term is always
positive for both PBB and SLP, since the effective pump
wave vector on axis is shortened in CWs [33–35]. The plasma
contribution is positive as well and similar for both cases, as
shown in Fig. 5 by the temporal profiles of the on-axis plasma
density in the corresponding region of electron emission.
The dipole term depends on the gradient along propagation
of the instantaneous intensity and is negative for the PBB
and positive for the SLP. In both cases, the absolute value
of the dipole contribution will be small and close to zero
for short trajectories and large for long trajectories [36,37].
Therefore, the large positive δk contribution in the PBB case
may be compensated, or partially compensated, for by the
large negative dipole contribution from the long trajectories.
However, in the SLP case, all the contributions are positive and
the minimum δk is obtained for the smallest possible dipole
term (i.e., the short-trajectory term).

We stress that, in the CW case, the z evolution of the
intensity is not determined by the apodization (i.e., Gaussian
focusing) of the beam, but by the difference between phase and
envelope velocities. This effect is thus expected to be relevant
only for very short pulses, such as the 5-fs pulses of this work.
Our calculations showed that the shearing effect is significantly
reduced with 12-fs pulses, however, we verified that isolated
attosecond pulses are still generated using relatively accessible
7-fs pulses. We considered a PBB under exactly the same
conditions as described above (gas pressure, CW cone angle,
and tilt) and we obtained a minimum FWHM duration for the

harmonic field of 245 as at z = 0.94 cm [Fig. 6], albeit with a
slightly lower contrast of nearly 28%.

VI. CONCLUSION

In conclusion, we have studied the role of envelope velocity
and CEP shearing in HHG with conical-wave driving pulses.
We found that the difference between envelope and phase
velocities due to the space-time structure of such pulses has
important consequences for HHG, most notably the selection
of different quantum path contributions and the generation of
isolated attosecond pulses. These effects are most evident for
very short pulses (less than three optical cycles) due to the
fact that they rely on the instantaneous variation of the local
intensity of the pump field (i.e., on the variation of the CEP
in propagation). We emphasize that given the phase-matching
nature of the process, for a given gas and gas pressure, there is
an optimal value of the Bessel cone angle that achieves isolated
pulse generation, since this relies on an ionization-gating
mechanism. This angle was found by scanning over different
angle values, although in an experiment it would be easier
to scan over the gas pressure. We found an optimal cone
angle of 0.44◦. While the technology to generate a SLP has
yet to be developed, a 5–7-fs PBB may be readily obtained
by generating the harmonics in an appropriate hollow-core
fiber [38]. Indeed, the modes of these fibers are precisely
PBBs and the fundamental-mode cone angle is related to the
fiber diameter d by d = 2.4048 × (2c)/ω0 sin θ0. The 0.44◦
cone angle used in this work may be obtained with an 80-µm
diameter fiber and isolated attosecond pulse generation with
acceptable contrast may be obtained under realistic and simple
experimental conditions. In this case, calculations would need
to be performed to account for the modifications induced by
the fiber geometry with respect to the free-space geometry,
such as a slightly modified ve, linear losses, and dispersion.
However, over the considered distances (1–2 cm), we expect
these to be minor perturbations and, therefore, to still observe
the dynamics highlighted in this work.
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[28] Z. L. Horváth, J. Vinkó, Zs. Bor, and D. von der Linde, Appl.

Phys. B 63, 481 (1996).
[29] M. B. Gaarde and K. J. Schafer, Opt. Lett. 31, 3188 (2006).
[30] C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L.

Knight, J. P. Marangos, and J. W. G. Tisch, Nature Phys. 3, 52
(2007).

[31] M. J. Abel, T. Pfeifer, P. M. Nagel, W. Boutu, M. J. Bell, C. P.
Steiner, D. M. Neumark, and S. R. Leone, Chem. Phys. 366, 9
(2009).

[32] Ph. Balcou and A. L’Huillier, Phys. Rev. A 47, 1447 (1993).
[33] C. Altucci et al., Phys. Rev. A 68, 033806 (2003).
[34] T. Auguste, O. Gobert, and B. Carré, Phys. Rev. A 78, 033411
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