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Abstract

Background Intestinal ischemia and reperfusion (I/R)

injury leads to abnormalities in motility, namely

delay of transit, caused by damage to myenteric

neurons. Alterations of the nitrergic transmission may

occur in these conditions. This study investigated

whether an in vitro I/R injury may affect nitric oxide

(NO) production from the myenteric plexus of the

guinea pig ileum and which NO synthase (NOS)

isoform is involved. Methods The distribution of the

neuronal (n) and inducible (i) NOS was determined by

immunohistochemistry during 60 min of glucose/

oxygen deprivation (in vitro ischemia) followed by

60 min of reperfusion. The protein and mRNA levels

of nNOS and iNOS were investigated by Western-

immunoblotting and real time RT-PCR, respectively.

NO levels were quantified as nitrite/nitrate. Key

Results After in vitro I/R the proportion of nNOS-

expressing neurons and protein levels remained

unchanged. nNOS mRNA levels increased 60 min

after inducing ischemia and in the following 5 min of

reperfusion. iNOS-immunoreactive neurons, protein

and mRNA levels were up-regulated during the whole

I/R period. A significant increase of nitrite/nitrate

levels was observed in the first 5 min after inducing I/R

and was significantly reduced by Nx-propyl-L-arginine

and 1400 W, selective inhibitors of nNOS and iNOS,

respectively. Conclusions & Inferences Our data

demonstrate that both iNOS and nNOS represent

sources for NO overproduction in ileal myenteric

plexus during I/R, although iNOS undergoes more

consistent changes suggesting a more relevant role for

this isoform in the alterations occurring in myenteric

neurons following I/R.

Keywords guinea pig ileum, in vitro ischemia/

reperfusion, myenteric plexus, nitric oxide, nitric

oxide synthase.

INTRODUCTION

Intestinal ischemia/reperfusion (I/R) injury represents

an important clinical problem which may occur as a

consequence of embolism, arterial or venous thrombo-

sis, shock,1 intestinal transplantation, necrotising

enterocolitis in the human premature newborn or

chronic inflammatory diseases.2–4 I/R injury causes

severe damage particularly to the mucosal and muscle

layers and neurons.5–7 The functional consequences of

this scenario include impairment of nutrient absorp-

tion, altered intestinal barrier function against bacte-

rial translocation and disturbed motility.5,6,8 Adaptive

changes of enteric neuronal circuitries modulating the

intestinal motor function have been documented after

both in vivo and in vitro I/R conditions.9–11 Among the

major enteric neurotransmitter pathways, the nitrergic

transmission has been suggested to participate in the

motor disturbances caused by an I/R injury to the gut.

In physiologic conditions, nitric oxide (NO) plays a

pivotal role in the inhibitory regulation of peristal-

sis.12,13 NO is synthesized by the neuronal (n), endo-

thelial (e) and inducible (i) isoforms of nitric oxide

synthase (NOS), all of which have been localized in
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myenteric neurons of different species.14–17 nNOS is

constitutively expressed in myenteric neurons15–17 and

is the predominant source for the generation of NO

mediating non-adrenergic non-cholinergic inhibition of

smooth muscle contraction.18 In myenteric neurons,

expression of iNOS, but not of nNOS or eNOS, is

enhanced during disease states, such as intestinal

inflammation19,20 and diabetes.21 In these conditions,

large amounts of NO may cause damage to different

cell types, including neurons, by the formation of

peroxynitrite and nitrotyrosine.20,22 Previous studies

suggest that the activity of the diverse NOS isoforms

may be differentially regulated during intestinal I/R,

depending on the different experimental model and on

the degree of damage. In the rat ileum, after a severe

in vivo I/R injury, iNOS up-regulation was correlated

with a decrease of the intestinal transit.23 Conversely,

in the same animal model, a mild I/R injury induced a

reduction of nNOS activity, which was correlated with

a transitory impairment of the non-adrenergic non-

cholinergic inhibitory response.24 Such changes of the

intestinal motor function may rely upon alterations of

NOS containing myenteric neurons. In the rat ileum, a

significant increase in the number of myenteric neu-

rons expressing NOS immunoreactivity has been

demonstrated after an in vivo I/R injury.25 Adminis-

tration of N� -nitro-L-arginine methyl ester, a non-

selective NOS inhibitor, prevented the increase of NOS

immunoreactivity induced by I/R, suggesting the

occurrence of a positive feedback between NO produc-

tion and NOS expression. In the guinea pig ileum, mild

in vivo I/R damage induced swelling and distortion of

dendrites of NOS-expressing descending inhibitory

motor neurons.26

In the present study, to further investigate the

involvement of the nitrergic transmission during I/R,

we evaluated whether an in vitro I/R injury may

acutely affect NO production from the guinea pig

ileum muscle wall. In addition, the hypothesis that

nNOS and iNOS isoforms may represent sources for

NO in these experimental conditions was investigated.

The potential different roles of the two isoforms was

evaluated using molecular biology, morphological and

functional approaches.

MATERIALS AND METHODS

Animals and tissue preparation

Male Dunkin-Hartley guinea pigs (Harlan Italy, Correzzana,
Monza, Italy), weighing between 300 and 350 g, were housed
in groups of four under controlled environmental conditions
(temperature 22 ± 2 �C; relative humidity 60–70%) with free
access to a standard diet and water, and were maintained at a

regular 12/12-h light/dark cycle. Principles of good laboratory
animal care were followed and animal experimentation was in
compliance with specific national and international laws and
regulations. Animals were sacrificed by decapitation and 8 cm
segments of the ileum, approximately 5 cm oral to the ileo-
caecal junction, were rapidly excised and rinsed with a physio-
logical ice-cold Tyrode’s solution [composition (mmol L)1): 137
NaCl; 2.68 KCl; 1.8 CaCl2.2H2O; 2 MgCl2; 0.47 NaH2PO4; 11.9
NaHCO3; 5.6 glucose]. Whole wall intestinal segments were
fixed and stored for successive immunohistochemistry experi-
ments, as described below. Overflow experiments were carried
out on mucosa-deprived ileal segments. Western immunoblot
and real time RT-PCR studies were conducted using preparations
consisting of external longitudinal muscle layer segments with
attached myenteric plexus (LMMP) obtained immediately after
excision of ileal segments.

In vitro ischemic conditions were reproduced by suspending
intestinal preparations in 3 mL organ baths superfused with an
oxygen and glucose deprived Tyrode’s solution. Oxygen depriva-
tion was obtained by bubbling the perfusing medium with a
mixture of N2-CO2 (95–5%). The effect of reperfusion was
evaluated by substituting the hypoxic/hypoglycaemic medium
with a normal oxygenated glucose-containing Tyrode’s solution.
During overflow studies, ileal segments were exposed to in vitro

ischemic conditions for 60 min and subsequently reperfused for
another 60 min period. For immunohistochemistry, Western
immunoblot, real time RT-PCR studies, intestinal specimens
after being perfused with an oxygenated Tyrode’s solution
maintained at 36.5 �C for a 60 min equilibration period, were
exposed to in vitro ischemic conditions for 5, 30 or 60 min and
then reperfused for 5, 30 and 60 min. This time course for
glucose/oxygen deprivation was chosen given that enteric neu-
rons are not irreversibly damaged after 60 min ischemia.8

Control experiments of Western immunoblotting and real time
RT-PCR were carried out by exposing intestinal specimens to a
normal glucose-containing and oxygenated medium for 5, 30, 60,
65, 90, and 120 min after the equilibration period. Tissue
samples were either stored at –70 �C for successive Western
immunoblotting assay or stored in a preserving solution for
downstream real time RT-PCR (RNA later�; Ambion Life
Technologies Italia, Monza, Italy).

Immunohistochemistry

Segments of the guinea pig ileum were fixed for 4 h at room
temperature (RT) in 0.2 mol L)1 sodium phosphate-buffer (PBS:
0.14 mol L)1 NaCl, 0.003 mol L)1 KCl, 0.015 mol L)1 Na2HPO4,

0.0015 mol L)1 KH2PO4) pH 7.4, 4% formaldehyde and 0.2%
picric acid. Preparations were then cleared of fixative and stored
at 4 �C in PBS containing 0.05% thimerosal. LMMP whole-
mount ileal preparations were then prepared according to the
method of27 Briefly, after blocking aspecific sites with PBS, 1%
Triton X-100 and 10% normal horse serum (NHS) (Euroclone,
Celbio, Milan, Italy) for 1 h, preparations were incubated with
optimally diluted primary antibodies (Table 1). Double labelling
was performed during consecutive incubation times: firstly, the
primary antibody raised against either iNOS or nNOS was added
overnight at 4 �C, then incubation with secondary antibodies
followed for 2 h at RT. Whole mounts were successively
incubated overnight at 4 �C with a biotinylated antibody to
HuC/D (neuronal cell marker) or with an antibody to S100 (glial
cell marker) (Table 1). Incubation for 2 h with either streptavidin
conjugated Cy3 or with an appropriate secondary antibody was
then performed at RT. Double labelling with iNOS and nNOS
was performed following the same procedures, by adding the two
primary antibodies consecutively. Preparations were mounted
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onto glass slides, using a mounting medium with DAPI (Vecta-
shield�; Vector Lab, Burlingame, CA, USA). Neuron counts were
made on HuC/D stained LMMPs, obtained from at least four
animals, digitized by capturing as many as 40X objective
microscope fields (0.287 mm2) as possible (10–15 fields). The
total value was divided by the total image field area considered
and expressed as the number of cell bodies mm)2. To establish
the proportion of iNOS and nNOS expressing myenteric neurons,
quantitative analysis of double fluorescently labelled ileal whole
mounts was performed as previously described.27,28 Negative
controls and interference control staining was evaluated by
omitting one or both of the primary antibodies, or one of the
secondary antibodies. Preparations were analyzed by confocal
microscopy on a Leica TCS SP5 confocal laser scanning system
(Leica Microsystems GmbH, Wetzlar, Germany) and pictures
were processed using Adobe-Photoshop CS2.0 software.

Western immunoblot analysis of iNOS and nNOS

iNOS and nNOS protein level analysis was carried out starting
from LMMPs preparations with successive centrifugations accord-
ing to the method described27 The purified membrane fraction and
the supernatant were boiled for 2 min after dilution with Laemmli
sample buffer29 and processed as described elsewhere.27 Mem-
branes were incubated with optimally diluted primary and
horseradish peroxidase-conjugated secondary antisera (Table 1).
Blots for iNOS and nNOS were developed using an enhanced
chemiluminescence technique (ECL advance Amersham Pharma-
cia Biotech, Cologno Monzese, Italy). Signal intensity was quan-
tified by densitometric analysis using the NIH image software
1.61 (downloadable at http://rsb.info.nih.gov/nih-image). In each
membrane a-tubulin was monitored and used as protein loading
control. Experiments were performed at least four times for each
different preparation. The effect of either in vitro I/R or of
superfusion with a normal glucose-containing oxygenated med-
ium on protein levels was expressed as the percentage variation vs

values obtained in preparations exposed to normal metabolic
conditions and collected at the end of the equilibration period.
Specificity of iNOS and nNOS primary antibodies was evaluated
by testing their selectivity in RAW 264.7 macrophage cells and in
the rat hippocampus (data not shown), respectively, and by
omission of the primary antibody.

Real time quantitative RT-PCR

Total RNA was extracted from LMMPs preparations with TRIzol
(Invitrogen) and treated with DNase I (DNase Free, Ambion)
to remove any traces of contaminating DNA. cDNA was obtained
retrotranscribing 2 lg of total RNA using the High Capacity cDNA
synthesis kit (Applied Biosystems, Life Technologies, Grand Island,
NY, USA). Quantitative RT-PCR was performed on the Abi Prism
7000 real-time thermocyclator (Applied Biosystems) with Power
Sybr Green Universal PCR Master Mix (Applied Biosystems)
following manufacturer’s instructions. Primers were designed using
Primer Express software (Applied Biosystems) on the basis of
available sequences deposited in public database. Primer sequences
were: n-NOS, 5¢-ACGGAGCGTGGCTACAGTTT-3¢; 5¢-TCCTT
GATGTCACGCACAATTT-3¢; iNOS: 5¢-GCAGCAGCGGCTTC
ACA-3¢; 5¢-ACATCCAAACAGGAGCGTCAT-3¢; b-actin 5¢-ACGG
AGCGTGGCTACAGTTT-3¢, 5¢-TCCTTGATGTCACGCACAAT
TT-3¢; GAPDH, 5¢-CGGATTTGGCCGTATTGG-3¢, 5¢-AATATC
CACTTTGCCAGACATGAA-3¢. For quantitative RT-PCR a final
concentration of 100 nmol L)1 for each primer was used. Primers
were designed to have a similar amplicon size and similar
amplification efficiency as required for the utilization of the
DDCt method to compare gene expression.30 b-actin and GADPH
were used as housekeeping genes. Experiments were performed at
least four times for each different preparation. The effect of either
in vitro I/R or of superfusion with a normal glucose-containing
oxygenated medium on mRNA levels was expressed as the
percentage variation vs values obtained in preparations exposed
to normal metabolic conditions.

Overflow study

NO overflow was accomplished using mucosa-deprived ileal
specimens. The submucosal layer was not routinely removed from
the intestinal wall since preliminary experiments demonstrated
that the release of NO oxidation products from the submucosal
plexus was undetectable by our method of analysis. Silk ligatures
were applied to each end of 1–2 cm long strips; one end was
attached to a rigid support and the other to an isotonic transducer
(load 1 g) in 3 mL organ baths perfused at a constant rate of 1 mL
min)1 with Tyrode’s gassed with O2-CO2 (95–5%) and maintained
at 36.5 �C. After a 60 min equilibration period, three samples were

Table 1 Primary and secondary antisera and their respective dilutions used for western blot (WB) assay and immunohistochemistry (HC)

Antiserum Dilution (WB) Dilution (HC) Source Host species

Primary antisera

iNOS 1 : 200 1 : 250 Santa Cruz (sc8310; H-174) Rabbit

iNOS – 1 : 50 AbCam (ab49999) Mouse

nNOS 1 : 500 1 : 250 Millipore (AB1529) Sheep

HUC/D – 1 : 100 Molecular Probes, Invitrogen (A-21272) Mouse

S-100 1 : 1000 Dako (Z0311) Rabbit

a-tubulin 1 : 1000 – Sigma-Aldrich (T-6199 DM-1A) Mouse

Secondary antisera & streptavidin complexes

Anti-sheep FITC 1 : 150 Millipore (AP147F) Rabbit

Anti-rabbit Alexa Fluor 488 1 : 200 Molecular Probes (A21206) Donkey

Anti-mouse Alexa Fluor 488 1 : 300 Molecular Probes (A21202) Donkey

Cy3-conjugated streptavidin 1 : 500 Amersham (PA43001)

Anti-sheep IgG horseradish peroxidase-conjugated 1 : 20 000 Millipore (AP147P) Rabbit

Anti-rabbit IgG horseradish peroxidase-conjugated 1 : 10 000 Amersham (NA934) Donkey

Anti-mouse IgG horseradish peroxidase-conjugated 1 : 10 000 Millipore (AP126P) Millipore (AP147F)

Supply companies: Amersham, GE Healthcare, Buckinghamshire, UK; Abcam, Cambridge, UK; Millipore Co, Billerica, MA, USA; Dako, DK-2600

Glostrup, Demark; Molecular Probes, Invitrogen, Carlsbad, CA, USA; Santa Cruz Biotechnology, Inc, CA,USA; Sigma-Aldrich, Milano, Italy.
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collected over a period of 5 min for each sample and considered as
controls, subsequently in vitro I/R conditions were applied, as
described above. Test drugs were added to the superfusion medium
after collection of the third control sample until the end of
the experiment. Equilibration periods of 20 min were allowed
after addition of Nx-propyl-L-arginine (1 lmol L)1) and 1400 W
(10 lmol L)1), selective inhibitors of nNOS and iNOS, respec-
tively. A single drug concentration was tested on each intestinal
preparation. After the equilibration period with the appropriate
test drug, three samples were collected each over a period of 5 min,
before inducing in vitro I/R. At the end of the experiment, ileal
samples were blotted and weighed (189.73 ± 5.34 mg; n = 33).

Samples were assayed for NO by means of the nitrite method
based on the Griess reaction.31 Briefly, samples were incubated with
Griess reagent (0.5% sulfanilic acid, 0.15% 2-naphthylamine in
30% acetic acid) in a glycine-NaOH buffer. Nitrite (NO2

)) concen-
tration in the samples was estimated by measuring the absorbance
of the red–violet diazo dye at 548 nm. NO3

) concentration in each
sample was calculated by subtracting NO2

) concentration value to
the total NO2

) concentration, obtained by reducing nitrate (NO3
))

content in the sample to NO2
) with cadmium. All reactions were

conducted in triplicate. Standard NO2
) and NO3

) curves were
constructed daily using NaNO2 and NaNO3 as standard.

To calculate the absolute amount of NO2
) and NO3

), the
concentration in each sample was normalized by the weight of
each tissue preparation and collection duration and expressed as
lmol g tissue)1 min)1. In normal metabolic conditions, the effect
of test drugs on NO2

) and NO3
) overflow was expressed as

percentage variation with respect to control values. Changes of
NO2

) and NO3
) overflow induced by different treatments during

in vitro I/R, were expressed as percentage variation with respect to
values of spontaneous overflow obtained for each treatment in
normal metabolic conditions.

Statistical analysis

For statistical analysis the GraphPad Instat statistical package
(version 5.03; GraphPad software, San Diego, CA, USA) was used.
Data were analyzed either by one sample t-test, Student’s t-test or
analysis of variance (ANOVA) followed by an appropriate post hoc

comparison tests (Dunnett’s or Tukey’s Multiple Comparisons
tests) or two way ANOVA, as indicated either in the text or in the
legends. Differences were considered statistically significant
when P values £ 0.05.

Drugs and materials

N5-[Imino(propylamino)methyl]-L-ornithine hydrochloride (Nx-
propyl-L-arginine hydrochloride) and 3-aminomethylbenzylace-
tamidine dihydrochloride (1400 W) were purchased from Tocris
(Bristol, UK). All other reagents were purchased either from
Sigma-Aldrich or from BioRad (Segrate, MI, Italy).

RESULTS

Distribution of nNOS-IR and iNOS-IR in LMMP
whole-mounts preparations of the guinea pig
ileum in normal metabolic conditions and after
in vitro I/R

The number of myenteric neurons, as indicated by

HuC/D cytoplasmic staining, remained unchanged

during ischemia/reperfusion with respect to control

preparations (Fig. 1A). After in vitro I/R a proportion of

myenteric neurons displayed HuC/D-IR traslocation

from the cytoplasm to the nucleus (data not shown).

In both normal metabolic conditions and after I/R,

nNOS-IR was observed in the cytoplasm of myenteric

neurons. Some neuronal cells had a large cell body with

club-like dendrites, while others were small with an

ovoidal shape and with no visible dendrites. nNOS-IR

was evidenced also in neuronal fibers within the

ganglia and along the interconnecting strands, and in

the secondary and tertiary fiber tracts. (Fig. 2A,C). In

normal metabolic conditions the percentage of myen-

teric neurons staining for nNOS was 23.50 ± 1.94%,

n = 4. There was no significant change in the percent-

age of nNOS immunopositive myenteric neurons at

different times after in vitro I/R with respect to the

value obtained in control preparations (Fig. 1B;

Fig. 2D,F, G,I). In both control and I/R preparations,

iNOS staining was observed in the soma of myenteric

neurons with an ovoidal shape and no visible dendrites

(Fig. 3A,C). In normal metabolic conditions the per-

centage of iNOS immunopositive neurons was

5.75 ± 0.75%, n = 4. The proportion of iNOS immuno-

positive neurons significantly increased 60 min after

ischemia and during the whole reperfusion period,

with respect to the value obtained in controls (Fig. 1C,

Fig. 3D,F, G,I). In normal metabolic conditions the

majority of iNOS positive neurons (97.33 ± 0.94%,

n = 4) expressed nNOS-IR (Fig. 4A–C). All iNOS-IR

neurons appearing during I/R conditions were also

nNOS immunopositive (Fig. 4D–I). Double labelling

with S100 did not reveal the presence of nNOS-IR and

iNOS-IR in myenteric glial cells, both in normal

metabolic conditions and after I/R (data not shown).

Levels of expression of nNOS and iNOS in the
guinea pig ileum LMMP preparations after
in vitro I/R

Western blot analysis of nNOS in the guinea pig ileum

LMMP preparations (Fig. 5A,B) and in the rat hippo-

campus (data not shown) revealed one band at

155 kDa. nNOS protein levels in the membrane and

soluble fraction of LMMP preparations subjected to I/R

conditions remained unchanged with respect to the

relative controls (Fig. 5A).

Western blot analysis of iNOS in the guinea pig

ileum LMMP preparations (Fig. 5C,D) and in RAW

264.7 macrophage cells (data not shown) revealed one

band at 125 kDa. After I/R, iNOS levels significantly

increased both in the membrane and soluble fraction of

LMMPs, with respect to the relative controls (Fig. 5C).
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nNOS and iNOS protein levels obtained from LMMP

preparations superfused with a normal and oxygenated

Tyrode’s solution for 5, 30, 60, 65, 90 and 120 min after

the equilibration period were not significantly different

from the amount obtained in control preparations

collected at the end of the equilibration period

(Fig. 5B,D).

Levels of nNOS and iNOS mRNA in the guinea
pig ileum LMMP preparations after in vitro I/R

Quantitative RT-PCR analysis of nNOS and iNOS

mRNA in guinea pig ileum LMMP preparations is

shown in Fig. 6. Both in control and in I/R preparations

analyses of gene expression with respect to b-actin and

GAPDH, were not significantly different (data not

shown), thus, for the sake of simplification, only

b-actin normalized values are reported in Fig. 6.

nNOS mRNA levels significantly increased with

respect to the relative controls 60 min after inducing in

vitro ischemia and after 5 min of reperfusion (Fig. 6A).

iNOS gene expression levels (Fig. 6C) significantly

increased 5 min after inducing ischemia and remained

elevated throughout the ischemic period. Enhance-

ment of iNOS mRNA levels was also observed during

reperfusion (Fig. 6C).

In LMMP preparations superfused with a normal and

oxygenated Tyrode’s solution for 5, 30, 60, 65, 90 and

120 min after the equilibration period, nNOS and

iNOS mRNA levels remained unchanged with respect

to control preparations (Fig. 6B,D).

In LMMP control preparations, iNOS levels were

about 17-fold lower compared to nNOS levels (data not

shown).

Effect of in vitro I/R on NO2
– and NO3

–

production from the guinea pig ileum

After the 60 min equilibration period, NO2
) and NO3

)

concentrations in the superfusate from isolated muco-

sa-deprived segments of the guinea pig ileum were

4.02 ± 0.004 lmol g)1 min)1 (n = 4) and 11.00 ± 2.36

lmol g)1 min)1 (n = 4), respectively, and were stable

over at least 150 min (Fig. 7A,C).

Both NO2
) and NO3

) concentration significantly

increased over control values during the first 5 min

after inducing in vitro ischemia, and returned to values

similar to those obtained in control conditions in

the following collection periods under ischemic

conditions. A significant enhancement of NO2
) and

NO3
) production was observed 5 min after reperfusion.

NO2
) and NO3

) overflow tended to reach values not

A

B

C

Figure 1 (A) Number of myenteric neurons mm)2 staining for HuC/D

in guinea pig ileum whole-mounts preparations in control prepara-

tions (empty bar), at different times after inducing in vitro ischemia

(full bar) and after reperfusion (R, slash). Percentage of myenteric

neurons staining for HuC/D and immunopositive for either nNOS (B)

or iNOS (C) in guinea pig ileum whole-mounts preparations in con-

trol preparations (empty bar), at different times after inducing in vitro

ischemia (full bar) and after reperfusion (R, slash). Values are

expressed as mean ± SEM of at least four experiments. Vertical bars

indicate SEM *P < 0.05, **P < 0.01 by one way ANOVA followed by

Dunnett’s test.
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significantly different from controls 15 min after

restoring normal metabolic conditions. The peak of

NO2
) and NO3

) concentration observed at 5 min after

reperfusion was significantly higher than the values

obtained in the last 30 min of in vitro ischemia

(Fig. 7B,D).

Effect of nNOS and iNOS blockade on in vitro
I/R-induced on NO2

– and NO3
– production in the

guinea pig ileum

Nx-propyl-L-arginine (1 lmol L)1) and 1400 W (10 lmol

L)1) significantly reduced the basal concentrations of

A B C

D E F

G H I

Figure 2 Immunohistochemical co-localiza-

tion of nNOS with the neuronal marker

HuC/D in whole-mount preparations of the

guinea pig ileum obtained from control

preparations (A,B and merged image C),

60 min after in vitro ischemia (D,E and

merged image F) and at 60 min of reperfu-

sion after 60 min in vitro ischemia (G,H and

merged image I). The neuronal marker HuC/

D stained the somata of all myenteric neu-

rons (B,E,H). Bar 50 lm.

A B C

D E F

G H I

Figure 3 Immunohistochemical co-localiza-

tion of iNOS with the neuronal marker

HuC/D in whole-mount preparations of the

guinea pig ileum obtained from control

preparations (A,B and merged image C),

60 min after in vitro ischemia (D,E and

merged image F) and at 60 min of reperfu-

sion after 60 min in vitro ischemia (G,H and

merged image I). The neuronal marker HuC/

D stained the somata of all myenteric

neurons (B,E,H). Bar 50 lm.
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both NO2
) ()13.00 ± 3.91%, n = 7 P < 0.05,

)23.83 ± 5.21, n = 6 P < 0.01, by one sample t-test,

respectively) and NO3
) ()20.43 ± 6.73, n = 7 P < 0.05,

)30.50 ± 6.91, n = 6 P < 0.01, by one sample t-test,

respectively) with respect to control values.

Nx-propyl-L-arginine and 1400 W significantly

reduced NO2
) and NO3

) production during I/R. In these

conditions, 1400 W reduced NO3
) concentrations to a

significantly greater extent than Nx-propyl-L-arginine

(Fig. 8A,B).

DISCUSSION

An increasing body of evidence is available to suggest

that an I/R injury to the gut may induce severe damage

to enteric neurons6,26 which may involve nitrergic

enteric pathways. In the present study we have dem-

onstrated that in the myenteric plexus of the guinea pig

ileum, nNOS and iNOS, the predominant sources of

NO from enteric neurons in physiological and patho-

logical conditions, respectively,20,21 may participate

to the increased NO production following an acute

in vitro I/R insult.

Our immunohistochemical findings show that in

control preparations approximately 24% of myenteric

neurons express nNOS, in agreement with the already

reported percentage for nNOS expressing myenteric

neurons in the guinea pig, mouse and rat21,26,32 small

intestine. After in vitro I/R in ileal LMMPs, nNOS

immunopositive myenteric neurons and protein levels

did not change significantly with respect to values

obtained under control conditions, while nNOS

mRNA levels transiently increased 60 min after ische-

mia and 5 min after reperfusion. Changes in nNOS

mRNA and protein expression have been demonstrated

after in vivo and in vitro I/R injuries both at a central

and peripheral level, suggesting that also the constit-

utive neuronal isoform may play a role during a

metabolic insult.33,34 In human aortic smooth muscle

cells, an nNOS promoter has been recently shown to

contribute to rapidly up-regulate nNOS mRNA in

response to hypoxia with a functionally significant

effect on vascular smooth muscle contractility.35 In

our model, nNOS mRNA, but not the protein, is

transiently up-regulated. Delay of nNOS mRNA trans-

lation into the relevant protein was also demonstrated

in the rat nodose ganglion and cerebellum after an

hypoxic insult.33 Interestingly, in the myenteric plexus

of the rat ileum, the number of nNOS positive cell

bodies significantly increased 24 h after clamping the

superior mesenteric artery.25

In the present study, immunohistochemical, Wes-

tern immunoblot and RT-PCR data are provided to

suggest that guinea pig ileum myenteric neurons

constitutively express iNOS, as already documented

by other studies carried out in the mouse, rat and

A B C

D E F

G H I
Figure 4 Confocal images showing co-local-

ization of iNOS and nNOS in myenteric

neurons of the guinea pig ileum obtained

from control preparations (A,B and merged

image C), 60 min after in vitro ischemia (D,E

and merged image F) and at 60 min of rep-

erfusion after 60 min in vitro ischemia (G,H

and merged image I). Asterisks indicate

myenteric neurons expressing both iNOS

and nNOS. Bar 50 lm.
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guinea pig gut.14,17,36 The proportion of myenteric

neurons expressing iNOS was smaller (about 6% of the

total neuronal population) than the proportion of

nNOS expressing neurons. This observation is in

agreement with other studies reporting low iNOS

immunoreactivity levels in the myenteric plexus of

the guinea pig and rat gut.20,36,37 Accordingly, in

control preparations iNOS mRNA levels were

significantly lower with respect to those of nNOS.

A consistent up-regulation of iNOS has been shown to

occur in neuronal cells following I/R.38,39 Such an

adaptive response could be found also in the guinea pig

ileum where the percentage of iNOS-expressing

myenteric neurons, protein and mRNA levels progres-

sively increased from the first minutes after inducing

in vitro ischemia and remained elevated during reper-

fusion. Our data indicate a major involvement of iNOS

rather than nNOS in the changes occurring in myen-

teric neurons after I/R. In this regard, the observation

that, iNOS-IR neurons, appearing after I/R, are nNOS

positive may reflect a functional plasticity of myen-

teric neurons which activate different NOS isoforms

depending on either physiological or pathological con-

ditions.40 In particular, our observations strengthen the

concept that in myenteric neurons, nNOS may repre-

sent the main source for NO involved in the physio-

logical modulation of non-adrenergic non-cholinergic

inhibitory motor responses of the gut. However, under

pathological conditions, namely during I/R, within the

same cell iNOS may replace nNOS in the synthesis of

NO. As regards the molecular mechanisms underpin-

ning upregulation of iNOS expression in our model,

one of the most acceptable hypothesis involves

hypoxia inducible factor-1 (HIF-1) which is described

Figure 5 Levels of expression of nNOS and iNOS in the membrane (P, full bar) and in the supernatant (S, dotted bars) fractions obtained from guinea

pig ileum LMMPs preparations at different times after inducing ischemia (I) and reperfusion (R) (A,C) and at different times after the equilibration

period in normal metabolic conditions (B,D). Values are expressed as mean ± SEM of at least four experiments of the percentage variation of optical

density (OD) with respect to relative controls (empty bar). Vertical bars indicate SEM *P < 0.05, **P < 0.01 by one sample t-test. Blots representative

of immunoreactive bands for nNOS and iNOS in the different experimental conditions are reported on top of each panel. Samples (100 lg) were

electrophoresed in SDS-10% polyacrylamide gels. Numbers at the margins of the blots indicate relative molecular weights of the respective protein in

kDa.
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to mediate iNOS mRNA transcription under ischemic/

reperfusion conditions.41

In the guinea pig ileum, the concentrations of NO

oxidation products, namely NO2
) and NO3

), tran-

siently increased at the onset of hypoxia/hypoglyca-

emia and after returning to an oxygenated glucose-

containing medium. This finding suggests that the first

minutes after inducing in vitro ischemia and reperfu-

sion are crucial moments for the modulation of NO

synthesis in our model. NO is a reactive and unstable

molecule and its half-life is estimated as a few seconds

in biological specimens.42 Thus, to assess its synthesis

in our preparations we have quantitatively determined

the concentrations of its stable oxidation products,

NO2
) and NO3

) resorting to a reproducible and sensi-

tive spectrophotometric method assay based on the

Griess reaction.43 In biological specimens, NO3
) con-

centrations are in the micromolar range and are

10–100-fold higher than NO2
), since this latter NO

oxidation product is almost completely oxidized to

NO3
) by oxyhaemoglobin or oxymyoglobin.44 In agree-

ment with the literature, NO3
) concentrations from

ileal superfusate resulted in the micromolar range,

although this value was just three fold higher than

NO2
) concentrations. Higher NO2

) levels may be

explained considering that in the superfusing medium,

consisting of an aqueous solution lacking of haemo-

proteins, NO2
) are more stable and represent a con-

spicuous fraction of spontaneous NO oxidation

products, as already suggested for the rabbit stomach

and colon.45 Under normal metabolic conditions, the

ability of Nx-propyl-L-arginine and 1400 W, to decrease

NO2
) and NO3

) levels is suggestive of a spontaneous

NO release from the guinea pig ileum, which involves

both nNOS and iNOS activation. Spontaneous NO

synthesis has been demonstrated from the canine

proximal colon,46 and may have a role in the inhibition

of intestinal smooth muscle spontaneous excitabil-

ity.47 Sensitivity to 1400 W strengthens the hypothesis

of the presence of a constitutively active functional

iNOS in the guinea pig ileum, as already suggested for

the human colon and mouse ileum.21,48 Our immuno-

histochemical data suggest that, in our preparations,

myenteric neurons may represent the major cellular

population releasing NO, via iNOS activation.

Although we could not find evidence of either

nNOS-IR or iNOS-IR in enteric glial cells by imm-

unhistochemistry, we cannot entirely exclude the

A B

C D

Figure 6 RT-PCR quantification of nNOS and iNOS transcripts in guinea pig ileum longitudinal muscle myenteric plexus preparations (LMMP)

at different times after inducing in vitro ischemia (I, full bar), reperfusion (R, slash) (A,C) and at different times after the equilibration period in

normal metabolic conditions (backslash) (B,D). Values are mean ± SEM of at least four experiments of the percentage variation of relative gene

expression with respect to relative controls (empty bar). Vertical bars indicate SEM.*P < 0.05 by one sample t-test. The relative gene expression

was determined by comparing DDCT values normalized to b-actin.
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participation of this cell population. Indeed, in astro-

cytes, which share many common morphological and

functional features with enteric glial cells, iNOS

represents a major source for NO under physiological

conditions.40,49

After inducing both in vitro ischemia and reperfu-

sion NO ileal levels rapidly and transiently increased

via a NOS dependent pathway, involving both nNOS

and iNOS, as suggested by the ability of Nx-propyl-L-

arginine and 1400 W to reduce the peak concentrations

of both NO2
) and NO3

). The higher sensitivity of

NO3
) levels to 1400 W, with respect to Nx-propyl-L-

arginine, may be indicative of a major role played by

iNOS in myenteric neurons during pathological con-

ditions, as expected. However, during the first min

after reperfusion, NOS may not represent the unique

source for NO synthesis, as indicated by the partial

ability of NOS inhibitors to decrease NO2
) levels, in

these conditions. In this regard, we may hypothesize

that a fraction of NO2
) may originate from NO bound

to scavengers, such as deoxygenated haemoglobin and

myoglobin.50,51 Under hypoxic conditions, deoxyhe-

moglobin and deoxymyoglobin may mediate the non-

enzymatic conversion of NO2
) to NO, representing

sources of NO.52 Additionally, we cannot exclude that,

in the guinea pig ileum, NO may be stored in the form

of molecular complexes, such as S-nitrosothiols and

dinitrosyl iron complexes, from which NO can be

subsequently released.53

In our model the relationship between NO produc-

tion and changes of NOS expression is not consistent

throughout the experiment, as already observed in the

human colon from IBD patients.21 Indeed, the question

whether an increase of NOS expression may lead to

higher NO production is controversial. Recently in

the rat myocardium elevation of NO levels during

re-oxygenation after in vitro hypoxia was transitory

and did not reflect the long lasting changes of both

iNOS and eNOS expression and activity.54 In the

guinea pig ileum, enhancement of NO synthesis during

the first min after ischemia and reperfusion was

paralleled by an increase of iNOS expression. However,

nNOS protein levels remained unchanged suggesting

that the possible enhancement of nNOS activity may

depend upon post-translational events modulating the

enzyme function.34 One of the possible mechanisms

may be represented by a Ca++-dependent nNOS activa-

tion consequent to glutamate mediated overstimula-

tion of myenteric NMDA receptors during the I/R

insult.27 Reduction of NO levels during maintained

in vitro ischemic conditions, in spite of the increased

iNOS expression and the unchanged nNOS expression,

may depend upon hypoxia-mediated inhibition of NOS

activity.41,55 Furthermore, NO binding to scavenger

molecules in the ileal tissue during both in vitro

ischemia and reperfusion, may reduce the concentra-

tion of NO oxidized species in the superfusate.52

During reoxygenation of the ischemic tissue, NO

may be captured by molecular components of the

tissue and converted into reactive nitrogen species

which contribute to protein nitrosative modifications,

cellular apoptosis and necrosis.22,56

From a functional viewpoint, the boost of NO

synthesis after an acute I/R damage may be the basis

Figure 7 NO2
) and NO3

) concentrations in the superfusate from isolated segments of the guinea pig ileum in normal (A,C), in in vitro ischemic

conditions and during reperfusion after in vitro ischemia (B,D). Horizontal bars indicate the period of treatment. Each column is the mean of at least

4–7 experiments. Vertical bars indicate SEM, *P < 0.05, **P < 0.01, **P < 0.001 (vs controls) and ##P < 0.01, ###P < 0.01 vs last six collections in

ischemic conditions by one way ANOVA followed by Tuckey’s post hoc test.
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of the reduced muscular contractility described soon

after an hypoxic injury to the intestine.10 Enhance-

ment of NO synthesis may also retain an emergency

function, exerting a vasodilator effect in order to

regulate the blood flow through the hypoxic tissues.55

In addition, immediate iNOS expression changes,

which are not reversed by reperfusion, and

potential delayed alterations of nNOS protein may

contribute to NO-mediated myenteric neuron damage

underlying post-ischemic impairment of intestinal

transit.6,23,25

In conclusion the present study has provided evi-

dence that in the guinea pig ileum during in vitro I/R,

both iNOS and nNOS are involved in acute overpro-

duction of NO. Changes of iNOS protein, and possibly

of nNOS protein, may participate to the delay of

the intestinal transit and foster long lasting effects

on enteric neuronal circuitries in these conditions.

A more clear-cut differentiation of the function of

different NOS isoforms in clinical conditions, such as

during an ischemic gastrointestinal injury, may pro-

vide useful information about the pathophysiological

basis of the disease and eventually lead to the devel-

opment of pharmacological strategies targeting specific

NOS.

ACKNOWLEDGMENTS

The authors wish to thank Dr Tiziana Lorenzi, Dr Paola Moretto
and Mr Antonio Pelizzoli for the skilful assistance in performing
some experiments. Mrs Luisa Guidali is kindly acknowledged for
the excellent assistance in the acquisition of confocal images.

FUNDING

This study has been performed with grants from the Italian
Ministry of University and Research and by the Universities of
Insubria and of Pavia.

DISCLOSURE

The authors state no potential conflicts of interest.

AUTHOR CONTRIBUTION

GC analysed data, wrote the paper; GC EC, SM, RO EM, BB and
DV designed the research study and performed the research; GF,
SL and FC contributed to design the research and to discuss data.

Figure 8 Effect of Nx-propyl-L-arginine (1 lmol L)1) and 1400 W (10 lmol L)1) on NO2
) (A) and NO3

) (B) production from the guinea pig ileum evoked

by in vitro ischemia and reperfusion. Horizontal bars indicate the period of treatment. In vitro ischemia/reperfusion only ( ) Nx-propyl-L-arginine (4)

and1400 W (•). Data are expressed as percentage variation with respect to values of spontaneous overflow obtained for each treatment in normal

metabolic conditions. Each point represents the mean of 4–7 experiments. Vertical bars indicate SEM; ***P < 0.001, by two way ANOVA vs in vitro

ischemia/reperfusion only. ###P < 0.001 vs Nx-propyl-L-arginine-treated preparations.
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