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SUMMARY

Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in
many neuroscience and medical studies either because the whole brain is the final anatomical structure
of interest or because the automatic extraction facilitates further analysis. The problem of segmenting
brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements
obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has
to cope with critical aspects such as anatomical variability and pathological deformation. In the present
paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing
on two-dimensional graph searching principles for border detection. The segmentation of the whole brain
over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The
method is fully automatic and easily reproducible by computing the internal main parameters directly from
the image data. The segmentation procedure is conceived as a tool of general applicability, although design
requirements are especially commensurate with the accuracy required in clinical tasks such as surgical
planning and post-surgical assessment. Several experiments were performed to assess the performance of the
algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability. Copyright
© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is one of the most recently developed forms of neuroimaging
and has quickly become a popular tool for obtaining images with high contrast of brain tissues. By
using different acquisition parameter settings, MRI scanning allows to obtain different images of
the same body where various types of tissues and neuropathology can be differentiated [1, 2].

Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is
a key task in many neuroscience and medical studies either because the whole brain is the final
anatomical structure of interest or because the automatic extraction facilitates further analysis [3,4].
Whole brain segmentation is a task available in software such as Brain Visa [5], FSL [6] and
Brainsuite [7]; however, in most cases, they give poor results especially in case of tumors located
on the border of the brain [4].

The problem of segmenting all or part of the brain in MRI imagery continues to be investigated
giving rise to a variety of approaches attempting to satisfy the high accuracy demand in diversified
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clinical and neuroimaging application [1–4]. The rationale behind this effort is to improve upon
existing early methods suffering from incorrect detection because of noise, difficulties in assigning
threshold in the edge image and over and under estimation. The proposed solutions make use
of a single, gray scale two-dimensional (2D) or three-dimensional (3D) image or multiple MR
images with different gray scale contrast [1]. Focusing on whole brain segmentation from gray scale
images, the early most intuitive approach proposed is automatic thresholding. The application of this
approach to MR brain image segmentation includes works based on iterative, knowledge guided
thresholding [8,9] and histogram analysis [10] complemented in some cases with image processing
techniques such as morphological filtering [11]. The solutions proposed suffer in general from the
difficulty in setting threshold values and present strong limitations in the presence of inhomogeneity,
image artifact and anatomical variability. The Region Growing approach extends thresholding by
combining it with connectivity. Methods within this approach need an operator for manual setting of
seed for each region, and their results depend on the heuristic assessment of thresholding for homo-
geneity [12,13]. As a consequence, suitable accuracy is achieved only detecting the contour in slices
where the brain is one homogeneous region without pathological alterations and inhomogeneity.

Supervised statistical pattern recognition approaches are proposed in MR image segmentation
to circumvent the problem of explicitly and analytically describing the specific segmentation
procedure and related parameters, lying, to a learning stage, the charge of inducing the classifier
from supervised data available. Parametric and nonparametric methods are proposed showing a
competitive behavior in reducing the effect of radio frequency inhomogeneity, but requiring some
interaction to provide tissue training pixels and to perform post processing adjustments [14,15]. The
parametric probabilistic classification is sensitive to accurate estimation of the probability density
function [16]. Nonparametric approaches obtain the parameters of the probability density function
from data without any assumptions, so these approaches are accurate, but expensive [17, 18].
Computational complexity and low generalization of trained classifiers limit their applicability.
Unsupervised methods employed for MR brain image segmentation include k-means and its fuzzy
equivalent Fuzzy c-means [19]. From a viewpoint of reproducibility, unsupervised methods are
clearly desirable. Many algorithms are introduced to make Fuzzy c-means robust against noise
and inhomogeneity, but most of them still present low accuracy [20, 21]. Other pattern recognition
methods such as neural networks and template matching have been also applied to MR brain image
segmentation [21, 22].

Edge-based segmentation approaches have been widely investigated to segment MR images of
the head [1,23,24]. Base methods apply local operations to every point of the input picture, in order
to extract short edge elements. Some of these operations are very simple, such as the gradient or
the Laplacian, whereas other operations are more complex and allow the elimination of most of
the local noise [25]. When small edge elements have been obtained, edge following strategies are
applied to connect them to form borders. Snell et al. used an active surface template to find the
intracranial boundary in MRI volumes of the head [26]. The method is based on the active contour
model algorithm ‘Snakes’ [27]. However, the resulting procedure requires user interaction to pro-
vide a good initial contour for subsequent snake contour refinement. The Bayesian dynamic contour
model [28] shows advantages over the snakes’ active contour as the energy functions used to find
the boundary can be more generally based on information about the whole region, rather than just
the local boundary characteristics. The results are promising for the central slices of multispec-
tral images presented, but have yet to be developed for isolating the whole brain. Contour-based
deformable models are applied successfully to MRI brain segmentation although the approach suf-
fer from the difficulty of determining the initial contour and tuning parameters [4, 10]. Khotanlou
et al. [4] explicitly proposed a segmentation method based on deformable models and asymmetry
analysis. Proceeding from the assumption that in normal brain the symmetry plane of the head is
approximately equal to the symmetry plane of the segmented brain, an MRI brain segmentation
algorithm robust in presence of tumor has been developed. Results obtained are satisfactory, but
they heavily depend on the validity of the symmetry assumption. A boundary tracing method using
dynamic programming for noisy brain sections with vague boundaries is proposed, but success-
ful application for global segmentation of MR images remains to be demonstrated because a good
initial guess for the boundaries is required [29]. Of the many techniques available for automated
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border detection, those based on graph searching principles [30] have been successful in several
applications. The value of graph search method lies in robustness, which derives from the property
typical of the optimization methods of embedding global information about edges and the structure
of object in a figure of merit allowing accurate border detection from noisy pictures [31]. Graph
searching has become one of the best investigated segmentation tool for medical image data with
applications to coronary angiography, ultrasound and cardiac MRI imaging [32–35]. However, to
the best of our knowledge, the application of this technique to MRI brain segmentation has not yet
been investigated.

In the present work, we focus our attention on fully automatic whole brain segmentation from
MRI volumes, specifically addressing those critical situations in which the presence of patholo-
gies such as tumors of great dimension and/or with location close to the border causes significant
morphological deformations and consistent alteration of homogeneity. We derive our method from
the edge-based approach adopting graph searching technique [30] for 2D boundary detection. The
solutions investigated in this paper are an extension of those adopted in a previous work [31] from
which we inherit the graph searching model. The MRI volume is processed slice by slice; the overall
segmentation procedure is made fully automatic and easily reproducible by the automatic detec-
tion of frames including eyes and by computing the internal main parameters directly from the
image data.

Several experiments were conceived and conducted to evaluate qualitatively and quantitatively
the segmentation method proposed using a varied set of pre-surgical and post-surgical MR data
from patients with cerebral tumors. A first set of experiments addressed the question of how did the
performances of the proposed method depend on its main parameters. A second set of experiments
was aimed to assess the accuracy of the solutions proposed for the automatic detection of the
frames including eyes. A third set of experiments was aimed to evaluate robustness of the method
in segmenting images with increasing levels of pathological deformation. Finally, to investigate
whether the proposed segmentation can be considered an alternative to current well known solu-
tions, a detailed comparison analysis was conducted using segmentation procedures available in
FSL software tool [6].

2. GRAPH SEARCHING TECHNIQUE FOR RADIAL CONTOUR DETECTION

The salient aspect of our approach to whole brain segmentation is the use of graph searching for
identifying optimal brain borders. Brain contour has a radial shape that can be conveniently treated
by using polar coordinates. We proceed then by formulating graph searching conceptual ingredients
for contour detection in polar space [30, 36]. Let Icart.x,y/ be an image described on a square
cartesian discrete grid. The image can be ‘unwrapped’ converting it in polar coordinates, obtaining

Ipol.�, �/ where 1 6 � 6 M , 1 6 � 6 N , � D
p
.x � xo/2C .y � yo/2, � D arctan

�
y�yo
x�xo

�

and .xo,yo/ coordinates of the centroid of the object. Working in polar space, the radial boundary
of a given object can be represented by a transformation � D f .�/ characterized by the following
feasibility constraints:

Boundary as a function - f .�/ is single valued, and the value � exists for each � with 16 � 6N
Connectivity constraint - jf .� C 1/� f .�/j6 1 for 16 � 6N � 1
Closing constraint - jf .1/ � f .N /j 6 1 imposing that the first and last pixels satisfy the

connectivity constraint.

Each feasible function f .�/ is a candidate object boundary. The goal is then to find the minimum
cost boundary subject to the feasibility constraints. The boundary detection task within the graph
searching framework is modeled by embedding the properties of the boundary in a cost function,
and formulating the boundary extraction as the problem of minimizing this function subject to the
feasibility constraints. The boundary cost is defined as follows:

Bcost D

NX
�D1

C.� ,f .�// (1)
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where C.� ,f .�// is a cost image. The value of each pixel in the cost image must be inversely
related to the likelihood that an edge is present at that point. The likelihood is usually determined
by the application of a low-level local edge operator [32]. In general, the definition of this cost
function depends on a priori knowledge on the object to be segmented. The boundary cost allows to
express both local and global information that can be incorporated within the constrained minimiza-
tion strategy for optimal boundary detection. Representing the constrained minimization problem
within the graph search framework, a graph is built where nodes are cost image pixels whose values
are node weights. The connectivity of the graph is derived from the feasibility constraints. Minimal
cost feasibility boundary is the minimum cost path in the weighted node graph that can be identified
by using A* Algorithm [36].

The global solution is implemented by a bottom-up scheme: the solution of the whole problem is
built from the solutions of the subproblems. A ‘path cost image’ collecting the intermediate infor-
mation useful for defining the global optimal solution is computed with the Algorithm 1. In the path
cost image, the minimum value of the last column is the cost of the minimal path. Starting from this
point and passing through the graph up to the first column, the minimal path is found by choosing
for each visited point the adjacent nodes having the minimum value. In this way, the feasible func-
tion that minimizes the cost is detected. Figure 1 shows the steps with which the 2D segmentation
method based on graph searching is organized. Figure 1(b) shows the polar representation of the
original radial object represented in cartesian space (Figure 1(a)). In Figure 1(c), the superimpo-
sition of the minimum path on the cost image is shown. Figure 1(d) represents the solution in the
original cartesian space.

Figure 1. Sequence of the steps where the 2D segmentation method based on graph searching is organized:
(a) Cartesian image; (b) polar image; (c) superimposition of the minimum path on the cost image; and

(d) segmentation result.
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3. GRAPH SEARCH TECHNIQUE FOR BORDER DETECTION IN BRAIN MRI

In this section, the application of the previously described general framework to the solution of
whole brain segmentation in MRI imagery is detailed, addressing specific imaging related aspects.
We consider that between the brain and the skull, there is a layer of liquor, and in the MRI imagery
used in our study, this anatomical part is acquired with voxel values close to zero. Secondly, we take
into account that the bone is more intense than the brain tissue, and the transitions from the brain
and the ‘liquor cushion’ and from the skull and the external air are similar and can be confused as
shown in Figure 2. Proceeding from these considerations, a first cost image with which to identify
the internal skull boundary is firstly defined; the actual cost image for the brain boundary detec-
tion is subsequently defined after a masking procedure. The overall detection procedure includes
a preprocessing phase aimed to emphasize the brain boundary before starting with the boundary
graph-based detection. The more the object is similar to a circle in Cartesian coordinates or, in other
words, a horizontal line in the � , � plan, the more the description of the cost through the Sobel filter
application is effective. In axial images of the brain, this feature is very strong and could be easily
emphasized by changing the aspect ratio of the image. After this preprocessing phase, the 2D brain
segmentation is accomplished in the three following phases.

Phase 1. Polar conversion -The image is converted in polar coordinates. The polar sampling is a
topic widely discussed in literature, presenting a high level of complexity if optimally solved
[37]. In this work, we adopt a sub-optimal solution considering a square grid for the description
of the polar space and using an average filter applied on the polar image.
In order to fulfill the fully automation requirement, both the angular sampling and the center of
the polar space are automatically computed from the data. Let Amax be the major axis of the
ellipse that circumscribes the image points whose intensity is higher than average ŒxC,yC�, the
number of angle Nang is computed as follows:

Nang D �Amax (2)

Figure 2. Polar representation of brain axial slice and result of the vertical Sobel filter application, with
emphasis on a vertical line of profile.
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and the coordinates of the center of the polar space .xo,yo/ are computed as the centroid
coordinates of the points ŒxC,yC�; formally

xo D
1

NxC

NxCX
iD1

xC,i I yo D
1

NyC

NyCX
iD1

yC,i .

The resulting centroid coordinates approximate the actual brain centroid with an estimation error
related to the accuracy of the segmentation by trivial thresholding. We have experimentally
verified that the approximation does not affect the graph segmentation results (Section 4).

Phase 2. Skull boundary detection - The cost image is computed by applying the vertical Sobel
filter to the polar image. Every pixel of this cost image is a weight of graph nodes, and using
the feasibility constraints, the graph connections are identified. The minimal path in the graph is
computed using Algorithm A*, and skull boundary is found. A binary mask is computed distin-
guishing between pixels with � less and greater than the edge. This mask is applied to cost image,
and it is inverted to find a new cost image for the second step: the actual brain segmentation.

Phase 3. Brain boundary detection - The Algorithm A* for the extraction of the minimal path is
applied on this new cost image. The minimal path in the graph is the brain boundary in the polar
space. The last step is the conversion, in Cartesian coordinates, of the detected boundary.

The schema of the overall 2D brain segmentation procedure is shown in Figure 3.
The detection of the 3D boundary of the brain is computed iterating the 2D segmentation process

on every slice composing the whole brain. Often, the brain MRI volume starts from the shoulders
and includes a portion of air above the head, especially if we consider axial slices of a volume
acquired trough subsequent sagittal sections. It would not be appropriate to compute the initial and
the final image slice to be processed in the volume as a percentage of the number of slices because

Figure 3. Two-dimensional brain segmentation strategy.
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parts of the body included in the volume vary greatly depending on the acquisition mode and on the
inter-subject variability. To make our technique completely independent from the acquisition mode
and fully automatic, both the starting and stopping slices are computed directly from the data. The
final slice is identified by segmenting the central sagittal slice with the algorithm detailed earlier.
Let r and c be two vectors containing the row and column values of the pixels belonging to the
segmented portion, respectively; the final slice is StopDmin.r/.

Instead, the initial slice is related to the first slice containing the eyes Se . The eyes detection
is a widely studied topic especially in biometric application [38, 39]. Considering that the main
feature of the eyes is the circular shape, the slice of interest (SoI) detection is performed in the
Hough Transform domain [40]. This approach is a well-known feature extraction tool, applied on a
thresholded edge image. The Hough Transform allows to obtain an accumulation matrix in which
the intensity peaks correspond to the position of the center of the circular objects with a specific
radius in the image. The eyes radius, very stable in our data, is set to 1-cm value. The SoI detection
procedure is detailed as follows. The edge extraction process is composed of three phases iterated
for each slice:

� The image is thresholded looking at values greater than zero.
� A close morphological operation is applied on the binary image, with a circular structural

element with radius less than 1 cm.
� Edges are extracted using Sobel filter applied on the image.

The Hough transform is applied on the binary edge image, and the accumulation matrix A is
computed. In Figure 4, three examples of the previously detailed process are shown. Figure 4(a)
and (b) shows the processing of a slice under the SoI, at the dental arch level and a slice over the
SoI, respectively. The third case (Figure 4(c)) is related to the SoI.

(a)

(b)

(c)

Figure 4. Phases of the eyes slice detection algorithm: (a) slice at the dental arc level under the slice of
interest (SoI); (b) slice over the SoI; and (c) SoI.
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Figure 5. Eyes presence index signal.

For each slice in the volume, an eyes presence index (EPI) is computed. Let Ai be the
accumulation matrix related to the i th slice with dimension ŒJ �K� the EPI is obtained as follows:

QAi D
n
Qai j Qai D aij ,k ^ aij ,k > 0 for 16 j 6 J and 16 k 6K

o
I

EPI.i/D
max. Qai /

1
W

PW
wD1

Qaiw

where W is the cardinality of QAi , then the SoI is computed as follows:

SoI D argmax
i

EPI.i/ (3)

The EPI.i/ values in the three examples given earlier are respectively: 6.25, 6.97, 14.88, the eyes
slice has an EPI.i/ value greater than twice the other two. In Figure 5, an example highlighting the
significance of the EPI index is shown in function of the slice number. In Section 4.2, a statistical
significance of EPI is analyzed. The SoI identifies the central slice of the eyes. The starting slice is
computed by shifting the SoI of a number of slices equal to the radius of the eyes.

4. EXPERIMENTAL RESULTS

Many experiments were conceived and conducted to assess the performances of the algorithm,
both qualitatively and quantitatively. The dataset used for the evaluation process is composed of
14 FLAIR MRI gray scale, 12-bit-depth volumes. All dataset volumes are altered by the presence
of glial tumors heterogeneous in terms of position, dimension, intensity and shape. As detailed in
Table I the dataset is composed of two parts. The first 10 MRI images are obtained with a FLAIR
sequence; the slice thickness is 5 mm, the sequence is characterized by long repetition times and
by a reversal of the spin pulse at 180ı; the measurement is performed when the value of the liquid
is close to 0 allowing the removal of the signal of liquid normally hyper-intense in sequences with
long repetition time. The cases 9 and 10 are post surgical MRI playing the role of assessing the
performances of our segmentation strategy also in cases where the most commonplace assumptions
about the shape of the brain such as symmetry are lacking.

The second part of the dataset is composed of volumetric acquisition with isotropic voxel
(0.57 mm). This high resolution allows to detect fine anatomical detail, to reconstruct on different
orthogonal planes (axial, sagittal, coronal) and to make accurate measurements. These advantages,
however, are obtained at the expense of signal to noise ratio. The results obtained from the varied
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Table I. Data set description.

Spacing
Acquisition Volume size Slice between Pixel Repetition Echo

Case mode (voxel) thickness slice spacing time time

1 Assial FLAIR-T2 Œ228� 228� 22� 5 6 (0.80,0.80) 11000 140
2 Assial FLAIR-T2 Œ320� 320� 23� 5 6 (0.75,0.75) 11000 140
3 Assial FLAIR-T2 Œ228� 228� 23� 5 6 (0.80,0.80) 11000 140
4 Assial FLAIR-T2 Œ320� 320� 23� 5 6 (0.75,0.75) 11000 95
5 Assial FLAIR-T2 Œ256� 204� 20� 5 6 (0.94,0.94) 7800 95
6 Assial FLAIR-T2 Œ256� 204� 20� 5 6 (0.90,0.90) 7800 95
7 Assial FLAIR-T2 Œ256� 204� 20� 5 6 (0.90,0.90) 7800 95
8 Assial FLAIR-T2 Œ256� 204� 20� 5 6 (1.02,1.02) 7800 95
9 Assial FLAIR-T2 Œ256� 204� 20� 5 6 (0.98,0.98) 7800 95
10 Assial FLAIR-T2 Œ256� 204� 20� 5 6 (0.98,0.98) 7800 95
11 Sagittal FLAIR-T2 Œ432� 432� 300� 0.6 0.6 (0.57,0.57) 8000 282.89
12 Sagittal FLAIR-T2 Œ432� 432� 300� 0.6 0.6 (0.57,0.57) 8000 281.93
13 Sagittal FLAIR-T2 Œ432� 432� 300� 0.6 0.6 (0.57,0.57) 8000 281.38
14 Sagittal FLAIR-T2 Œ432� 432� 300� 0.6 0.6 (0.57,0.57) 8000 282.43

set of experiments have been evaluated qualitatively by a group of experts by comparing the results
produced by the automatic segmentation with those obtained by manual segmentation.

In order to limit the effects of the well-known phenomenon of inter-observer and intra-observer
variation, our strategy contemplates the organization of ‘tuning sessions’ aimed at establishing a
consensus among experts through discussion of the most controversial segmentation cases.

An analysis of the stability of the results in function of the variations of the center coordinates
in the polar reference system was performed. The eyes slice detection algorithm is tested on all the
dataset volumes, and the statistical significance of the EPI index is proved.

The last section of the experimental phase is about the comparative analysis between our algo-
rithm and a well known and more used segmentation algorithm: FEAT FSL Brain Extraction Tool
(BET) [6] that uses a deformable model, which evolves to fit the brains’ surface. Segmentation
results shown in Figure 6 are obtained by processing five slices at different levels from the same
MRI volume (Figure 6(a)), and five slices from different cases (Figure 6(b)). In the first row of both
Figure 6(a) and (b), the original slices are displayed; in the second, the boundary detected by the
algorithm is superimposed on the original image, and in the last row, the brain extraction is shown.

The team of experts performed a visual inspection of the resulting segmented images judging
satisfactorily the results obtained also in cases in which tumors are very invasive. The segmentation
procedure has a good behavior also when processing critical slices such as those including eyes or
slices near the top skull, characterized by high texture and complex morphological patterns.

In Figure 7(a) and (b), two examples of post surgery MRI are shown. One of the goals of the
post-operative MRI inspection is to identify any tumor residual. In this context, the whole brain
segmentation is used as a preprocessing phase for subsequent tumor detection, segmentation and
analysis. The whole brain segmentation strategy has to be able to reach accurate and robust results
even when the most commonplace assumptions about the brain are lacking. The removal of the
expansive mass cause morphological and signal alterations.

In the first case (Figure 7(a)), an uneven area can be seen at the site of intervention because
of the surgical cavity in which cerebrospinal fluid is observed, together with traces of blood and air
bubbles. It is visible that a rim of perilesional edema (hyperintense) and into the deepest parts, in the
vicinity of the lateral ventricle, the signal hyperintensity is consistent with a small tumor residual.
Among the brain and the opercolo, which has been repositioned at the end of the intervention, there
is a small flap hyperintense, consistent with a subdural flap, located in the meningeal subdural space
between the brain and the skull, with a maximum thickness of 5 mm. Outside of the skull, there is an
important thickening of the subcutaneous tissues overlying the operculum, clearly uneven, caused
by edematous imbibition. In the outer part, there are the stitches with a typical signal distortion.
Again in Figure 7(b), an MRI after surgical removal of right frontal expansive mass is shown.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2013; 29:887–904
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(a)

(b)

Figure 6. Example of 2D brain segmentation: (a) different slices of the same patient and (b) different
patients.

Contrary to the previous case, here, the operculum was removed to allow decompression of the brain
around the lesion, hyperintense edema-gliotico halo is visible: small right frontal subdural flaps with
a maximum thickness of 3 mm. All these anomalies compared with the structure of a standards brain
MRI, make the automatic brain segmentation a hard task. Moreover, the high variability between
the cases highlights the need for a robust algorithm working without a priori conditions to solve the

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2013; 29:887–904
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(a) (b)

Figure 7. Post surgery examples.

segmentation problem. In both cases, the segmentation algorithm results have been well evaluated
by the experts. The presence or absence of the operculum, the asymmetries and large deformations,
do not affect the performance.

The quantitative analysis is conducted on the volumetric MRI (cases 11–14). For each volume,
the segmentation results, related to 10 slices evenly sampled, are evaluated in terms of both surface
estimation and segmentation similarity. For each selected slice, a ground truth mask has been
manually identified and used in the evaluation. As regards the evaluation of the algorithm capability
to estimate the surface, the error made is computed by E D .Strue � Salg/=Strue where Strue is
the mean of the surface obtained by the manual labeled masks produced by individual experts, and
Salg is the surface of the region detected by the segmentation algorithm. As regards the segmentation

similarity, three performance indexes are used: the Jaccard index J D Tp
TpCFpCFn

[41], the Precision

P D
Tp

TpCFp
and the RecallRD Tp

TpCFn
[42] where Tp are true positive, Tf true negative, Fp false

positive andFn the false negative. Table II reports results for both surface and similarity evaluations.
Performances are highly satisfactory with mean value of Jaccard, Precision and Recall indexes equal
to NJ D 91, 43, NP D 93.36, NRD 97.78, respectively. It is worth to note that there is a common trend
through the slices in all four cases. Indeed, best results are obtained in central slices (35–110) with
mean values NJ D 96.55, NP D 98.314, NR D 98.35; results slightly decrease overestimating at eye
level (Slices 5,20) with mean values NJ D 86.15, NP D 87.72, NR D 98.89. The worst performances
are found in the top slices with mean values NJ D 80.98, NP D 84.15, NR D 95.53. In the last column
of Table II, the expert variability, measured with Jaccard index, is reported making transparent the
level of inconsistency under which the quantitative evaluation process has taken place.

4.1. Sensitivity analysis

As previously mentioned, the identification of the center of the polar reference system is a critical
aspect in the overall procedure. A sensitivity analysis is conducted with the aim of measuring how
the segmentation accuracy depended on this parameter. Varying the center of polar image, different
optimal feasible functions are obtained. Differently from the number of polar angle parameters

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2013; 29:887–904
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Table II. Quantitative analysis.

Case Slice Sgt Salg E (%) Jaccard (%) Precision (%) Recall (%) InterJ (%)

1 5 11428.20 12111 5.97 82.57 88.44 99.02 97.58
1 20 13721.18 13732 0.08 96.67 98.27 98.35 97.12
1 35 14845.66 14920 0.50 97.00 98.23 98.73 97.23
1 50 15917.66 15942 0.15 97.81 98.82 98.97 97.88
1 65 15452.57 15548 0.62 97.42 98.39 99.00 97.32
1 80 14809.10 14746 0.43 96.44 98.40 97.98 97.40
1 95 13076.74 12910 1.28 96.88 99.05 97.79 96.88
1 110 10979.51 10216 6.96 91.74 99.25 92.39 94.58
1 125 7674.46 11632 51.56 60.80 62.76 95.12 91.39
1 140 3797.59 6995 74.20 54.51 54.52 99.95 93.12

2 5 10884.96 12897 18.48 81.98 83.07 98.43 95.44
2 20 13653.11 13697 0.32 97.94 98.80 99.12 97.86
2 35 15359.81 15357 0.02 95.67 97.80 97.78 97.77
2 50 15342.59 15431 0.58 97.76 98.59 99.15 97.72
2 65 15041.08 15150 0.72 97.36 98.31 99.02 97.86
2 80 14107.81 14272 1.16 97.40 98.12 99.26 97.93
2 95 12695.79 12769 0.57 96.12 97.74 98.30 97.23
2 110 10580.53 10412 1.59 95.69 98.59 97.02 97.51
2 125 7682.91 7760 1.00 94.36 96.61 97.58 96.09
2 140 4808.36 5179 7.71 68.66 78.48 84.59 91.83

3 5 6713.41 9860 46.87 58.29 58.34 99.79 86.37
3 20 10634.79 11168 5.02 91.50 93.28 97.96 96.45
3 35 13445.50 13221 1.67 95.35 98.45 96.81 96.76
3 50 15323.42 15512 1.23 97.85 98.31 99.52 97.84
3 65 15371.99 15517 0.94 97.73 98.39 99.32 97.83
3 80 14901.21 14990 0.60 97.92 98.66 99.25 97.83
3 95 13802.73 13949 1.06 97.54 98.24 99.28 98.00
3 110 12233.95 12453 1.79 96.54 97.37 99.12 97.52
3 125 10173.11 10079 0.92 96.47 98.65 97.76 95.84
3 140 7307.00 7429 1.67 94.20 96.22 97.82 95.22

4 5 10800,49 11847 9.68 89.23 90.15 98.88 96.88
4 20 13682,35 14897 8.88 91.03 91.42 99.54 97.06
4 35 15006,81 15213 1.38 96.95 97.78 99.13 97.60
4 50 15705,18 15921 1.37 97.54 98.08 99.43 97.76
4 65 15680,32 15848 1.07 97.54 98.23 99.29 99.76
4 80 15141,48 15288 0.97 97.69 98.36 99.31 97.87
4 95 14003,68 14014 0.07 96.14 98.00 98.07 96.57
4 110 12281,54 11968 2.56 93.99 98.17 95.67 96.09
4 125 9230,08 9211 0.21 95.40 97.75 97.54 95.50
4 140 6046,55 6431 6.35 83.41 88.24 93.86 93.08

whose setting simply affects the sampling rate, the variation of the center of polar reference system
involves significant variation of the directional components of the polar image, and then vertical
gradient values that are in correspondence with the likelihood that an edge is present at that point. We
base our analysis on cases 1–8. For each volume, three slices are selected: one from the eyes level,
the other two from central and top slices. For each selected slice with an independent procedure,
we identify an ideal center. Under this condition, we proceed in the brain segmentation identifying
the boundary Bcent.�/ whose accuracy is qualitatively verified. We generate a set of new center
coordinates moving randomly the centroid of Np pixels. For each new generated center, the
boundary Bmove,Np.�/ is identified, and detection is evaluated as follows:

ENp D
1

N

NX
�D1

jBcent.�/�Bmove,Np.�/j

Bcent.�/
(4)
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(b)(a)

(c)

Figure 8. Stability analysis: Trend of errors as a function of the center deviation (a) central slice, (b) top slice,
and (c) eyes slice.

(a) (b)

(c)

Figure 9. Stability analysis: Qualitative examples (a) central slice, (b) top slice, and (c) eyes slice.
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where N is the number of sampled angles. For each Np , the experiment is iterated for 50 trials,
and the results are averaged. The results obtained form central top and eyes level slices are shown
in Figure 8(a)–(c), respectively. The values Np are expressed as a percentage compared with
the maximin radius of the ellipse where the brain is inscribed, to make the results invariant to
image resolution. The relation between errors and distances between the center of the polar system
approximates a liner low. The interpretation of these results is twofold: the behavior of the system
is predictable and controllable, and the variations of the parameter under study are not invasive.
Moreover, the mean ratio between the percentage error and the percentage centroid deviation is
equal to 0.11 for central slices, 0.17 for top slices and 0.21 for the eyes slices that show the higher
instability.

To conduct a qualitative analysis in Figure 9, three visual examples are shown. The centers and
the corresponding boundaries detected are superimposed on the MRI original slices. The visual and
the earlier quantitative results analyzed tallied in general.

4.2. Eyes slice detection performance

The eyes detection procedure identifying the initial slice SoI of the volume segmentation is evaluated
by comparison with a manual detection using all the 14 cases of the dataset. The manual procedure
is based on the identification in each volume of the first and last axial slices containing eyes; the
slice lying in the middle between these two is considered as ground truth SoIgt in the evaluation
procedure. For each volume, we compute the detection errorE D jSoIgt�SoI j, which is expressed
in terms of number of slices; using the slice thickness, which is accessible in the DICOM header,
it is converted into millimeters. Table III details the obtained results. The first 12 cases show errors
always smaller than 5 mm, under the vertical resolution of the voxel, except for case 1 in which the
error is equal to the vertical voxel resolution.

Table III. Eyes detection results.

Case Start eyes Stop eyes SoI E EPI EPI mean

1 6 10 9 5 13.84 6.79
2 5 10 7 2.5 14.40 7.55
3 7 10 9 2.5 10.82 7.63
4 4 9 7 2.5 10.05 6.75
5 3 8 5 2.5 8.58 5.37
6 5 9 7 0 11.09 6.78
7 6 9 8 2.5 10.98 6.95
8 6 9 7 2.5 12.24 6.77
9 5 10 8 2.5 11.89 6.66
10 5 8 7 2.5 11.14 6.97
11 209 242 225 0.3 14.88 7.01
12 190 227 215 3.9 15.12 7.30
13 175 208 189 1.5 15.32 7.81
14 200 235 218 0.3 15.69 7.31

(a) (b)

Figure 10. Performance comparison of our algorithm versus FSL BET: (a) central slice, good overlap and
(b) slices at the eyeball level, bad overlap.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2013; 29:887–904
DOI: 10.1002/cnm



AUTOMATIC MRI WHOLE BRAIN SEGMENTATION USING GRAPH SEARCHING TECHNIQUE 901

For what concerns the volumetric images 11–14, in two cases (11,14), the error is less than the
slice thickness (0.6 mm); for the cases 12 and 13, the error is 1.5 and 3.9 mm, respectively. These
results can be reconducted to a slight variation of eyes diameter. In the last two columns of the
table, there are the EPI values of the detected slices and the mean values of the EPI signal computed
for every slice, respectively. Basing on the results obtained, we may conclude that the EPI index

(a)

(b)

(c)

Figure 11. Quantitative Comparison of our algorithm versus FSL BET: (a) Jaccard, (b) Precision, and
(c) Recall.
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is robust considering the separability of the mean of EPI signal and the EPI value of the detected
slice. The distribution separability was evaluated with a t-test obtaining a confidence value equal
to 99.96%

4.3. Comparison analysis

Our strategy has been compared with the widely used FEAT FSL Brain Extraction Tool (BET)
[6]. The BET algorithm describes the brain surface starting from a sphere composed of vertices,
and triangles obtained by dividing iteratively the triangles of an icosahedron; each surface vertex
is iteratively moved by a set of forces, which consider the homogeneity of the region inside the
surface and the intensity of the transitions. A qualitative comparison has been conducted using
cases 1–8; cases 11–14 have been compared quantitatively. In Figure 10, some examples of the
comparison are shown. The brain boundaries are superimposed on six MRI slices. The red boundary
is found by using the BET, and the green one with our method. When processing the central slices,
the two techniques have comparable behavior (Figure 10(a)); when processing eyes level slices
(Figure 10(b)) our strategy definitely prevails. The results can be interpreted in the light of the fact
that the embedding of both the local and global information in the graph search segmentation allows
to identify the complete brain boundary even in a complex scene. Instead, the BET deformable
model strategy is deceived by high-transition zone related to different anatomical parts. The ground
truth masks and the evaluation metrics described earlier are used to develop the quantitative
analysis. The analysis is focused on cases 11–14 that record scenes in which the transition between
the tissue are shaded and the noise level is high. Results obtained for all cases considered (11–14)
highlight a comparable behavior with slightly better performance of the BET when processing eyes
and top level slices. As mentioned earlier, the edges are shaded, thus the BET is not deceived by
high-transition zone related to different anatomical structure. Moreover, it is worth to note that BET
is a 3D algorithm that considers connectivity information in all directions. For these reasons, it
shows advantages in cases in which the segmentation tasks are more difficult at the eyes and top
level. Figure 11 shows the comparison analysis for an illustrative example related to case 11.

5. CONCLUSION

In this paper, we have presented a strategy to segment whole brain in MR images. The strategy
exploits a 2D graph-based technique to reliably detect boundary in complex scenes characterized by
heterogeneous morphological patterns. A full level of automation is achieved through the automatic
detection of frames including eyes and the computation of values for internal main parameters
directly from the image data. As seen in our experimental context, the overall segmentation
procedure is less sensitive to parameters variations, it shows a robust behavior while segmenting
images with increasing levels of pathological deformation and has proven competitive compared
with standard state-of-the-art solutions. It is then eligible as an operational tool specifically oriented
to actively support surgical planning and post-surgical assessment activities. The encouraging results
we have obtained in this work prompted us to continue with further work that will aim to improve the
quality of segmentation results. In particular, our purpose is to extend the present solutions taking
into account the information available in the spatial sequence of MRI images forming the 3D data.
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