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Tailoring the spatiotemporal structure of biphoton entanglement in
type-I parametric down-conversion
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We investigate the spatiotemporal structure of the biphoton entangled state produced by parametric down-
conversion (PDC) at the output face of the nonlinear crystal. We analyze the geometry of biphoton correlation for
different gain regimes (from ultralow to high), different crystal lengths, and different tuning angles of the crystal.
While for collinear or quasicollinear phase matching a X-shaped geometry, nonfactorizable in space and time,
dominates, in the highly noncollinear conditions we observe a remarkable transition to a factorizable geometry.
We show that the geometry of spatiotemporal correlation is a consequence of the angle-frequency relationship
imposed by phase matching and that the fully spatiotemporal analysis provides a key to control the spatiotemporal
properties of the PDC entangled state and in particular to access a biphoton localization in time and space in the
femtosecond and micrometer range, respectively.
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I. INTRODUCTION

The entangled photon pairs (biphotons) produced in the
parametric down-conversion (PDC) process are the key
element for several quantum information and communication
schemes. According to the application considered, different
properties of the entangled photons (e.g., the spectral band-
width) are enhanced. For example, recently proposed protocols
for long-distance quantum communication based on photon-
atom interactions requires narrow-band biphotons [1,2] with
linewidth less than the atomic linewidth (∼MHz [3,4]),
whereas ultrabroadband biphotons (∼GHz) are required for
high-axial-resolution quantum optical coherence tomography
[5,6] or for clock synchronization protocols [7,8]. On the
other hand, broadband photons in the spatial domain are
required by applications in quantum imaging [9] or quantum
lithography [10], where the spatial localization of biphotons
sets the limit of spatial resolution.

Different methods have been proposed in recent years to
generate broadband biphotons and more in general to tailor
their spectral properties. Some of them exploit the properties
of the nonlinear medium by choosing a very thin crystal
[11] or by using chirped quasi-phase-matched nonlinear
gratings [12–15]. In other works the spectral properties of
biphotons are controlled thanks to pump engineering by
choosing appropriately the pump wavelength [16,17], acting
on its spatial properties and exploiting the noncollinear phase-
matching configuration [18–20], or, more recently, by means
of a tilted pump pulse [21].

In a recent article [22] we demonstrated that the structure
of the PDC entanglement is not factorizable with respect to
the spatial and temporal variables, which means that a
complete description of the state can be done only in a nonsep-
arable framework. In particular we showed that the biphoton
amplitude at the output face of the crystal (near-field) has
an X-shaped structure that we referred to as X-entanglement.
The nonfactorizability of the PDC state opens the possibility
of tailoring the temporal bandwidth of the biphotons by
manipulating their spatial degrees of freedom. In particular by
resolving the near-field position of twin photons it is possible to

access an ultrabroadband source of entangled photons, with a
temporal localization of a few femtoseconds. This extreme lo-
calization is an intrinsic property of biphotons produced in the
PDC process: We do not need a particular nonlinear medium
or particular properties of the pump pulse but only the correct
detection technique that is able to resolve the X structure.

In Ref. [22] we focused on the ultralow gain regime of PDC,
where single photon pairs are produced and detected, and on
the collinear phase-matching case. In this work we extend
our analysis to the high gain regime of PDC and to different
phase matching conditions; we also study the dependence of
the spatiotemporal structure of the correlation on the crystal
length. As in the previous work we focus our attention to
type I PDC process. A detailed study of the biphoton amplitude
in type II PDC, also showing a nonseparable spatiotemporal
structure, is given in Ref. [23].

We show that in the collinear case, in the high gain regime
where macroscopic signal and idler fields are produced, their
spatiotemporal correlation maintains the same X-geometry
and nonfactorizable character with respect to space and time
as the biphoton amplitude in the low gain regime. By studying
the dependence of the phenomenon on the crystal length,
we show how an X structure emerges gradually by increasing
the length of the nonlinear medium, and we elucidate its
close relationship with the phase-matching mechanism that
is at the base of PDC. Differing from other detection schemes,
where typically the temporal localization of biphotons broad-
ens by increasing the crystal length, we show that by resolving
the near-field position of biphotons, their temporal localization
is independent of the crystal length and therefore an ultranar-
row temporal localization can be achieved for arbitrarily long
crystals.

Since one of the key elements to completely understand the
spatiotemporal structure of biphotons is its close relationship
with the phase-matching mechanism, we analyze the effects
of different phase-matching conditions on the X structure.
In particular by changing the tuning angle between the
pump propagation direction and the principal axis of the
nonlinear crystal, we observe an interesting transition from
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the nonseparable structure to a separable one. A remarkable
characteristic of the factorizable correlation that emerges in
these conditions is that a femtosecond temporal localization
of biphotons is still present independent of the type of
the spatial measurement. At the same time, an ultranarrow
submicron spatial localization can be achieved independent of
the temporal measurement, making this situation particularly
attractive for applications in quantum imaging [9] and quantum
lithography [10].

All these features can be clearly described by means of a
fully spatiotemporal analysis. The nonfactorizability in space
and time of the PDC state and its close relationship with the
phase-matching mechanism are the key elements to completely
access and control the properties of the entangled photon pairs.

The article is organized as follows. In Sec. II we describe
the model that we adopt to describe the PDC process. We start
from the low gain regime (Sec. II A). In Sec. II B we describe
the similarities and the differences between the biphoton
amplitude and the coherence function, which are the main
quantities in the description of the PDC process. Section II C
is devoted to the high gain regime. Section III will describe
our results on the biphoton correlation in the case of collinear
phase matching (Sec. III A), the effect of the crystal length
(Sec. III B), and the transition from the X-shaped geometry,
nonseparable in space and time, to a factorizable structure,
obtained by changing the crystal tuning angle (Sec. III C).

II. THE MODEL

The model we adopt to describe the parametric down-
conversion process is similar to the one described in
Refs. [9,24,25], the main difference being that we shall
not make the narrow-band approximation. A coherent and
quasimonochromatic pump field propagates along the z axis
in a χ (2) nonlinear crystal of length lc, cut for type I e-oo phase
matching (“e” indicates the extraordinary polarized pump
while “o” indicates the ordinary polarized signal field). We
denote by Âp(�x, t, z) and Âs(�x, t, z) the envelope operators
for the pump and signal fields, of central frequencies ωp and
ωs = ωp/2, respectively:

Âj (�x, t, z) = Ê
(+)
j (�x, t, z)eiωj t (j = s, p), (1)

where Ê
(+)
j (with dimensions of a photon annihilation oper-

ator) is the positive frequency part of the field operator and
�x = (x, y) represents the transverse coordinates, while t is the
time. We next pass to the Fourier domain:

Âj (�q,�, z) =
∫

d2 �x
2π

∫
dt√
2π

e−i �q·�x+i�t Âj (�x, t, z), (2)

where �q represents the transverse component of the wave
vector and � is the frequency offset from the carrier frequency
ωj . In addition we extract the fast variation along z due to the
linear propagation inside the crystal:

Âj (�q,�, z) = eikjz(�q,�)zâj (�q,�, z), (3)

where kjz(�q,�) =
√

k2
j (�q,�) − q2 is the projection, along the

z axis, of the wave vector of the j -th field. The corresponding
wave number, that for an ordinary wave does not depend

on �q, is kj (�q,�) = n(�q, ωj + �)(ωj + �)/c0, where n is the
refractive index and c0 the light speed in vacuum.

The fields âj defined in Eq. (3) have thus a slow variation
along the crystal, due only to the nonlinear interaction. In
the following we assume that the pump beam is undepleted
by the nonlinear interaction, i.e., âp(�q,�, z) = âp(�q,�, 0).
Moreover, assuming the pump is an intense coherent beam,
its field operator can be replaced by the classical mean value:
âp(�q,�, 0) → αp(�q,�). In this way the pump evolution along
the crystal is simply determined by the linear propagation,
Ap(�q,�, z) = eikpz(�q,�)zαp(�q,�).

The evolution of the signal field â due to the nonlinear
interaction (we can, from now on, omit the subscript “s”
without creating confusion, since the pump field is represented
by a c number), is described by the following equation [24]:

∂â(�q,�, z)

∂z
= g

lc

∫
d2 �q ′

2π

∫
d�′
√

2π
ᾱp(�q + �q ′,� + �′)

× â†(�q ′,�′, z)e−i�(�q,�,�q ′,�′)z, (4)

where ᾱp represents the pump field (at the input face of the
crystal) normalized to its peak value αp, and g = χ (2)αplc is
the dimensionless parametric gain, with χ (2) being a parameter
proportional to the second-order susceptibility of the medium.
The phase mismatch function, defined as

�(�q,�, �q ′,�′)
= ksz(�q,�) + ksz(�q ′,�′) − kpz(�q + �q ′,� + �′), (5)

determines the efficiency of the down-conversion process,
in which a pump photon of frequency ωp + � + �′ with
transverse wave vector �q + �q ′, splits into two signal photons
of frequencies ωs + � and ωs + �′, with wave vectors �q and
�q ′, respectively.

A. Low gain regime

Equation (4) can be analytically solved for a generic gain
only within the stationary and plane-wave pump approxi-
mation (PWPA). In the low gain regime (g � 1) instead, a
perturbative approach [26,27] allows us to solve Eq. (4) up to
first order in g (see Appendix A):

Â(�q,�) = eiksz(�q,�)lc

[
Âin(�q,�) + g

∫
d2 �q ′d�′

(2π )3/2

× ᾱp(�q + �q ′,� + �′)Â†
in(�q ′,�′)e−i

�(�q,�,�q′ ,�′ )
2 lc

× sinc

(
�(�q,�, �q ′,�′)

2
lc

)]
, (6)

where sinc(x) ≡ sin(x)/x and, if not differently stated, the
field Â is evaluated at z = lc (near field), while we denote Âin

the field at the input face of the crystal (z = 0).
The quantity of primary interest when dealing with the PDC

entangled state is the biphoton cross correlation or biphoton
amplitude:

ψ(�x, t, �x ′, t ′) = 〈Â(�x, t)Â(�x ′, t ′)〉, (7)

which is at the heart of the photon-pair PDC entanglement.
The “anomalous” propagator shown in Eq. (7) is, indeed,
characteristic of processes where particles are created in pairs.
As we shall show in the following, in the low gain regime
its square modulus is proportional to the joint probability
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distribution G(2)(�x, t, �x ′, t ′) of finding two photons, one at
position �x at time t and the other at position �x ′ at time t ′.

From Eq. (6) we can derive an expression for the biphoton
amplitude in the Fourier domain:

〈Â(�q,�)Â(�q ′,�′)〉
= g

(2π )3/2
ᾱp(�q + �q ′,� + �′)ei[ksz(�q,�) + ksz(�q ′,�′)]lc

× e−i
�(�q,�,�q′ ,�′)

2 lc sinc

(
�(�q,�, �q ′,�′)

2
lc

)

= g

(2π )3/2
Āp(�q + �q ′,� + �′, lc)

× ei
�(�q,�,�q′ ,�′ )

2 lc sinc

(
�(�q,�, �q ′,�′)

2
lc

)
, (8)

where Āp(�q,�, lc) = eikpz(�q,�)lc ᾱp(�q,�) is the Fourier trans-
form of the normalized pump envelope at the output face of the
crystal, and we exploited the standard commutation relations
at equal z:

[Âin(�q,�), Â†
in(�q ′,�′)] = δ(�q − �q ′)δ(� − �′), (9)

and the identities 〈ÂinÂin〉 = 〈Â†
inÂin〉 = 〈Â†

inÂ
†
in〉 = 0, deriv-

ing from the fact that the signal field at input face of the crystal
is in the vacuum state.

We are interested in calculating the biphoton amplitude in
the direct domain, that is, the inverse Fourier transform of
Eq. (8):

ψ(�x, t, �x ′, t ′) =
∫

d2 �qd�

(2π )3/2

∫
d2 �q ′d�′

(2π )3/2
〈Â(�q,�)Â(�q ′,�′)〉

× ei(�q·�x−�t)ei(�q ′ ·�x ′−�′t ′). (10)

In order to simplify the analysis, we shall consider a limit
of a pump beam quasistationary and quasihomogeneous. We
introduce the following change of variables:{

(�qp,�p) = (�q + �q ′,� + �′),

(�qs,�s) =
(

�q−�q ′
2 , �−�′

2

)
.

(11)

The phase mismatch function takes thus the form

�(�qs,�s, �qp,�p) = ksz

(
�qs + �qp

2
,�s + �p

2

)

+ ksz

(
−�qs + �qp

2
,−�s + �p

2

)
− kpz(�qp,�p). (12)

If we suppose now that the variation of � with respect
to the pump variables, �qp and �p, is very slow compared
to the scale over which the pump Āp dies out, we can
approximate �(�qs,�s, �qp,�p) ∼ �(�qs,�s, 0, 0). We shall
refer to this approximation as the nearly plane-wave and
monochromatic pump approximation (NPWPA). The NPWPA
is not too difficult to achieve: as will be explained in detail in
Appendix B, it holds when the pump pulse duration and its
transverse size are large enough compared to the characteristic
temporal and lateral walk-off experienced by the signal and
pump photons when crossing the crystal [a few picoseconds
and hundreds of microns, respectively, for a 4-mm beta barium
borate (BBO) crystal].

Under these circumstances, the field correlation in the
Fourier domain factorizes into the product of two functions,
one that depends on the pump variables (�qp,�p) and the other
on the “mean” signal variables (�qs,�s):

ψ(�qs,�s, �qp,�p) = Āp(�qp,�p, lc)

[
g

(2π )3/2
ei

�(�qs ,�s ,0,0)
2 lc

× sinc

(
�(�qs,�s, 0, 0)

2
lc

)]
. (13)

The field correlation function in the direct domain takes thus
the factorized form:

ψ(�x, t, �x ′, t ′) =
∫

d2 �qpd�pd2 �qsd�s

(2π )3

× ei[�qp ·(�x+�x ′)/2−�p(t+t ′)/2 + �qs ·(�x−�x ′)−�s (t−t ′)]

×ψ(�qs,�s, �qp,�p)

= Āp

( �x + �x ′

2
,
t + t ′

2
, lc

)
ψpw(�x − �x ′, t − t ′),

(14)

where

ψpw(�x − �x ′, t − t ′) = ∫
d2 �qd�

(2π)3 ei �q·(�x−�x ′)−i�(t−t ′)V(�q,�),

(15a)

V(�q,�) = gei
�pw(�q,�)

2 lc sinc
(

�pw(�q,�)
2 lc

)
, (15b)

�pw(�q,�) = ksz(�q,�) + ksz(−�q,−�) − kp(0, 0), (15c)

is the plane wave pump (PWP) result for the biphoton
amplitude. It means that, in the low gain regime, when the
NPWPA holds, the pump profile, as a function of the mean
variables, acts as a slow modulation of the PWP result, which is
a function only of the relative coordinates �ξ = �x − �x ′ and τ =
t − t ′. Therefore by adopting the NPWPA, the calculation of
the biphoton amplitude reduces to the evaluation of the second
term of Eq. (14), which is the plane-wave and monochromatic
pump result.

As shown in more details in Ref. [22], if we consider
in addition to the low gain limit, the paraxial and quadratic
dispersion approximation for the phase mismatch function it
is possible to develop a toy model that leads to an analytic
expression for ψpw (without this last approximation ψpw need
to be numerically evaluated) that evidences its X structure, not
separable in space and time. It is indeed possible to show that,
within these approximations, the biphoton amplitude assumes
constant values on the rotational hyperboloid family [22]:

q2
0ξ 2 − �2

0τ
2 = constant, (16)

where ξ = |�ξ |, q0 = √
ks/ lc, �0 = √

1/k′′
s lc, and we used

the short-hand notation ks = ks(0), kp = kp(0, 0), k′′
s =

d2ks/d�2|0 (we remind that since the signal is an ordinary
wave its wave number depends only on �, while the pump
wave number depends on both �q and �). The analytic
expression found in Ref. [22] demonstrates the hyperbolic
geometry of the biphoton amplitude; however, it diverges when
approaching the asymptotes of the X structure, defined by

q2
0ξ 2 − �2

0τ
2 = 0 ⇒ ±ξ = �0

q0
τ. (17)
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Because of this divergence we cannot obtain quantitative
results from the analytic expression. We shall in fact in the
following evaluate the biphoton amplitude (15) numerically.

B. Biphoton amplitude and coherence function

Before extending the study of the biphoton amplitude to
different gain regimes, we open a brief parenthesis about the
relationship between the biphoton amplitude and the classical
coherence function

G(1)(�x, t, �x ′, t ′) ≡ 〈Â†(�x, t)Â(�x ′, t ′)〉. (18)

This is the other quantity of interest when dealing with
Gaussian processes, such as PDC. Thanks to the quantum
version of the Gaussian moment-factoring theorem [28], it
is indeed possible to calculate all the expectation values
and the correlation functions of interest only by means
of the second-order moments of field operators, i.e., 〈ÂÂ〉
and 〈Â†Â〉.

Following the same reasoning as for the biphoton ampli-
tude, we find that, in the low gain regime and in the NPWPA,
the coherence function takes the form:

G(1)(�x, t, �x ′, t ′) =
∣∣∣∣Āp

( �x + �x ′

2
,
t + t ′

2
, lc

)∣∣∣∣
2

×G(1)
pw(�x − �x ′, t − t ′), (19)

where

G(1)
pw(�x − �x ′, t − t ′) =

∫
d2 �qd�

(2π )3
e−i �q·(�x−�x ′)ei�(t−t ′)|V(�q,�)|2

(20)

is the PWP result for the coherence function of the down-
converted field, with V(�q,�) defined in Eq. (15b). We note
that since V(�q,�) is proportional to the gain g, the biphoton
amplitude scales as g [see Eq. (15a)] while the coherence
function scales as g2.

The joint probability distribution G(2)(�x, t, �x ′, t ′) of finding
two photons, one at position �x at time t and the other at position
�x ′ at time t ′, is proportional to the second-order intensity
correlation function [29]:

G(2)(�x, t, �x ′, t ′) = 〈Â†(�x, t)Â†(�x ′, t ′)Â(�x ′, t ′)Â(�x, t)〉. (21)

By using Eqs. (2) and (6) together with the commutation
relations (9), after some long but not difficult calculations we
obtain:

G(2)(�x, t, �x ′, t ′) = |ψ(�x, t, �x ′, t ′)|2 + |G(1)(�x, t, �x ′, t ′)|2
+〈I (�x, t)〉〈I (�x ′, t ′)〉, (22)

where 〈I (�x, t)〉 = G(1)(�x, t, �x, t) is the mean intensity distri-
bution of the field at position �x at time t .

Since the first term is proportional to g2, while the last two
terms are proportional to g4, in the low gain regime (g � 1)
we have:

G(2)(�x, t, �x ′, t ′) = |ψ(�x, t, �x ′, t ′)|2 + O(g4), (23)

and the square modulus of ψ is thus proportional to the joint
probability of detecting one photon at position �x and time t

and the other at position �x ′ and time t ′. It has been recently
demonstrated that also the coherence volume, described by

G(1)(�x, t, �x ′, t ′), of the field generated in type I parametric
down-conversion, is not separable in space and time and has
an X-shaped structure [30,31].

We recall that the coherence function describes the coher-
ence properties of the individual signal or idler field, and in
the high gain regime it accounts for the autocorrelation of the
signal (idler) field with itself, whereas the biphoton amplitude
describes the cross correlation of the entangled photons (say
signal and idler photons) produced in the elementary process
of photon pairs generation that is at the root of PDC.

Supposing we are able to separate a signal photon from its
conjugate twin, we can enhance the difference between these
two quantities. For example, by assuming that the pump is
a broad-enough pulse (e.g., a broad Gaussian pulse), Eq. (8)
tells us that only photons that propagates with symmetric �q and
−�q are correlated. We can then separate the down-converted
field with respect to the propagation direction, that is, we
define:

Â1(�q,�) =
{

Â(�q,�) for qx � 0

vacuum otherwise,
and

Â2(�q,�) =
{

Â(�q,�) for qx < 0

vacuum otherwise.
(24)

In this way, each photon in Â1 has its twin photon in Â2, and
the biphoton amplitude takes the form

ψ(�x, t, �x ′, t ′) = 〈Â1(�x, t)Â2(�x ′, t ′)〉. (25)

Note that, by using Eq. (8), 〈Â1(�x, t)Â1(�x ′, t ′)〉 = 0 =
〈Â2(�x, t)Â2(�x ′, t ′)〉.

For the classical coherence function, we have:

G
(1)
ii (�x, t, �x ′, t ′) = 〈Â†

i (�x, t)Âi(�x ′, t ′)〉, i = 1, 2, (26)

while 〈Â†
1(�x, t)Â2(�x ′, t ′)〉 = 0, identically.

The similarity between the ψ and G(1) structures (both
are X shaped, not separable in space and time) is the direct
consequence of the cascading effect, where the photons already
generated seed a new generation process. The primary process
is the generation of a couple of twin photons, with the cross-
correlation properties previously discussed and described by
ψ . Because of cascading, the shape of the cross correlation
in space-time is then transferred also to the autocorrelation
function, described by G(1), in a second-order process. Indeed
we have that ψ is proportional to g, while G(1) scales as g2.

C. Generic gain regime

When the gain parameter is on the order of unity, g = O(1),
a perturbative expansion of the solution of the propagation
equation of the form (6) is no more possible. In this case,
analytic results can be obtained only by using directly
the plane-wave and monochromatic pump limit ᾱp(�q,�) →
(2π )3/2δ(�q)δ(�).

The solution in this case can be expressed by means of the
usual input-output relations [24,25,32]:

Â(�q,�) = U (�q,�)Âin(�q,�)+V (�q,�)Â†
in(−�q,−�), (27)
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where

U (�q,�) = ei
kplc

2 eiϕ(�q,�)

{
cosh[
(�q,�)]

+ i
�pw(�q,�)lc

2
(�q,�)
sinh[
(�q,�)]

}
, (28a)

V (�q,�) = ei
kp lc

2 eiϕ(�q,�) g


(�q,�)
sinh[
(�q,�)], (28b)

ϕ(�q,�) = ksz(�q,�) − ksz(−�q,−�)

2
lc, (28c)


(�q,�) =
√

g2 − �2
pw(�q,�)l2

c

4
. (28d)

We note that the functions U (�q,�) and V (�q,�) satisfy the
conditions:

|U (�q,�)|2 − |V (�q,�)|2 = 1,
(29)

U (�q,�)V (−�q,−�) = U (−�q,−�)V (�q,�),

necessary to preserve the commutation relations from the input
to the output face of the crystal.

Thanks to Eq. (27) we can easily evaluate the PWP result
for the biphoton amplitude valid for any gain regime:

ψ(�x, t, �x ′, t ′) =
∫

d2 �qd�

(2π )3/2

∫
d2 �q ′d�′

(2π )3/2
δ(�q + �q ′)δ(� + �′)

×U (�q,�)V (�q ′,�′)ei(�q·�x−�t)ei(�q ′ ·�x ′−�′t ′)

=
∫

d2 �qd�

(2π )3
ei �q·(�x−�x ′)−i�(t−t ′)F (�q,�), (30)

where we introduce the gain function

F (�q,�) ≡ U (�q,�)V (−�q,−�)

= geikplc


(�q,�)
sinh[
(�q,�)]

{
cosh[
(�q,�)]

+ i
�pw(�q,�)lc

2
(�q,�)
sinh[
(�q,�)]

}
, (31)

which is strongly peaked around the phase-matching “curve,”
defined by the equation �pw(�q,�) = 0.

Similarly, the coherence function reads:

G(1)(�x, t, �x ′, t ′) =
∫

d2 �qd�

(2π )3
e−i �q·(�x−�x ′) + i�(t−t ′)|V (�q,�)|2.

(32)

We note that both the biphoton amplitude and the coherence
function depend only on the relative coordinates �ξ = �x − �x ′
and τ = t − t ′, as it is natural to expect for a homogeneous
and stationary pump.

By making the limit of F (�q,�) for g → 0,
of course, we shall obtain the same results as
in Sec. II A. We have 
(�q,�) → i�pw(�q,�)lc/2,
cosh[
(�q,�)] → cos[�pw(�q,�)lc/2], and sinh[
(�q,�)] →
i sin[�pw(�q,�)lc/2], so that

lim
g→0

F (�q,�) = geikplc ei
�pw(�q,�)

2 lc sinc

(
�pw(�q,�)lc

2

)
(33a)

= eikplcV(�q,�), (33b)

and Eq. (15a) for the biphoton amplitude can be retrieved.
Similarly,

lim
g→0

|V (�q,�)|2 =g2sinc

(
�pw(�q,�)lc

2

)
=|V(�q,�)|2, (34)

and Eq. (20) is retrieved. This result is in agreement with
that found into the previous section. The factor eikplc in the
right-hand side of Eq. (33b) accounts for the linear phase
earned by the pump in crossing the crystal and is the PWP
limit of the pump distribution Āp in Eq. (14).

Coming back to the expression for the biphoton amplitude
for any gain regime, we note that the gain function F (�q,�)
depends on variables (�q,�) only through the function
�pw(�q,�) [see Eq. (31)]. For the case of e-oo type I para-
metric down-conversion considered in this work, it has radial
symmetry with respect to �q: �pw(�q,�) = √

k2
s (�) − q2 +√

k2
s (−�) − q2 − kp, where q = |�q|. We can therefore evalu-

ate Eq. (30) by means of a Fourier-Hankel transform:

ψ(ξ, τ ) =
∫ ∞

−∞

d�

2π
e−i�τ

∫ ∞

0

dq

2π
qF (q,�)J0(qξ ), (35)

where ξ = |�x − �x ′|, τ = t − t ′, and J0(x) =
(2π )−1

∫ 2π

0 eix sin θdθ is the zero-order Bessel function of the
first kind.

We can thus numerically solve Eq. (35) to find the
spatiotemporal structure of the biphoton amplitude: the results
are reported in the next section.

III. RESULTS

In order to obtain quantitative results for the biphoton
amplitude’s structure, we numerically evaluate Eq. (35) for
a type I BBO crystal pumped at λp = 352 nm. We consider
the full Sellmeier relations for the refractive indexes [33] to
calculate the phase mismatch function �pw(�q,�) [Eq. (15c)]
without approximations. In order to select an appropriate range
of wavelengths to mimic, for example, the finite bandwidth of
detection, we introduce a symmetrical frequency filter centered
at degeneracy with a super-Gaussian profile.

A. Collinear phase matching, 4-mm crystal

Our first example is a 4-mm crystal cut at θp = 33.436◦ for
collinear phase matching at degeneracy (�0 = 2ks − kp = 0).
The results are reported in Fig. 1 for two different values of
the gain, g = 10−3 (upper panels) and g = 3 (lower panels).

In Fig. 1(a) we plot the section of |F | in the (qx,�) plane,
which is strongly peaked around the phase-matching curve
defined by the equation �pw(�q,�) = 0. We remind that F

is the function we need to Fourier-Hankel transform in order
to obtain the biphoton amplitude, as stated in Eq. (35). The
dashed vertical lines represent the full width at half maximum
(FWHM) of the frequency filter considered, which in this case
is equal to 1.37 × 1015 Hz, corresponding to a wavelength
band from 550 to 950 nm.

The two-dimensional cut of the biphoton amplitude for
ξy = 0 is shown in Fig. 1(b), clearly displaying its X-shaped
geometry not separable in space and time. The full three-
dimensional plot have a radial symmetry in the space domain
and has therefore a biconical geometry as shown in Fig. 2. The
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FIG. 1. (Color online) (Left) Section of |F | in the (qx, �) plane
in the low (a) and high (c) gain regime, normalized to its peak value.
The dotted lines represent the bandwidth selected by the frequency
filter, �� = 1.37 × 1015 Hz. (Right) Two-dimensional plot of the
biphoton amplitude (in modulus and normalized to its peak value) in
the (ξx, τ ) plane for g = 0.001 (b) and g = 3 (d), clearly displaying
its X-shaped geometry. Note that τ and �ξ represent the temporal
and spatial relative position of twin photons, respectively. Case of
a 4-mm-long type I BBO crystal, pumped at λp = 352 nm, cut at
33.436◦ for collinear phase matching at degeneracy.

principal coordinates axes (bottom and left) in Fig. 1(b) report
the normalized variables �0τ and q0ξx , respectively. With
respect to these variables the equation for the asymptotes of the
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FIG. 2. (Color online) Isosurface representing the full three-
dimensional structure of the biphoton amplitude (in modulus) for
the particular value |ψ(ξx, ξy, τ )| = 0.08|ψ(0, 0, 0)|; g = 0.001.

biphoton amplitude found with the toy model, q0ξx = ±�0τ

[see Eq. (17)], simply describes the diagonals represented by
the dashed lines in Fig. 1(b), which perfectly fit the legs of
the X structure. The top and right coordinates axes report
instead the temporal and spatial relative position of twin
photons in physical variables (femtoseconds and micrometers,
respectively).

This peculiar X shape of the biphoton cross correlation
is of course reminiscent of the X wave observed in several
nonlinear optical media in the macroscopic regime [34]. In the
microscopic case considered here the X shape of the biphoton
amplitude has a completely different interpretation, since it
relates the relative spatial localization of twin photons with
their temporal separation. Figure 1(b) tells us that if we collect
the twin photons from the same near field position, i.e., we
consider �ξ = �x − �x ′ = 0 (e.g., by locating a small pinhole
in the near-field of PDC) we are most likely to find them
together in time within an uncertainty of few femtoseconds.
Conversely, if we collect the twin photons from two separated
near field positions �x and �x ′ = �x + �ξ , the temporal correlation
peak will split into two separate peaks at τ = ±|�ξ |q0/�0, and
we are likely to find the two photons delayed by ±|τ | within
an uncertainty of few femtoseconds.

This particular relationship between the spatial and tem-
poral relative separations of twin photons (as well as the
results for the noncollinear case reported in the following
sections) can be explained by means of a somehow intuitive
picture, which will be illustrated in detail elsewhere [35].
Describing the twin photons as two wave packets centered
around the conjugate frequencies ±�, one finds that their
temporal separation at the crystal exit face is determined by
their different group velocities as imposed by the group
velocity dispersion, whereas their spatial separation is deter-
mined by diffraction. The phase-matching mechanism (the
conservation of longitudinal momentum) imposes a precise
relationship between group velocity dispersion and diffraction
that can be turned into a relationship between the temporal and
spatial separation of twin photons [35].

The results for the high gain are reported in Figs. 1(c) and
1(d). We note that there are no significant differences between
the two gain regimes, as the function F , and therefore the
biphoton amplitude, has basically the same structure, with the
only exception being the small oscillations that can be seen in
Fig. 1(a). These oscillations can be explained recalling that in
the low gain limit the hyperbolic functions that define F can be
approximated by the corresponding trigonometric functions,
with the characteristic oscillating behavior.

We remark that in type II parametric down-conversion,
instead, there is a significant difference between the low and
the high gain regime. In that case, in the low gain regime
the correlation assumes a V-shaped structure, asymmetric
with respect to time (like a halved X), with the asymmetry
originating from the signal-idler group velocity mismatch. For
high gain, instead, the symmetric X geometry of type I PDC
is recovered [23].

A remarkable characteristic of the nonseparable structure
of the biphoton amplitude is the unusual small width of
the correlation peak, which corresponds to an extreme relative
localization of twin photons in space and time. In Fig. 3 we plot
cuts of the the coincidence rate |ψ |2 along the temporal axis
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FIG. 3. (Color online) (a) Cut of the coincidence rate along the
temporal axis, |ψ(0, 0, τ )|2, showing the temporal correlation of
twin photons collected from the same near-field position (�ξ = 0)
for different frequency filter bandwidths. (b) Same plot as in (a) for
|�ξ | = 15 µm. The values in the legend correspond to the FWHM of
the frequency filter (��), the FWHM of the temporal coincidence
rate for �ξ = 0 (�τ0), and the FWHM of one peak of the temporal
coincidence rate for |�ξ | = 15 µm (�τ15). The coincidence rates are
normalized to ψ0 ≡ ψ(0, 0, 0); g = 0.001, other parameters as in
Fig. 1.

for �ξ = 0 (a), and |�ξ | = 15 µm (b), and for different widths of
the frequency filter. When photons are collected at the same
near-field position we have a single temporal peak [Fig. 3(a)],
while when �ξ 
= 0 we observe two symmetric temporal peaks
[Fig. 3(b)]. In both cases the uncertainty on the arrival time
of the second photon with respect to the first one is on the
order of few femtoseconds and is inversely proportional to
the bandwidth of the temporal filter used.

As exhaustively explained in Ref. [22], to achieve this
extreme temporal localization of twin photons, we need to
resolve their near-field relative position. In this case indeed
the correlation time is determined by the inverse of the full
ultrabroad bandwidth of the PDC phase matching or in practice
by the bandwidth of the frequency filter. On the contrary,
if we do not resolve the near-field relative position of twin
photons, the correlation time is determined by the inverse of the
bandwidth of F (�q,�) at fixed �q, which depends on the crystal
length and for our example of a 4-mm crystal is on the order
of 1013 − 1014 Hz, therefore one or two orders of magnitude
smaller (see next section for a more detailed discussion).

In Fig. 4 we plot the spatial profile of the coincidence
rate, when the relative arrival time of twin photons is resolved
at τ = 0. In this case we observe a correlation length on
the order of few micrometers that also scales inversely with
the bandwidth of the temporal frequency filter considered.
This is the analog of the effect shown in Ref. [22], where
we found that the correlation time of twin photons scales
inversely with the width of a spatial filter put in the far
field. The correspondence between the temporal bandwidth
and the spatial correlation length, or, vice versa, the one
between the spatial bandwidth and the correlation time, is
due to the characteristic, not separable, relationship between
spatial frequencies and temporal frequencies imposed by the
phase-matching mechanism.

To go deeper into the understanding of X entanglement
we shall examine different configuration for the PDC process,

=0.85 1015 Hz,
x
=3.0 µm

=1.37 1015 Hz,
x
=2.6 µm
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FIG. 4. (Color online) (a) Cut of the coincidence rate along the
spatial axis, |ψ(ξx, 0, 0)|2, for different temporal frequency filter
widths, showing the spatial correlation of twin photons. �� and �ξx

represent the FHWM of the frequency filter and of the coincidence
rate, respectively. Also in this case the width of the correlation peak
scales inversely to the width of the frequency filter (see text for
details).

such as different crystal lengths and tuning angles. We shall
show the intrinsic relationship between the phase-matching
mechanism and the biphoton amplitude’s structure and that
the nonfactorizability in space and time of the biphoton
amplitude is the key element to completely understand and
thus manipulate the biphoton properties.

B. Biphoton cross correlation for different crystal lengths

In the previous section we explained how in order to
achieve an extreme temporal localization of twin photons in the
femtosecond range, it is necessary to resolve their near-field
relative positions. Nevertheless, this kind of correlation can in
principle be reached also with usual detection techniques, i.e.,
by collecting photons from the whole cross section, without
discriminating their positions. The quantity measured is then
the integrated coincidence rate

C(τ ) ∝
∫

d2�ξ |ψ(�ξ, τ )|2. (36)

However, in this case, a femtosecond localization is reached
only when a very thin crystal (tens of microns) is employed,
which implies a very low down-conversion efficiency. On the
other hand, we shall show that if we resolve the twin photons
position in the near field, we can reach a temporal localization
on the order of few femtoseconds even for a long crystal. The
crystal length influences the PDC process because for a thin
crystal the phase-matching condition �pw(�q,�) = 0 is less
restrictive: also the modes that gives rather large values of
�pw are amplified. Therefore, for a thin crystal, the function
F (�q,�) is less peaked around the perfect phase-matching
curve, and we expect that while the cross-correlation peak
maintains its width, the tails of the X structure become more
visible as the crystal becomes thicker.

Figure 5 shows the effects of the crystal length on the
structure of the biphoton amplitude. All other parameters are
not varied (in particular g = 10−3). The upper panels plot
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FIG. 5. (Color online) Effect of the crystal length on the biphoton amplitude. The first row reports |F (qx, �)| for different crystal lengths:
(a) 0.1 mm, (b) 1 mm, (c) 4 mm, and (d) 12 mm. The dotted vertical lines represents the FWHM of the frequency filter considered. As expected,
F develops a structure that becomes thinner increasing the crystal length. The central row shows the corresponding biphoton amplitude
|ψ(ξx, τ )|. While the width of the peak remains unchanged, it is evident the increasing of the tails visibility as the crystal becomes longer. The
last row compares the coincidence rate when twin photons are collected from the same near-field position (red solid line), with the integrated
coincidence rate obtained without discriminating their positions (black dashed line). To evaluate the difference we calculate for each case the
standard deviation στ : while for |ψ(0, 0, τ )|2 the temporal correlation is almost the same for each crystal length, for the integrated coincidence
rate it increases up to 20 times. θp = 33.436◦, λp = 352 nm, g = 10−3.

|F (qx,�)|, with the filter width being represented by the dotted
vertical lines, while the central panels show the corresponding
biphoton amplitudes |ψ(ξx, τ )|.

For a very thin crystal, Fig. 5(a), lc = 0.1 mm, the typical
∞-shaped structure of the gain function F , in the (qx,�)
plane, can be hardly appreciated because the phase-matching
bandwidth becomes extremely broad. If we restrict to the
region delimitated by the frequency filter (between the dashed
lines), no structure is actually visible. As a consequence
the biphoton amplitude in the (ξx, τ ) plane shows basically
a single peak and the X structure of the correlation is
absent.

However, by increasing the crystal length, the phase-
matching mechanism starts to impose a well-defined relation
between �q and � of the down-converted modes, which shows
up in the well-defined and narrow shape of the gain function
F in the (qx,�) plane. In turns, the biphoton correlation starts
to develop a defined sharp structure, with the tails of the
X structure becoming more and more visible as the crystal
length increases.

It is important to stress that the width of the central peak
of the X structure remains the same for all the crystal lengths,
both in the temporal and in the spatial domains. Actually the
intercepted bandwidth is the same in all cases, as it corresponds
to the portion of the PDC emission selected by the frequency
filter. This means that the X-shaped structure of the biphoton
amplitude allows to obtain ultrabroadband biphotons also
for long crystal, which may in principle result in an higher
down-conversion efficiency. However, even if the total number
of down-converted photons increases with the crystal length,
the number of twin photons localized within few femtoseconds
and few microns (namely the ones populating the central peak
of ψ) does not necessarily increase proportionally. In fact,
increasing the crystal length more and more twin photons will
appear separated in space and time at the output face of the
nonlinear medium, populating the tails of the X structure. This
is clearly shown by Fig. 5 (central row), where the tails of
the X structure become more and more visible as the crystal
length increases. Further quantitative work on this subject,
which is beyond the scope of this work, is necessary in
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order to obtain the precise way in which these two factors
balance. Nevertheless, we notice that using a rather long
crystal in combination with a spatially resolved measurement
offers a larger flexibility with respect to the use of a short
crystal. In the first case, indeed, operating on the spatial
degrees of freedom (namely by changing the dimensions
and positions of near-field detectors) opens the possibility of
changing the temporal localization of biphotons by orders of
magnitude.

In the lower panels of Fig. 5 we compare the coincidence
rate when taking photons from the same near-field position
(|ψ(0, 0, τ )|2, red solid line), with the integrated coincidence
rate [Eq. (36), black dashed line] obtained when collecting
all the photons over the beam cross section, without discrim-
inating their position. In particular, we calculate the standard
deviation στ of the two distributions, where for a generic
distribution h(τ ), with zero mean, we define:

στ ≡
√∫

τ 2h(τ )dτ∫
h(τ )dτ

. (37)

As expected, for a very thin crystal [Fig. 5(a), lower panel] the
two distributions are very similar, because the width of F (�q,�)
at fixed �q is as broad as the frequency filter. Increasing the
crystal length, F (�q,�) becomes thinner and thinner, and the
standard deviation of the integrated coincidence rate increases
up to 101.1 fs, while στ of the coincidence rate for �ξ = 0
is still a few femtoseconds. Therefore the X-shaped structure
of the biphoton amplitude is the key element to access an
ultrabroad bandwidth source of entangled photons also for long
crystals.

C. Biphoton cross correlation at different crystal tuning angles

In the previous sections we have seen that in order to
obtain a narrow temporal localization of twin photons, it is
necessary to resolve their near-field position, as a consequence
of the nonseparable character of the space-time correlation.
Conversely, in order to obtain a narrow spatial localization,
one should resolve temporally the photons arrival time within
a few femtoseconds, which is indeed highly unpractical due to
the typical slow response time of detectors.

In this section we shall explore the close relationship
between the phase-matching properties and the biphoton
amplitude’s structure. We shall show situations where the
state becomes factorizable with respect to space and time,
and an extremely narrow spatial and temporal localization
can be achieved independently, i.e., a femtosecond temporal
localization can be achieved without the need of controlling
the spatial degrees of freedom and vice versa.

In particular, we change the tuning angle θp between
the pump propagation direction and the principal axis of
the crystal, from the collinear case [Fig. 6(a)], to strongly
non-collinear phase matching. In such conditions, the PDC
emission occurs over a narrow ring of transverse wave vectors
of radius q̄, over a very large temporal bandwidth [Fig. 6(d)].

In Fig. 6 we report the structure of the biphoton amplitude
for the different tuning angles considered. The upper panels
plot the function |F (qx,�)|, while the lower panels show the
corresponding biphoton correlation in the (ξx, τ ) plane. As
the tuning angle increases, there is a transition from the
X structure to a cigarlike structure, which is separable in space
and time. In these conditions a narrow localization of biphotons
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FIG. 6. (Color online) Transition from a nonseparable to a separable state. (Upper panels) Plot of |F (qx, �)| for different tuning angles from
the collinear to the strongly noncollinear case: (a) θp = 33.436◦, (b) 35◦, (c) 40◦, and (d) 45◦. In the lower panels we report the corresponding
2D cut of the biphoton amplitude |ψ(ξx, τ )|. Increasing the tuning angle we see a transition from the nonseparable X geometry to a separable
cigarlike geometry: in this last case an extreme localization of twin photons can be achieved both in space and time independently. We consider
lc = 4 mm, g = 10−3, λp = 352 nm.
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FIG. 7. (Color online) Case of strongly noncollinear phase
matching θp = 45◦. (a) Temporal profile of the coincidence rate when
photons are detected from the same position (red solid line) and when
their positions are not resolved (black dashed line) for lc = 4 mm.
The width of the correlation peak is basically the same. (b) Same as in
(a) but for lc = 20 mm, showing no appreciable changes in the plot.
Even if the biphoton amplitude is separable in space and time, the
temporal correlation of twin photons is independent from the crystal
length.

can be achieved both in space and time independently: even
without discriminating the photons position, it is in principle
possible to achieve a few fs temporal localization.

Actually the integrated coincidence rate C(τ ), obtained
collecting the photons from the whole beam cross section,
without discriminating their positions, has almost the same
width of the coincidence rate obtained when collecting
twin photons from the same near-field position, as shown in
Fig. 7(a). On the contrary, if we consider the same comparison
for the collinear phase matching, the difference between the
correlation times is more than one order of magnitude, as
shown in the lower panel of Fig. 5(c).

We note that in this case of strongly noncollinear phase
matching, even if the biphoton amplitude becomes separable in
space and time, the temporal correlation of twin photons does
not broaden with the crystal length, as shown by comparing
Figs. 7(a) and 7(b). This may appear surprising, because in
conditions of collinear or quasicollinear phase matching the
temporal correlation measured by a bucket detector broadens
with the crystal length, as shown by Fig. 5 (lower row). This
depends on the narrowing of the gain function F in the (q,�)
domain with increasing crystal length, which in turns implies a
narrower frequency bandwidth at fixed q. Since this bandwidth
determines the temporal localization of twin photons measured
by mean of a bucket detector [22], in this case the temporal
correlation broadens.

In the present case of strongly noncollinear phase matching
instead, this broadening of the temporal correlation does not
occur. The reason is that the phase-matching curve in the (q,�)
plane is almost a straight line parallel to the � axis, which
means that the narrowing of the gain function F occurs only
in the q direction and does not affect the frequency bandwidth.

In Fig. 8 we show the same comparison reported in Fig. 7 for
the spatial domain: in this case the coincidence rate for τ = 0
and its temporal integral have exactly the same profile (some
differences however become appreciable when one plots the
figure on a larger scale), characterized by an ultranarrow peak
with a FWHM of only 0.9 µm. This is a rather striking result
with respect to the typical spatial localization of twin photons
predicted so far [25]. This is on the order of tens of microns
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FIG. 8. (Color online) Case of strongly noncollinear phase match-
ing θp = 45◦. Spatial profile of the coincidence rate. Superimposed
are the two curves obtained by resolving the photon relative arrival
time (τ = 0, red solid line) and by not resolving it, i.e., by integrating
over long time intervals (black dashed line) for lc = 4 mm (a) and
lc = 20 mm (b).

in collinear configurations, both in the near field (integrating
over long time) and in the far field [36,37].

In the noncollinear case analyzed here, a narrow spatial
correlation peak arises because of the particular spatial
geometry of the emission (a large ring of transverse wave
vectors). In analogy to the case of the pulsed Bessel beams [38],
characterized by an intensity spectrum in the (�q,�) domain
with the same geometry of F (�q,�) reported in Fig. 6(d), we
expect that the biphoton amplitude as a function of the spatial
relative near-field coordinates, is well described by the Bessel
function J0(q̄ξ ). Due to the large value of q̄ = 2.62 µm−1, the
spatial correlation is characterized by an ultranarrow peak.

Also in the spatial domain the twin photons localization is
independent from the crystal length. Actually, even if there is
some difference between the spatial profiles of the coincidence
rate in Figs. 8(a) and 8(b), the width of the central peak is
exactly the same. Also in this case the reason is to be searched
in the geometry of phase matching. The extreme localization
of the spatial correlation is determined by the large value of
q̄. Since by increasing the crystal length the gain function
becomes narrower, but the value of q̄ does not change, also the
spatial localization remains the same.

We can go deeper in the analogy with the pulsed Bessel
beams by considering the paraxial and quadratic dispersion
approximation, thanks to which the phase mismatch function
reduces to [24]

�pw(�q,�)lc = �0lc − q2

q2
0

+ �2

�2
0

, (38)

where �0 = 2ks − kp is the collinear phase mismatch. Highly
noncollinear phase matching is achieved for large positive
values of �0. For example for θp = 40◦, �0 = 260 mm−1

while for θp = 45◦, �0 = 462 mm−1.
For θp = 45◦ [Fig. 6(d)], in a broad range of frequencies

around degeneracy corresponding to � � �0
√

�0lc, perfect
phase matching is achieved basically for a single value of
q = q̄ ≈ q0

√
�0lc = √

ks�0 (notice that it does not depend
on lc). Moreover, in this case the PDC emission occurs in a
very narrow spatial bandwidth δq ≈ q0/

√
�0lc = l−1

c

√
ks/�0

around q̄. In other words the PDC emission takes place over a
narrow ring of spatial frequencies for a broad range of temporal
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FIG. 9. (Color online) Comparison between the spatial corre-
lation function

∫
dτ |ψ(ξx, 0, τ )|2 = |ψ(ξx, 0, 0)|2 and the square

modulus of the Bessel function J0(q̄ξx), with q̄ such that �pw(q̄, 0) =
0, for lc = 4 mm (a) and lc = 20 mm (b). All functions are normalized
to their peak value.

frequencies.1 In these conditions the biphoton amplitude can
be approximated as

ψ(ξ, τ ) =
∫ ∞

−∞

d�

2π
e−i�τ

∫ ∞

0

dq

2π
qF (q,�)J0(qξ ) (39a)

≈ J0(q̄ξ )
∫ ∞

−∞

d�

2π
e−i�τ

∫ ∞

0

dq

2π
qF (q,�) (39b)

= J0(q̄ξ )G(τ ), (39c)

where

G(τ ) =
∫ ∞

−∞

d�

2π
e−i�τ

∫ ∞

0

dq

2π
qF (q,�) (40)

and we used the fact that F (q,�) is an extremely narrow
function peaked around q̄, so that the Bessel function J0 can be
extracted from the integral at the right-hand side of Eq. (39a).

From the expression in Eq. (39c) we clearly see (i) the
factorizable character of the state in space and time and
(ii) the Bessel-like shape of the spatial correlation, exactly as
expected from the analogy with the pulsed Bessel beams. As
for the collinear phase matching, where the X-shaped biphoton
correlation can be regarded as the microscopic counterpart of
the nonlinear X waves, in this case of strongly noncollinear
phase matching, we can consider the biphoton correlation as
the microscopic analog of the pulsed Bessel beams.

Since we know that the quadratic dispersion approximation
is a quite crude approximation over the large frequency
bandwidth considered in this work, in order to support the
analogy developed so far, we directly compare the spatial
profile of the coincidence rate and the Bessel function J0(q̄ξx).
The result is reported in Fig. 9, for two different crystal lengths.
The characteristic oscillations of the Bessel function are not
exactly reproduced in the spatial correlation, but we note that∫

dτ |ψ(ξx, 0, τ )|2 matches well the envelope of |J0|2, and in
particular the width of the peak is exactly the same. Moreover,
as the crystal length increases, |J0|2 fits better the coincidence

1Note that a narrow ring of spatial frequencies �q does not necessarily
imply a narrow angular bandwidth of emission, because for a
large temporal bandwidth, emission takes place for each � at an
angle θ (�) = arcsin[q̄c0/(ωp/2 + �)] that varies from 13.5◦ to 23.2◦

(external angles) for �� = 1.37 × 1015 Hz.

rate, due to the fact that the gain function in the (qx, qy) plane
approaches an ideal ring of infinitesimal thickness.

We note that, as in the previous sections, the structure and
the characteristics of the biphoton amplitude are determined by
the phase-matching properties. The nature of this relationship
can be better understood by means of the intuitive picture
reported in Ref. [35].

IV. CONCLUSIONS

We have shown that a complete description of the biphoton
entangled state produced in the parametric down-conversion
process must be carried out in a fully spatiotemporal
framework.

In conditions of collinear or quasicollinear phase matching
the structure of the biphoton correlation turns out to be
nonseparable in space and time and governed by a peculiar
X geometry. This particular structure is imposed, at the micro-
scopic level, by the phase-matching mechanism governing the
process. For this reason the full spatiotemporal description of
the biphoton state, together with the study of the relationship
between its structure and the phase-matching mechanism,
are the key elements to completely describe and thus ma-
nipulate the biphotons properties. We have shown that it is
possible to manipulate the biphoton properties by choosing
the correct detection technique that takes into account the
nonseparability in space and time. In particular we have shown
that by discriminating the near-field position of twin photons it
is possible to access the ultrabroad phase-matching bandwidth,
which implies a correlation time of biphotons on the order of
few femtoseconds. This result is almost independent on the
length of the nonlinear medium, while with usual detection
techniques (that is, by collecting photons from the whole
beam section) the correlation time increases with the crystal
length.

We have shown that by properly manipulating the phase-
matching conditions it is possible to modify the structure of
the entangled state. In particular by changing the crystal tuning
angle so to achieve strongly noncollinear phase matching, we
see a transition from a nonseparable X geometry to a fully
separable geometry in space and time. This latter situation
could be indeed very interesting for applications because an
extremely broad temporal frequency bandwidth can be
achieved independently from the spatial measurement, i.e.,
twin photons can be localized in time within few femtoseconds
without the need of resolving their positions. The same
situation arises in space, where an ultranarrow spatial lo-
calization, on the order of 1 µm, can be achieved without
the need of controlling the temporal degrees of freedom,
thanks to the Bessel-like form of the spatial correlation. This
latter result can be of great importance for those quantum
imaging applications, such as correlated imaging or quantum
lithography, where the spatial localization of biphotons limits
the spatial resolution achievable in the schemes.
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APPENDIX A

In this appendix we solve with a perturbative approach the
propagation equation for the field, Eq. (4), the gain g being the
perturbative parameter, that we assume � 1. We start formally
integrating Eq. (4) from z = 0 to a generic z:

â(�q,�, z) − â(�q,�, 0)

= g

lc

∫ z

0
dz′

∫
d �q ′d�′

(2π )3/2
ᾱp(�q + �q ′,� + �′)

× â†(�q ′,�′, z′)e−i�(�q,�,�q ′,�′)z′
. (A1)

We can find a similar equation for â†, and substituting
recursively the expressions for the fields, we obtain:

â(�q,�, z)

= â(�q,�, 0) + g

lc

∫ z

0
dz′

∫
d �q ′d�′

(2π )3/2
ᾱp(�q + �q ′,� + �′)

× â†(�q ′,�′, 0)e−i�(�q,�,�q ′,�′)z′ + |g|2
l2
c

∫ z

0
dz′

∫
d �q ′d�′

(2π )3/2

× ᾱp(�q + �q ′,� + �′)e−i�(�q,�,�q ′,�′)z′
∫ z′

0
dz′′

×
∫

d �q ′′d�′′

(2π )3/2
ᾱ∗

p(�q ′ + �q ′′,�′ + �′′)â(�q ′′,�′′, 0)

× ei�(�q ′,�′;�q ′′,�′′)z′′ + · · ·
(A2)

Up to first order in g, and for z = lc, we therefore get:

â(�q,�, lc)

= â(�q,�, 0) + g

lc

∫ lc

0
dz

∫
d �q ′d�′

(2π )3/2
ᾱp(�q + �q ′,� + �′)

× â†(�q ′,�′, 0)e−i�(�q,�,�q ′,�′)z. (A3)

By introducing the change of variables z → s = z/lc, we
obtain:

â(�q,�, lc)

= â(�q,�, 0) + g

∫ 1

0
ds

∫
d �q ′d�′

(2π )3/2
ᾱp(�q + �q ′,� + �′)

× â†(�q ′,�′, 0)e−i�(�q,�,�q ′,�′)s·lc

= â(�q,�, 0) + g

∫
d �q ′d�′

(2π )3/2
ᾱp(�q + �q ′,� + �′)

× â†(�q ′,�′, 0)e−i�(�q,�,�q ′,�′) lc
2

× sinc

(
�(�q,�, �q ′,�′)lc

2

)
, (A4)

where in the last equality we use the identity
∫ 1

0 eipsds =
eip/2sinc(p/2).

We want now the solution for the total field Â, including
the linear propagation. Thanks to Eq. (3), we get:

Â(�q,�, lc) = eiksz(�q,�)lc

[
Â(�q,�, 0) + g

∫
d2 �q ′d�′

(2π )3/2

× ᾱp(�q + �q ′,�+ �′)Â†(�q ′,�′, 0)e−i�(�q,�,�q ′,�′) lc
2

× sinc

(
�(�q,�, �q ′,�′)lc

2

)]
. (A5)

APPENDIX B

In this appendix we show the conditions under which the
nearly plane wave pump approximation holds. Our goal is
therefore to find when we can substitute �(�qs,�s, �qp,�p),
defined in Eq. (12), with �(�qs,�s, 0, 0) into Eq. (8), i.e., when
we can assume:

ei
�(�qs ,�s ,�qp,�p )lc

2 sinc

(
�(�qs,�s, �qp,�p)lc

2

)

= ei
�(�qs ,�s ,0,0)lc

2 sinc

(
�(�qs,�s, 0, 0)lc

2

)
, (B1)

where �qp and �p lie within the spatiotemporal bandwidth
of the pump. We define the function H (x) = eixsinc(x) and
we write the expansion of H (�(�qs,�s, �qp,�p)lc/2)) around
�qp = 0 and �p = 0. We have:

H

(
�(�qs,�s, �qp,�p)lc

2

)

= H0

(
1 + H ′

0

H0

�∇�qp
�(�qs,�s, �qp,�p)

∣∣∣
0
· �qplc

2

+ H ′
0

H0

∂�(�qs,�s, �qp,�p)

∂�p

∣∣∣∣
0

�plc

2

)
+ O

(
q2

p,�2
p

)
,

(B2)

where H0 = H (�(�qs,�s, 0, 0)lc/2), H ′
0 = H ′(�(�qs,�s,

0, 0)lc/2) with H ′(x) = dH (x)/dx, ∇�qp
= (∂/∂qpx, ∂/∂qpy)

is the gradient with respect to �qp and “|0” means evaluated at
�qp = 0 and �p = 0.

The idea is to find the conditions under which the linear
terms in �qp and �p in Eq. (B2) can be neglected with respect
to unity. This will set a condition on the pump waist (wp) and
duration (τp). By assuming, e.g., that the pump has a Gaussian
profile both in time and space, we have qp = 2/wp and �p =
2/τp (similar relations will hold, as order of magnitude, for
any sufficiently smooth pump profile).

Thus∣∣∣∣H ′
0

H0

�∇�qp
�(�qs,�s, �qp,�p)

∣∣∣
0
· �qplc

2

∣∣∣∣ � 1

⇒ wp �
∣∣∣∣H ′

0

H0

�∇�qp
�(�qs,�s, �qp,�p)

∣∣∣
0
· �qp

qp

∣∣∣∣ lc, (B3)

and∣∣∣∣H ′
0

H0

∂�(�qs,�s, �qp,�p)

∂�p

∣∣∣∣
0

�plc

2

∣∣∣∣ � 1

⇒ τp �
∣∣∣∣H ′

0

H0

∂�(�qs,�s, �qp,�p)

∂�p

∣∣∣∣
0

∣∣∣∣ lc. (B4)
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We start from H ′
0/H0. Since the function H0 assumes its

maximum value at �(�qs,�s, 0, 0) = �pw(�qs,�s) = 0, i.e., on
the phase-matching curve, we calculate the maximum value
of the ratio |H ′(x)/H (x)| only nearby this region, that is,
for x ∈ [−x0, x0], where x0 > 0 is defined by the equation
|H (x0)| = sinc(x0) = 0.5. We find

max
x∈[−x0,x0]

∣∣∣∣H ′(x)

H (x)

∣∣∣∣ =
∣∣∣∣H ′(x0)

H (x0)

∣∣∣∣ = 1.32. (B5)

For the constraint on the pump waist (B3) we get:

∇�qp
�(�qs,�s, �qp,�p)

∣∣
0

= �qs

2

[
1

ksz(qs,−�s)
− 1

ksz(qs,�s)

]
+ �ρp, (B6)

where we remind that ksz(qs,�s) = √
k2
s (�s) − q2

s , while
�ρp = −∇�qp

kp|qp=0,�p=0 is the two-dimensional walk-off angle
of the extraordinary pump with respect to the z direction.
Therefore the constraint (B3) takes the form

wp � 1.32

∣∣∣∣ �qp

qp

· �ρplc

− tan[θs(�s)] + tan[−θs(−�s)]

2

�qs · �qp

qsqp

lc

∣∣∣∣ , (B7)

where tan[θs(�s)] = qs/ksz(qs,�s) and θs(�s) is the (posi-
tive) internal angle formed by the direction of propagation
of a signal wave at frequency �s , with the z axis. The
conjugate wave will then propagate at an angle −θs(−�s),
and the second term at right-hand side of Eq. (B7) can
be seen as the average lateral displacement of a pair of
twin photons when crossing the crystal. Notice that close to
degeneracy, this lateral displacement is almost zero because
the two photons propagate basically at symmetric directions,
while the term becomes important for frequencies well away
from degeneracy, where θs(�s) 
= θs(−�s). The first term in
Eq. (B7) is the lateral walk-off of the Poynting vector of the
extraordinary plane-wave pump with respect to the z axis.

Hence, in general we can conclude that, concerning the
pump waist, the NPWPA holds when the pump waist is

significantly larger than the lateral walk-off between the the
signal and pump waves when crossing the crystal.

For the parameters chosen in our calculations (frequency
filter bandwidth ��F = 2�F = 1.37 × 1015 Hz, lc = 4 mm,
θp = 33.436◦), the pump-signal lateral displacement in the
direction orthogonal to the pump walk-off �ρp (i.e., �qp ⊥ �ρp)
has a maximum value of:∣∣∣∣ tan[θs(−�F )] − tan[θs(�F )]

2

∣∣∣∣ lc = 58 µm, (B8)

while in the direction along the pump walk-off (�qp‖ �ρp) it
ranges from 240 to 356 µm, since ρplc = 298 µm.

Regarding the constraint (B4) on the pump duration, we
get:

∂�(�qs,�s, �qp,�p)

∂�p

∣∣∣∣
0

lc

= lc

2

[
ks(�s)

ksz(qs,�s)

1

vgs(�s)
+ ks(−�s)

ksz(qs,−�s)

1

vgs(−�s)

]

− lc

vgp

, (B9)

where vgs(�) = (dks/d�)−1 is the signal group velocity, while
vgp = (∂kp/∂�)−1|q=0,�=0 is the group velocity of the pump.
If we note now that lcks(�s)/ksz(qs,�s) = lc cos[θs(�s)] is
the effective distance covered by the signal wave inside the
crystal, we can rewrite Eq. (B4) as

τp � 1.32

∣∣∣∣τs(qs,�s) + τs(qs,−�s)

2
− τp

∣∣∣∣ , (B10)

where τs(qs,�s) is the crystal crossing time for the signal
beam at (qs,�s), while τp is the one for the pump, and we can
interpret the term [τs(qs,�s) + τs(qs,−�s)]/2 as the average
crystal crossing time for the signal field.

This means that from the temporal point of view, the
NPWPA holds if the pump duration is sufficiently greater
than the temporal walk-off between the signal and pump
beams in crossing the crystal. For the parameters chosen in
our calculation we get τp � 1.17 ps.
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