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Spatial entanglement of twin quantum images
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We show that the spatial entanglement of two twin images obtained by parametric down conversion is
complete, i.e., concerns both amplitude and phase. By considering a homodyne detection scheme, which allows
comparison of field quadrature components of the two images pixel by pixel, Einstein-Podolsky-Rosen corre-
lations are shown to exist between symmetrical pixels of the two images. The best possible correlation is
obtained by adjusting the phase profile of the local oscillator in the amplification area. The results for quadra-
ture components hold even in the absence of any input image, i.e., for pure parametric fluorescence. In this
case, they are not related to intensity and phase fluctuations.
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[. INTRODUCTION acterized by a phasg, , the difference between the fluctua-
tions measured in two symmetrical pixels displays exactly
Optical systems that display quantum entanglement prophe same spectrum as the sum of the fluctuations in the or-

erties in the spatial domain are of great interest for applicathogonal quadrature componer4, + /2. The common
tions. since the amount of information that can be manipuyalue can be reduced well below the shot noise level over the

lated and processed in parallel exploiting quantumWhole image area, provided that the amplification is large

correlation effects increases substantially with respect to thgnough and the phasg is correctly adjusted. Optimization

. .__0Of.the spatial profile of the phase is crucial to obtain a large
case of §|ngle m_o_de peams. Re_cently, there has been a rlseI(glc/el of quantum correlations between symmetrical pixels for
interest in the utilization of spatially entangled beams in op

. ) . ! th i lation for th
fical imaging(quantum imaging the quadrature component, and anticorrelation for the

. .quadrature componen#, + /2. Thus, the twin images ex-
Photons produced by spontaneous down convertion Ripbit a complete Einstein-Podolsky-RoséBPR [7] en-

parametric crystals, in the regime of single-photon pair 9€Nianglement with respect to continuous variafigs

eration, have been p_roposed for several imaging applications gjnce quantum correlations are shown to exist for any
(see, e.9.[1,2)). In this case, the entanglement concerns the;oyple of symmetrical pixels over the whole area of the out-
propagation directiong&he transverse momenturof the two  put images, we speak of spatial quantum entanglement. The
photons. However, entanglement exists also at the level of gystem exhibits @patial realization of the EPR paradox for
large number of down-converted photons, where it results inwo orthogonal quadrature components of the output field
nonclassical spatial correlations between continuous varisimilar to that shown irf9] for the case of the parametric
ables of the two down-converted beams. This is the regimescillator below threshold. In comparison with the analysis
that will be investigated in this paper. Among the possibleof [9], we consider here also the case in which a coherent
uses of this kind of spatial entanglement, recent proposalgnage is injected into the system. Furthermore, the consider-
concern the possibility of teleporting the quantum state of aration of an OPA, instead of an optical parametric oscillator
optical imagd 3], and the possibility of measuring small dis- With spherical mirrors, allows us to obtain here completely

placements of an optical beam with a sensitivity going be-2nalytical results. _ _ o
yond the standard quantum linfd]. In the presence of an input image, the mean output field is

We consider the field generated through the process dlifferent from zero, and therefore amplitu(_jee., intensity
frequency down conversion in a traveling-wave optical para-and phase fl_uctuatlons correspond to sp_eC|aI cases of quadra-
metric amplifier (OPA). In [5,6], it was demonstrated that ture fluctuations. Therefore, our analysis shows in a rather

such a system, when coupled with an appropriate classicéltra'ghtfor.ward way that n symmetrical pixels not only
imaging device, is able to generate two symmetrical amloli_quantum intensity fluctuations are strongly correlated, but

fied copies of an injected input image that are strongly corPhase fluctuations are anticorrelated in the same amount.

related one to each other: they indeed display synchronize(ij] The paper is divided as follows. After a presentation of

local intensity fluctuations at the level of quantum noise, and"® (_)ptlcal image amplification sqheme in Sec. Il In the th|rd
for this reason they may be referred to as twin images. section, we study the fluctuation spectrum of the field

Here we present new results, that consolidate and Conguadrature Components’. as it would be measured in. thg pro-
plete the picture, showing that the two output images ard0sed homodyne detection scheme. The fourth section is de-

locally correlated, not only with respect to intensity ﬂuctua_voted to the discussion of amplitude and phase fluctuations.

tions, but also to “phase” fluctuations. We consider a phase:I'he final section includes conclusions and perspectives.

sensitive homodyne detection scheme that allows us to com-
pare the fluctuations of field quadrature components from
two corresponding pixels of the two output images. We find The experimental procedure to generate a pair of quantum
in general that, for an arbitrary quadrature component charentangled images through the process of parametric down

Il. OPTICAL IMAGE AMPLIFICATION SCHEME
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The first term on the right-hand sideh.s) describes linear

FIG. 1. Schematic diagram of the parametric image amplifierpropagation inside the CryStakZ((i,Q) being the wave-
The two-lens telescopic system enclosing?acrystal produces two — vector component along theaxis of a plane-wave mode of
amplified copies of the input image that are s_trongly quantum _Corfrequencywp/2+0 and transverse Wave-vectér The sec-
related to each other, thereby the name twin images. The device {$nd term in Egs(1) describes the nonlinear interaction be-
phase sensitive when the input image is symmetrical, phase inseﬂ/’veen different modes; the coupling constants propor-
si.tive when it is confined in the upper half of plaRe. f is the focal tional to the pump field amplitude and to the nonlinear
distance of the lenses. susceptibility of the medium. The parameter

conversion close to the degenerate frequency has been dis- A= 2ks—kp, 2
cussed in previous papels,6] and may be summarized as . . o .
follows. The x(?) crystal is enclosed between two lendes Is the phase mismatch along thelirection between signal
andL’ of focal lengthf, as shown in Fig. 1. We take the and pump waves for collinear propagation.

. o : Y o . By solving Egs.(1), we may write explicitly the input-
axis as the main light propagation direction and indicate Wlthoutput transformation that relates the field operators in the

x=(X,y) the point coordinates in a generic transverse planegutput face of the crystaplaneP5) to those in the input face
Not shown in the figure is the coherent pump field that acti<planeP,): we obtain the relatiotisee, e.g.[11])
vates the process of down conversion and that we take as an
ideal classical monochromatic plane wave of frequengy as(q,Q)=u(q,0)ay(q,Q)+v(q,Q)al(—q,— Q). 3
propagating inside the crystal along théirection.

The crystal slab of width., ideally infinite in the trans- The gain coefficientsi(q,{) andv(qg,Q) are given by the
verse directions, is cut for type | quasicollinear phase matchexpressions
ing at the degenerate frequeney/2. Under these assump-
tions, each elementary down-conversion process corresponds
to the splitting of a pump photon of frequenay, into a pair
of photons of frequencies,/2+ () and w,/2— (), propagat-

ing with the iame poLanzauon and with opposite transverse % cosr[F(ﬁ,Q)lc]
wave-vectors] and —q.
Considering only frequencies such th@t<w,, the .
down-converted signal field may be described within the - A(q,Q)) >
. g S ) +i——=——=sinjT'(q,Q)l.]]|, (4)
guasimomochromatic approximation by a unique envelope 2I'(q,Q)

operatora(z,x,t). Assuming the validity of the paraxial ap-
proximation, which implies that the light beams propagate - , -
forming small angles around the mean propagation direction u(q,Q):exp{|<kz(q,Q)—ks
Z, a(z,i,t) is slowly varying with respect to the carrier wave N
exp(kgz—iwpt/2), ks being the wave number of the signal at A(g,Q) SinHT (6.0
the degenerate frequency. In order to shorten notations, we ) c F(a,Q)"'m[ (a.D)lel,
shall use the definitionsy(x,t)=a(z=—2f,x,t), a,(Xt)
=a(z=0x1t), ag(x.t)=a(z=I.,xt), asx,t)=a(z=l, Where
+2f,x,t), for the envelope operators in the input plag
the entrance planB, of the x(?) crystal slab, its exit plane r(G,0)=
P3, and the output plan®,, respectively(see Fig. 1L We 9
denote bya;(x,Q), a;(q,Q) (i=1,...,4) their Fourier A . A
transforms in time and in space time, respectively. A(q,Q)=Kk,(q,Q) +k,(—d,—Q)—kp,

In the linear regime, assuming that pump depletion and
losses are negligible, the propagation equations inside thd'e¢ the parametric gain and the phase mismatch for the
crystal take their simplest form in Fourier spddd] couple of phase-conjugate modeﬁs&()) and (—ﬁ,—Q).

A(q,Q)?

— )

o=
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Assuming for simplicity that the down-converted field is disc of area~SO=x§ centered at the origin, or a ring of
ordinarily polarized, all these functions depend only on thewidth ~x,, depending on the possibility to have collinear
modulus ofg, since propagation is isotropic. F&r=0, per- (A¢=0) or noncollinear §,>0) phasematching &2 =0,

fect phase matching is achieved when respectively. We assume that the input image is a coherent
R stationary field of frequencw,/2 confined in this region of
lal = VKE— (ky/2)2~ VksAo. (6)  planeP; (see Fig. 1so that

The gain reaches its maximum around this valuggbf with (a1(X,Q)) =27 8(Q) aijn(X). (12)

a broadplateauof width do= vks/I, the variation scale of As explained in details ifi6,10], whenever the input image

|ul and |v| in the spatial frequency domaisee[16] for is symmetric with respect to the system axis, the device

more detaily: works as a phase-sensitive amplifisee in this connection
The purpose of the two lenses shown in Fig. 1 is to map P P

the Fourier planed,,q,) into the physical planex(y). In also[13)]). In this case, the phase of the input image must be

this manner, if an optical image is injected at the degenerat%eu:“(:ted in order to optimize the gain. Assuming the input

frequencyw, /2 in the object plané@,, the system amplifies Image is duplicated before amplification by means of a clas-
portions of F;his image rather thanlya band of ds/ectors sical imaging device that produces a symmetrical field ditri-

Indeed, the presence of the lenses converts input-output r@ution[i.e., aiz(—x)=ain(x)], the system is able to gener-
lation (3) into a formally identical relation between the real- &€ in the output plane two amplified copies that are far better
space field operators in the plar@s and P: correlated in space time than the originals, meaning by this

that they display perfectlyin the ideal casesynchronized
a,(x,Q)=u(x,Q)a;(-x,Q)+v(x,Q)al(x,—Q), (7) localintensity fluctuations. It was also demonstrtéfithat
in the limit of high gain, the signal-to-noise ratio as mea-
where sured from a small portion of the input image before dupli-
cation is preserved in the corresponding portions of the two
. 21X . 21X output imagesnoiselessamplification is therefore achieved
U(X,Q)=—U(A—f,ﬂ),v(X,QFv(A—f,Q), (8)  for both output channels taken separat&dge[14] for an
experimental observation of noiseless amplification of im-

and\ is the wavelength of the down-converted field at de-29€s- _ _
generacy. In [5], an alternative way to generate a pair of quantum

We must underline that all the results that follow do notcorrelated imagegalso calledtwin images was considered;
depend on the particular form of the gain functions, but relyit consists of injecting a single-input image asymetrically, for
on the fact that they satisfy the following unitarity condi- €xample, by confining it to the upper half of plaig as

-

tions: shown in Fig. 1. This configuration does not require a dupli-
cation system and presents the further advantage that the
lu(q,Q)|2=|v(q,0)|?=1, (9)  gain does not depend on the phase of the input field because
the systems works as a phase-insensitive amplifier. However,
U(ﬁ,ﬂ)v(—ﬁ,—Q)ZU(—ﬁ,—Q)U(G.Q), the fidelity with which information is transferred is worse

than in the phase-sensitive case, since the signal-to-noise ra-
which guarantee that the free-field commutation rules ardio is deteriorated at least by a factor of two in the amplifi-

preserved cation procesqa feature common to all phase-insensitive
optical amplifierd 15]).
[ai(a,ﬂ),a?(ﬁ’,n’)]: 8(q—q)8(Q—-Q"), (10 Most of the results presented in this paper do not depend
on the particular injection scheme, so no assumptions are
[a;(g,t),a(q’,t")]=0, (i=1,2,3,9. made about the input intensity distributipm;,(x)|?. Imper-

fect detection can be modeled in the usual way, by coupling
Qn the other hanq, with respect to other systems that exhibthe output field operatosu4(>2,t) with an independent opera-
input/output relations of the same forfe.g., optical para- o fie|q a,(x,t) which acts on the vacuum state. The contri-
metric oscillators, see, e.412)), the large spatial bandwidth 1, ion o, describes the noise added by losses in the detec-
qo of the amplifier makes this traveling-wave scheme a goodjon process; thus, the effective output field measured by a
candidate for high-resolution image amplification. detector of quantum efficiency<1 is

For the scheme of Fig. 1, the region in the transverse
plane that may be efficiently amplified without distortion has aD(f,t)z \/;a4(>z,t)+ \/1T773N(>2,t) (13
a linear size on the order of
\f and the corresponding photon flux density is

Xo=5 ;%o (1D i(X,t)=ah(X,Dap(X.). (14)

which represents the width of th@ateauof the real-space As shown in Fig. 1, at the exit face of the crystal we insert a
gain functions(8). Such a region has either the shape of apupil of areaS,, an element that is able to eliminate diver-
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gences arising in the calculation of the field mean intensity

and correlation functions when dealing with a system of in- .
finite transverse dimensiorid0,12. It also determines the AL
characteristic resolution area of the device in the detection 1 3
plane, which isSR=()\f)2/Sp. This finite-size optical ele- 1 M
ment introduces a convolution integral with the pupil re-
sponse function in the r.h.s. of E@) and, as a consequence, 24 2
the points of the input image are spread into diffraction spots 4
of areaSy in the output image. However, analytical calcula- Py LO

tions are performed in théow-diffraction limit, assuming FIG. 2. Homodyne detection scheme for the measurement of the

that the diffraction spot sizg S is much smaller than both quadrature components of the amplifier output figfg) and z(?’
Xo and the variation scale of the input image intensity. Con-, L L

b . . - . . from two symmetrical areas of the image plaPg (labeled with 1
sidering is'”ﬂ'e'p'xe' detect@labeled by '%qeﬁq_) tlhat N and 2). The high-intensity LO field is mixed with the amplifier
tercepts the photons arriving on an aRya which is large in output field at the symmetric beam splitet
comparison withSg, the mean value of the measured pho-
tocurrent is theri6]

—_

=]

1 o)
. Z .

A 4
Y

ale(x,t)=Vnalo(x,t)+ y1— pa(x,t), (17

<ij(t)>:f dx(i(x,t)) where a%¢(x,t) describe the noise added in the detection
R process. When the corresponding intensities are electroni-
. I, . o1 cally substracted, one obtains a direct measure of the quadra-
= ﬂJR_dX|U(X,0)am(—X)+v(X,0)ain(X)| ture component of the output fiel, selected by the phase
! of the LO, more precisely

+1J dir £|U_(>ZQ’)|2 (19 Z, (x,Hy=abl(x,t)al(x,t)—a (x,t)a%(x,t) (18
SRR]- o 27T ' ' (RS VIR CAL R A DAY D\t apiiy

The first integral represents the amplified coherent input ”:1L(;)[af(§ t)ei¢L(i)+a4(§ t)e L] (19)
field, while the second integral is the contribution coming o ’ '

from spontaneous parametric down conversion. The ratiguhere in the last line we assumed that the LO can be treated
Sy/Sg gives an evaluation of the number of details of the ;5 5 classical ﬁeML(;):pL()z)eiqsL(;)_ Taking into account

input image that can be resolved in the detection pl@n®,  the finite size of the pixel detection aréq, the measured
with the pixel array of a charge-coupled device camera quantity is

Moreover, quantum correlation effects tends to disappear

whenSg— Sy, since in this limit, the signal and idler photons ) - -

of each down-converted pair can no more be resolved sepa- Z¢L(t): JR_ dXZg, (X,1). (20
rately, because of the large diffraction spreadgirspace. !

Making S as small as possible with respect3g is there- e now want to compare the fluctuations of the field quadra-
fore a necessary requirement that must be taken into accoufifre measured in two symmetrical pixgls 1 andj=2 of

in experiments. However, this leads to an increase of thene signal and idler image. To this aim, we consider the sum

spontaneous emission contribution that goes at the expenggq the difference of the quadrature obtained from two sym-
of the visibility of the amplified input image. This last cir- etrical detection regionB; andR,

cumstance imposes a lower limit on the intensity of the input
image (see[5,10,19 for more details sziL)(t):z((;L)(t)tZgL)(t). (21

Ill. FIELD QUADRATURE CORRELATIONS The corresponding fluctuation spectra, defined as

A homodyne detection scheme allows the measurement of . o , . .
a particular quadrature component of the field. It is sketched Vf{L)(Q)Z f dte'“‘(éZf;L)(t)522{)(0)), (22
in Fig. 2 and consists of a beam splittdrthat combines the o
output field with a coherent field of much higher intensity

aL(i), which is usually referred to as the local oscillator field

(L('?[z]' Itntrt]he balar:ced versi(_)nt, 3?0{[ ﬁo ?elilm split_ter ifs usef[dclescribe the degree of correlation between the observables
S0 that the operators associated to the TI€lds coming from tha,) andZ{f). Using the input-output transformatidd), the

two output ports of the beam splitter, labeleé@ndc, are oL i . ] ]
commutation ruleg10) and the fact that the input image is

ab,c()z't) =[a4(>?,t) ia,_()Z)]/\/E, (16) coheren_t, we obt_ain the following rel_atioﬂ.he details of the
calculation are given in the Appendix
and the effective fields seen by two identical detectors of
guantum efficiencyy in the two portsb andc are

525 ()=25 () —(Z5) (),

VE(Q)=Vi () (239
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1
[Jux,0)]+[o(x,0]1%’

(- Wt dxui0)at () F(7.0=0) 29
2

1t
_oF(—x — —x)|2 — - — -
o* (=%, — Ma (=x)[% (230 \yhich goes to zero whefu(x,0)|~|v (x,0)|>1. Under con-

ditions of large gain and reasonably large quantum effi-
ciency, almost perfect correlation between the selected
quadratures may therefore be obtained.

_ 2. It is interesting to relate the conditions for obtaining the
(Mo ”f dxp(X) (24 maximum correlation/anti-correlation with the conditions for
obtaining the maximum amplification/deamplification in the

detectors(we assumeda, (X)|?>(i(x,t))). Next, we as- general
sume that the LO is symmetric with respect to the system

where

R1+Ry

@out(X) =(a4(X,1)) = U(X,0) jn(— X) + v (X,0) a5 (X),

axis, i.e.,aL(§)= aL(—i). We can write (29)
VEI’_L)(Q) :V(JL)+ A )=(1—7)(N)io where we usEd Eqsé?l and(12). In the phase-sensitive case
where ¢;,(—X) = &;,(X), we may write
7 e r XFDRLC0, (29 |t X) 2= G(3) (%) (30)
where with the phase-sensitive gain given by

L o G(X)=[u(x,0e'“n®+y(x,0en®[2, (31
F(x,Q)=|u(x,Q)e 1O —p*(—x,—Q)e'4™)?,
(26)  where¢;,(X) is the phase distribution af;,(x). The maxi-

mum value for the gairG,,.{X)=[[u(x,0)|+|v(x,0)|]? is
Note that the above expression corresponds to the fluctuatingtained for g max(}) =[[u(x.0)| +[o (x,0)[]

spectrum normalized to shot noise wher 1 and the pixel

side is small with respect to boy and the scale of variation R ra e 1 . .

of a(x). In this casex in Eq. (25) must be taken as the in(X) = $in*(x) =5 [argv (x,0)—argu(x,0)].  (32)

central point of pixel 1 or pixel 2; due to rotational symmetry

aroaund thez axis, the result is the same for both pixels, sinceFrom Eq.(29) with a;,(X)=|ain(X)|expi#™) one obtains

F(x,Q)=F(—x,Q) that in this case, the phasg,,, of the output fielda,,, is
A first important result follows from the first equality given by

(23a, according to whicrzf;L) andZ((fL) are correlated one to

: - .1 . —.
each other exactly to the same ext)ent as the(zc)orrespondmg bou(X)= qsg"ué})%x)zz[argu(x,O)Jrargv(x,O)] (33)
orthogonal quadrature componeﬁl&;’iw,2 andZ;’. ., are

anticorrelated. Second, the common fluctuation spectrum of L . -
the two observableiﬁ,}f—szg and ZE;L)M/#ZE;?L)M/Z as and therefore coincides witth,,(x) given by Eq.(27). On

_ b 023D d td d tte mtonsit the other hand, when the input field phase is selected as
given by expressio oes not depend on the intensity , =y max.> - : .
and phase of the input imagas long as the LO intensity is ¢$in(X) = din .«X)TLW/Z’ _the input field und(_a_rgoes _the maxi

e mal deamplification, with the phase-sensitive gain attaining
much larger than that of the output amplified imadéence, | o N - A 5
the result is the same in the phase insensitive and in théS ~ minimum  value Gmin(X) =[|u(x,0)| = v (x,0)[]
phase-sensitive scheme, and remains the same even in tHel/Gna(X). In this case, the output field phase distribution
absence of an input image at all, i.e., in the case of purgs given by, (X) = ¢op(X) + 7/2. This leads to the follow-
parametric fluorescence. Third, this spectrum may be reing interpretation for the particular form of the LO phase that
duced well below the shot noise level, provided the gain iggives the maximum amount of correlation/anticorrelation be-
large enough a_nd the phase of the LO is correctly adjustedween symmetrical pixels: the LO phase that gives the opti-
Indeed, assuming that mum squeezing foZ{ ) coincides with the phase of the
1 output field in the phase-sensitive scheme and in conditions
vl — — 2T v f maximal amplification, whereas the optimum squeezing
x)= s [argu(x,0)+argv(x,0)]= X 2 0 ) _ -
$L)= 5 largu(x,0)+arge (X,01= dopx) (27 for Zf;L) is achieved for the orthogonal phase. Hence, as it

will be showed in more detail in the next section, when the
over the two detection areas, using the symmetry property qhput phase is selected for maximal amplification, we may
the LO a (—x) =« (X) and unitarity relationg9), one ob-  say that amplitude-quadrature fluctuations on symmetric pix-
tains from Eq.(26) for Q=0 els are maximally correlated while phase-quadrature flucta-
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tions are maximally anticorrelated. On the other hand, a LO 0.6
phase distribution coinciding with that of the output field in F(x)
conditions of maximal deamplification, permits us to reach

the optimal squeezing f(ﬂfl;[), while the orthogonal phase 0.4
gives the best squeezing faf; . In this condition, we can

say that phase-quadrature fluctuations on symmetric pixels
are correlated, while amplitude-quadrature fluctations are an- 0.2
ticorrelated.

Incidentally it should be noted that the above arguments
may be easily extended to a phase-sensitive configuration
corresponding to the injection of an odd image in the input, 9% o5 10 15 20
that is a;,(—X)= —ain(ﬁ). Maximal amplification now
takes place when the input phase is orthogonal to the one

given by Eq.(32), i.e.$in(X) = ¢in*(x) + /2. The amplified FIG. 3. Plot of the noise reduction factB(x,0). Subscriptga)

output field a is also odd, but we can have exactly the refer to the optimal phase of the LO while) and(c) refer, respec-
same situation as for the injection of an even image providegyely, to a constant phase and to a phase with a quadratic depen-
we consider a LO odd with respect to inversion coordinatedence on the distance from the optical axis. The dashed line is the

and we set,p— boptt T2, Pour— bourt /2. phase-sensitive gain of the OR8ee Eq.(31) divided by a factor
The results obtained for the observabl’éﬁL) closely res-  10]. Agl=0.5 and|o]l = 1.5.

semble the situation of the EPR paradox for continous vari-
ables demonstrated i8], but generalized to many pixels
(see alsd9]) and to the presence of input irTnz/azges. We noticepixels in the output over the whole gain regi&g. To this
indeed that the conjugated observa@l@gf_f}Dlzdt ZE),Z(t) end, we allow the LO phase distribution to have a quadratic
and Pj:ijT/z/zdt ZE,PM/z(t) (j=1,2) obey the uncertainty depend_ence on the spatial COOI’dIhéMhICh corresppnds to

D L a spherical wave front as one has, e.g., in Gaussian beams

The wave-front curvature is selected in order to have the best

2 fit of the spatial dependance dfopt(i) in Eq. (27).
- (39 Figure 3 plots the functiof (x,Q=0) in the limit where
R; and R, are small compared t&, and symmetric. The

On the other hand, the following combination over the twocollinear phase mismatch at degeneraci k.= 0.5 and the
pixels: X_=X;—X, and P, =P, +P, are commuting ob- linear gain parameter isr|l.=1.5.

servables that can be simultanously determined. When the Curve(a) corresponds to the ideal case, with satisfy-
time of measuremer®y is much larger than the inverse of ing condition(27) everywhere in the transverse plane, and
the temporal bandwidth of the OPA, using Eg2), the un- leads to a maximal amount of noise reduction in the whole
certainty of these observables may be directly related to thamplification region. In curveéb), the phase of the LO is

rule

<52x-><52p-)>E
J =4

To| | dReted
R1+ R2

fluctuations spectrum/f,,l’ constant and satisfies conditiq®7) only in the point of
maximum gain Xg, Wwhere perfect phase matching is
<52X—>:(52P+>:TDV£{L)(Q=0)- (35 achieved, i.e., we havé, (X) = ¢opi(Xc). For our choice of

_ _ parameters in this point we havel|?=5.5 and F=(|u
For »=1, an optimal adjustement of the LO phase allows

" intios £ D oSt e for | —|v])2=exp(-2|o]l)=0.05. Curve(c) is obtained by opti-
€se uncertainties 1o reach aimost a z€ro valué Ior larg izing the phase with a quadratic term, that is we take
amplification and thus to display an apparent violation of the - 5 5 5. o
Heisenberg rule DL(X) = dopi(Xa) T 1/2(d* hop/dX) (X —Xg)%; this is the
best that can be done with a Gaussian LO and is close to the
2 ideal case.
. (36) Notice that in practice, there exist other tricks to perform
the phase optimization. For example, one may use a LO with

o . . a flat wave front in the detection plal and shifts instead
However, it is impractical to synthetyze a LO with the phase, plam,

variation prescribed by E@27). On the other hand, for a LO Lhegr:yz'ﬁloii?;plfnat\ﬁiy ;:;;Srg tihne ff:(;al tﬁf?ieelc;’t?r? iﬁzs
with constant phase, the conditi¢27) concerning the phase y an B ' N

of the LO can be exactly satisfied only for a single couple Ofdetectlor? plane /lsarelatedato Tkexfngmze field in th? absence of
pixels of area small compared &, so that the gain func- the & shift by a;(x)=a,(x)e "¢ - After the interfer-
tions [u(X,0)| and [v(X,0)| are nearly uniform over the de- S"Ce With a Io_??q! Sks fi'('ﬁ%r’ tr]re*mie(jsflriga/z?%adrature ®
tection areas. We may however show that by introducing aff¢ (X) =as(x)e" """ +ay(x)et s , SO
appropriate curvature, the wave front of the LO field, EPR-that by properly adjusting thé shift, the overall effect is the
like correlations are present for each couple of symmetricame as using a LO with a curved wave front.

(X NPy <7

To| dgeted
R;+Ry
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IV. PHASE-INTENSITY ENTANGLEMENT OF that the pure noise contribution Wy (Q) [i.e., the last term
THE TWIN IMAGES in Eq. (39)] is negligible and, similarly, that the second term

Although the phase-sensitive measurement scheme coff! EG- (15 may be dropped. Thus, expressi@8) reduces to
sidered in the last section offers a picture of the spatial cor-
relations that can be observed in the output field, intensity , —(1_ 2 ST x (g
correlation measurements are more straightforward to per- Vil()=(A=mN- fR1+R2dX|u(X'Q)a°“t(X)
form experimentally and lead also to interesting effects of . .
quantum noise reductiof5,6,16. The observable that dis- —v* (X, — Q) agul —X)|?, (40)
plays reduced fluctuations with respect to the coherent state
level is the difference between the direct photocurrents meawvhere
sured from two symmetrical detection region=i;—is,.

The corresponding fluctuation spectrum is - -
ponding P No=n| _ dxlaou(x)? (4D

P 1+Ry
V (Q)zf dte'®(5i _(1)8i _(0)). (37)
- — and we used Eq(29). By comparing with Eqs(23b) and

By using Eqs(7), (10), (13), (14), and(15), and the fact that (24), we see that this expression coincides vMﬁpL Q) if

input image is in a coherent state one obtains after length}/® ke
but elementary calculatior(the demonstration is outlined in R R
the Appendix a(X) = aoui(X). (42

This is expected because a LO with the configuration of the
output field just picks up the amplitude fluctuations. The re-
lation becomes even more precise in the phase-sensitive case
S0 (X, — Q) gl — X2+ nzif dx a_m(i)_zain(—i). In this case, assuming=1 and that the
SrJR +R, pixel size is small with respect to botty and the scale of
40 o o variation of a,,(X), one has
X f ﬁﬂu(x,Q’)|2|v(x,Q+Q’)|2—u(x,Q

Vi (@)= i) | a0 e

1TRy

=F(x,Q)=[u(x,Q)e" #oul®

+QNo(X,—Q—Q)u* (X, Q" )v*(x,—Q")], N
(38) —0* (X, — Q)el b2 (43)

where aout(i) is given by EQ.(29). The shot noise level
corresponds to the photocurrent syin )= (i1 +i,). The
second term on the r.h.s. of E@8) arises from the interfer-
ence between the amplified input field and the fluorescenc . . ‘ ,
field. The last term, which does not depend on the presencgout- The link between intensity fluctuations and quadrature
of an input field, is a pure noise contribution due to the selfluctuations allows us to analyze the case of phase fluctua-

interference of the fluorescence field and reduces to zero f¢{°NS- 1N the small quantum noise approximation, these con-
Q=0 becauseT(i —Q)=v_(>? Q) [5] cide with the quadrature fluctuations measured with a LO

. . . e .. with a phase distribution shifted af/2 with respect to the
Using the explicit expression of the amplified input field o fiad phase distributiofihat is, the LO that provides

(29 and the fact thatu(x,Q)=u(-x,Q2), v(x,Q)=v  the amplitude fluctuationsTherefore, in terms of pixels, we
(—x,Q) and Eq.(9), we find for the zero frequency value of are lead to consider the observab@giﬂlz(t) [see Eq.

the spectrum (20)] with ¢ = ¢b,,. This naturally induces us to focus on
_ , i . the observablé(“(t)=ZS,,10)ut+ 77,2(t)+ZEfO)m+ (1), see Eq.
Vi (0)=(1—n)iy)+7n JR i dx [aip(¥)|*% (39  (21), which measures the degree of anticorrelation between
1T the phase fluctuations in the two symmetrical pixels 1 and 2.

As shown in[5], in the case of ideal detectiomE&1), the The spectrurTVE;L)Jr -2(€2) coincides W'thv(ﬁ)(m' which,
noise level ofi _ reduces therefore to the noise of the inputas we have seen, is identical ¥_({2) given by Eq.(43).
image overR;+R,. As a consequence, under conditions of Therefore, for large amplification, the fluctuationsZf ) (t)
large gain, fluctuations are well below the shot noise level. are well below the shot noise level, which implies that the
It is important now to connect with the result for quadra- phase fluctuations in the two symmetrical pixels are strongly
ture components obtained in the previous section. To thignticorrelated, exactly as the amplitude fluctuations are
aim, let us first assume that the input field is strictly differentstrongly correlated.
from zero at least in some region of the transverse plane. One could wonder at this point how is the fluctuation
Second, let us assume that the parametric values are sushectrum of the sum of intensities collected from symmetri-

where we setay,(X) = pour(X)eXPldou(X), and x is the
central point of any of the two symmetrical pixels. The result
goincides with that of Eq(25) where ¢, is replaced by

013813-7
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cal pixels,i . =i;+i,. Under the same assumptions that al-
lowed us to write Eq(43) we find

V; (1=0) . (X 0V (x 02
N G+ 4|u(x,0)v(x,0)]

N, G(X)
XSIP[2¢i0(X) — 203 (X)], (44

where NV, is the shot noise level and coincides with

given by Eq.(41). We notice that both in the case of maximal

amplification ¢;,(X)=¢M®*, and in the case of maximal

deamplification ¢;n(X) = ¢fn**+ 7/2, we have thatv; (0
=0)/N,=G(x). In the latter case, howeverG(x)

= Gmin(§)<1 and the spectrum of fluctuations of the inten-
sity sum is below shot noise. This kind of result was antici-
pated in the previous section by considering a homodyne
measurement performed by means of LO with the same
phase distribution of the output fieldHowever, some cau-
tion should be taken when considering a direct measurement
of the intensity sum. In fact, at difference from the case of
the intensity difference, the spontaneous fluorescence contri-
bution in the noise spectrum of the intensity sum does not
vanish at low frequencies. This is a consequence of the fact
that spontaneous fluorescence photons are emitted in pairs
propagating in symmetrical directions, so that fluctuations in  FIG. 4. Analogy between the two halves of a broken fossil and
the number of photons collected from symmetrical pixels aréiuantum entangled imagésee text

strongly correlated; when summing the light intensities from

symmetrical pixels, the photon number fluctuations sum coprecise prescription for the phagg of the local oscillator
herently instead of canceling one with each other. Moreover(see introductionin order to observe maximal correlation
this term could be not negligible compared to the contribubetween symmetrical pixels of the two output images. The
tion coming from the beating of the mean field with the optimal value for the phase is that which corresponds to the
noise, as the mean field itself results from the deamplificaamplitude fluctuations of the output images in the phase-
tion of the input. Indeed, some effect of noise reduction insensitive configuration, when the phase of the symmetrical
the intensity sum could be eventually observed only in thénput images is selected to obtain maximal amplification.
presence of a large intensity input, so that the deamplified We have also shown that a performance very close to that
output intensity is still much larger than the spontaneou®f the ideal case of the optimal LO phase may be obtained by

fluorescence mean intensity. using a LO with a quadratic wave frorias in Gaussian
beamg, with the curvature used as optimization parameter.
V. CONCLUSION The connection between quadrature fluctuations and

amplitude/phase fluctuations allowed us to conclude also
In this article, we analyzed extensively a system formedhat, while intensity fluctuations are strongly correlated in the
by an optical parametric amplifier with some imaging lensestwin images, phase fluctuations are strongly anticorrelated in
Amplification of optical images by OPA has been alreadythe same amount. An amusing analogy with amplitude and
studied in the literaturgl?7], but only from a classical view- phase fluctuations in entangled twin images is provided by a
point. fossil broken in two piecegsee Fig. 4 We see that the
Our results hold both for a phase-sensitive configuratiorstructures of the two pieces have the same “amplituge”
(symmetrical input imageand for a phase insensitive one thickness, but opposite “phasefbne is concave and the
(asymmetrical injection other convex, one is right handed and the other, left handed
We demonstrated that the two output twin images exhibit It is important to underline that while the results for in-
a complete spatial EPR entanglement. This was shown, fir¢ensity and phase fluctuations hold only in the presence of an
of all, by considering a pair of orthogonal quadrature com-input image, the result on EPR entanglement of quadrature
ponents of the output field. In the case of local oscillatorcomponents hold also in the absence of any input image, i.e.,
symmetrical with respect to the system axis, we found dn the case of the pure parametric down conversion as in
[16]. This is important for the applications to quantum tele-
portation of optical image$3], as a generalization of the
1As it should be by now clear, we hence have that the spectrum dBraunstein-Kimble[ 18,19 scheme for a single-mode field,
fluctuations of the phase difference is in correspondence below shéf to quantum cryptography with images.
noise. The results shown in this paper may be generalized to the
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case of type Il phasg matching, in whlc_:h the two entangled +[a4(x,t)—a,_(x,t)]a‘,if(x,t)}+(1— )

images are created in orthogonal polarization. The entangle-

ments is still between symmetric pixels of the two images,  x[abBf(x,t)al(x,t)—aS (x,t)aS(x.t)].

but the gain functions have no longer rotational symmetry

around thez axis. This case will be treated in details in a (A3)
subsequent paper.

We observe finally that our results hold also when theW . L
OPA is replaced by an optical parametric oscillator below € now use this ExXpression in order to evaluate the corre-
threshold with plane mirrorésee[5] in this connection As spond|rlg efluctuauon ) correlation function
a matter of fact, also in this case, one has an input-outputéZs (X,1)Z4 (X',t")) appearing on the r.h.s. of E¢AL).
relation of the form(7), and the results are based only on thisNoting that most terms containing the annihilation operators

relation and on the general properties of the functions aﬁ,'c(i,t) vanish, being these applied to the vacuum state,
andv. and using the relations (al°(x,t)ay®T(x’,t"))
=(ba, (x,t)da](x',t"))=8(x—x")8(t—t') we get
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= ([ 8aj(xX,t) aL(X) + Say(X,t) af (X)]
VI. APPENDIX - > - -
X[daf(x',t")a (X')+ Say (X' ,t")af (X')])
In this Appendix, we give the details of the calculation

leading to the fluctuation spectra of the photocurrent differ- + (@l (x,t)as(x,1)) +(1— )| (x)|?]
ence measured on symmetrical regions of the output field, - ,
considering first the case of homodyne detecfiggs.(23)], X S(x=x")é(t=t"), (A4)

and then the case of direct intensity measuremus(38)).
where  day(X,t) =ay(X,t) —(as(X,t))=as(X,t) — agu(X).

1. Derivation of Eq. (23) Using input-output relatiori7) written here for the fluctua-
Definitions (20) and (21) may be used in order to write tion operatorssa,(x,t) and da;(x,2)=a;(x,2) — ajy(X)
the fluctuation
spectrum(22) in the form sa,(X,0)=u(x,Q)da,(—X,Q) +v(X T(x. —
4 i - l 1 1 U(XlQ)éal(X! Q)
» (AS)
vgs?(n):f dxf dx’f dtel P52 4(X,1) 6Z 4(x',0))
Fi IR o (A1) the Fourier transformation of EgA4) yields
+led>ZfR2d>2' Jiwdte”“(52¢(>Z,t)52¢(>2’,0)) J_wdteim<5Z¢(x,t)52¢(x’,0))
+(Ry—Ry). (A2) = n28(x—x")[Ju(x, Q) |2+[v(x,— Q)[*]|a (X)|?
The double integrals on the same pixel are@s ¢r R,) + 728X+ x)[U(X, Qv (X, — Q) af (—X) & (X)
give the contribution of intensity self correlations, while the 2ot
double integrals on different areas describe cross correla- +e.cl+ (1= n|a (X)[*8(x—x")+ 7
tions. Substituting Eqg.16) and(17) into Eq. (18) and put- i, = - - -
ting a, (X,t) = a (X) + da, (X.t), we obtain X (3g(X, D340, 0) ox=x"). (A6)
z, (;,t): n[a}(i,t)aL(i)+a4(§,t)af(§)] Since we have gssumed the LO field i; much more intense
L than the output field, the last term of this expression can be
T n[al(i,t)éaL(i,t)+a4(>2,t)5a[(>2,t)] neglected. When substituted into the r.h.s. of El), the

terms proportional toé(f—f’) give the self-correlations
contribution to the spectrum, while the term proportional to

S(x+x') give the cross-correlation contribution. The final
result may be written as

+ @{[aﬁ;(it)+aI<£,t>]aa<i,t>

+lag(x,t) +a (x,H)]ak (x,t)}

1- - . - =)(Q)= X| g (X
_yrdmm . " tal .t —al (%.0)]a(t) V&’L)(Q)_n(l_n)fR1+R2dX|aL(X)|2 A7
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+ 7 fR L U Q)P+ o (x ) a (017] Z{(H= jRdi[aIl(x*,t)aom(i)+a4(xit>a:ut<i>]
1 2 i
(A13)
* ﬂsz . dX[u(x,Q)v(X,~Q)af (X)af (—x)+c.cl. is the difference between the quadrature amplitude fluctua-
1 2

tion operators, whilesi{ ™ (t)=i{7(t)— (i{ (1)) with
(A8)

The first term on the r.h.s is the shot noise level determined,(f)(t)=f df(ﬁal()?,t)éa‘l()?,t)—f dxdaj(x,t) das(xt)
by mean intensity of the LO field, while the remaining terms R Ra Al4
can easily be identified with the last term on the r.h.5Eaf. (A14)
(23b)]. Finally, we note that the substitutiop. — ¢+ /2 gives the pure noise contribution to the photocurrent fluctua-
with ¢ =arg(a,) leaves the expression on the r.h.s. un-tion spectrum arising from spontaneous down conversion
changed except for the sign of the last term and 83  (this term is the only one present if the input is in the vacuum

follows. statd. Since any product of an odd number of fluctuation
operators has zero expectation value, there is no correlation
2. Derivation of Eq. (38) betweensz{,)(t) andi{)(t), and we may write
We now outline the derivation of E438) that gives the w ‘
fluctuation spectrum of the photocurrent differericg(t). f dte (s (1)si57(0))

Using the relation(13), and recalling thagi(x,t) is an op-
erator that acts on the vacuum field, so that

(an(x,t)ak(x’ ,t"))=8(x—x") 8(t—t"), we can write = fﬁxdtem%5ZE,[,2(I)6Z§);2(0))

f_wdtem‘(ﬁi,(t)ﬂf(o» +£€ dte (s (1) 6i(7(0)). (A15)

_ nzfx dteiﬂt(gig—)(t)5i2—)(0)>+(1_ (i), (A9) The quqdrature_ fluctuations spectrum_ha§ been qlre_ady cal-
— culated in the first part of the Appendix; its contribution to
Eq. (38) may be identified by looking at Eq&40), and(41),

where which represent the limit of the intensity difference noise
(- (- (— when spontaneously down-converted photons may be ne-
i =i -0 ), (A10) oo Y P Y
The spectrum of{)(t) is more cumbersome to evaluate
i =i_(0)],=1= JR dxaj(x,t)as(x,t) since it involves the calculation of the fourth-order field cor-
1

relation function(saj(x,t) daa(x,t) saj(x’,t')das(x’,t")).
- . A direct substitution of input-output relatiofA5) leads to
N fdexa4(x,t)a4(x,t), the last integral on the r.h.s. of E6B8) multiplied by 5(x
=0). This divergence finds its explanation in the nonphysi-
denotes the photocurrent difference fluctuation operator fogcal assumption that the pump field is a plane wave, thus able
n=1. Substituting the expressiora,(X,t)=(a,(x,t)) © provide an infinite number of spontaneously down-

- - -y L converted photon pairs. The finite transverse dimensions of
+62,(X,1) = aou(X) + 424(x,t) into definition (A10), we the system can be taken into account by introducing a pupil

find at the output face of the cryst@ee[10] for more details If
SISt =6z8 )+ 61, (A11)  the pupil aress; is sufficiently large, the corresponding dif-
fraction spot areafSR:()\f)ZISp is much smaller than the
where coherence area of the amplifief and it can be shown that in
B this limit, 5(0) is symply replaced by the factor3 (see
Z{A (=250 -Z8 ), (A12)  [16] for a full calculation.
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