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Spatial entanglement of twin quantum images

Patrick Navez, Enrico Brambilla, Alessandra Gatti, and Luigi A. Lugiato
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We show that the spatial entanglement of two twin images obtained by parametric down conversion is
complete, i.e., concerns both amplitude and phase. By considering a homodyne detection scheme, which allows
comparison of field quadrature components of the two images pixel by pixel, Einstein-Podolsky-Rosen corre-
lations are shown to exist between symmetrical pixels of the two images. The best possible correlation is
obtained by adjusting the phase profile of the local oscillator in the amplification area. The results for quadra-
ture components hold even in the absence of any input image, i.e., for pure parametric fluorescence. In this
case, they are not related to intensity and phase fluctuations.
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I. INTRODUCTION

Optical systems that display quantum entanglement p
erties in the spatial domain are of great interest for appl
tions, since the amount of information that can be mani
lated and processed in parallel exploiting quant
correlation effects increases substantially with respect to
case of single-mode beams. Recently, there has been a r
interest in the utilization of spatially entangled beams in o
tical imaging~quantum imaging!.

Photons produced by spontaneous down convertion
parametric crystals, in the regime of single-photon pair g
eration, have been proposed for several imaging applicat
~see, e.g.,@1,2#!. In this case, the entanglement concerns
propagation directions~the transverse momentum! of the two
photons. However, entanglement exists also at the level
large number of down-converted photons, where it result
nonclassical spatial correlations between continuous v
ables of the two down-converted beams. This is the reg
that will be investigated in this paper. Among the possi
uses of this kind of spatial entanglement, recent propo
concern the possibility of teleporting the quantum state of
optical image@3#, and the possibility of measuring small di
placements of an optical beam with a sensitivity going
yond the standard quantum limit@4#.

We consider the field generated through the proces
frequency down conversion in a traveling-wave optical pa
metric amplifier ~OPA!. In @5,6#, it was demonstrated tha
such a system, when coupled with an appropriate class
imaging device, is able to generate two symmetrical am
fied copies of an injected input image that are strongly c
related one to each other: they indeed display synchron
local intensity fluctuations at the level of quantum noise, a
for this reason they may be referred to as twin images.

Here we present new results, that consolidate and c
plete the picture, showing that the two output images
locally correlated, not only with respect to intensity fluctu
tions, but also to ‘‘phase’’ fluctuations. We consider a pha
sensitive homodyne detection scheme that allows us to c
pare the fluctuations of field quadrature components fr
two corresponding pixels of the two output images. We fi
in general that, for an arbitrary quadrature component c
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p-
-
-

e
of

-

in
-

ns
e

a
in
ri-
e

e
ls
n

-

of
-

al
i-
r-
ed
d

-
e

-
-
-

d
r-

acterized by a phasefL , the difference between the fluctua
tions measured in two symmetrical pixels displays exac
the same spectrum as the sum of the fluctuations in the
thogonal quadrature componentfL1p/2. The common
value can be reduced well below the shot noise level over
whole image area, provided that the amplification is la
enough and the phasefL is correctly adjusted. Optimization
of the spatial profile of the phase is crucial to obtain a la
level of quantum correlations between symmetrical pixels
the quadrature componentfL and anticorrelation for the
quadrature componentfL1p/2. Thus, the twin images ex
hibit a complete Einstein-Podolsky-Rosen~EPR! @7# en-
tanglement with respect to continuous variables@8#.

Since quantum correlations are shown to exist for a
couple of symmetrical pixels over the whole area of the o
put images, we speak of spatial quantum entanglement.
system exhibits aspatial realization of the EPR paradox fo
two orthogonal quadrature components of the output fi
similar to that shown in@9# for the case of the parametri
oscillator below threshold. In comparison with the analy
of @9#, we consider here also the case in which a coher
image is injected into the system. Furthermore, the consi
ation of an OPA, instead of an optical parametric oscilla
with spherical mirrors, allows us to obtain here complete
analytical results.

In the presence of an input image, the mean output fiel
different from zero, and therefore amplitude~i.e., intensity!
and phase fluctuations correspond to special cases of qu
ture fluctuations. Therefore, our analysis shows in a rat
straightforward way that in symmetrical pixels not on
quantum intensity fluctuations are strongly correlated,
phase fluctuations are anticorrelated in the same amoun

The paper is divided as follows. After a presentation
the optical image amplification scheme in Sec. II, in the th
section, we study the fluctuation spectrum of the fie
quadrature components, as it would be measured in the
posed homodyne detection scheme. The fourth section is
voted to the discussion of amplitude and phase fluctuatio
The final section includes conclusions and perspectives.

II. OPTICAL IMAGE AMPLIFICATION SCHEME

The experimental procedure to generate a pair of quan
entangled images through the process of parametric d
©2001 The American Physical Society13-1
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NAVEZ, BRAMBILLA, GATTI, AND LUGIATO PHYSICAL REVIEW A 65 013813
conversion close to the degenerate frequency has been
cussed in previous papers@5,6# and may be summarized a
follows. Thex (2) crystal is enclosed between two lensesL
and L8 of focal lengthf, as shown in Fig. 1. We take thez
axis as the main light propagation direction and indicate w

xW5(x,y) the point coordinates in a generic transverse pla
Not shown in the figure is the coherent pump field that a
vates the process of down conversion and that we take a
ideal classical monochromatic plane wave of frequencyvp ,
propagating inside the crystal along thez direction.

The crystal slab of widthl c , ideally infinite in the trans-
verse directions, is cut for type I quasicollinear phase ma
ing at the degenerate frequencyvp/2. Under these assump
tions, each elementary down-conversion process corresp
to the splitting of a pump photon of frequencyvp into a pair
of photons of frequenciesvp/21V andvp/22V, propagat-
ing with the same polarization and with opposite transve

wave-vectorsqW and2qW .
Considering only frequencies such thatV!vp , the

down-converted signal field may be described within
quasimomochromatic approximation by a unique envel

operatora(z,xW ,t). Assuming the validity of the paraxial ap
proximation, which implies that the light beams propag
forming small angles around the mean propagation direc
z, a(z,xW ,t) is slowly varying with respect to the carrier wav
exp(iksz2ivpt/2), ks being the wave number of the signal
the degenerate frequency. In order to shorten notations
shall use the definitionsa1(xW ,t)5a(z522 f ,xW ,t), a2(xW ,t)
5a(z50,xW ,t), a3(xW ,t)5a(z5 l c ,xW ,t), a4(xW ,t)5a(z5 l c

12 f ,xW ,t), for the envelope operators in the input planeP1,
the entrance planeP2 of the x (2) crystal slab, its exit plane
P3, and the output planeP4, respectively~see Fig. 1!. We
denote byai(xW ,V), ai(qW ,V) ( i 51, . . . ,4) their Fourier
transforms in time and in space time, respectively.

In the linear regime, assuming that pump depletion a
losses are negligible, the propagation equations inside
crystal take their simplest form in Fourier space@11#

FIG. 1. Schematic diagram of the parametric image amplifi
The two-lens telescopic system enclosing ax2 crystal produces two
amplified copies of the input image that are strongly quantum c
related to each other, thereby the name twin images. The devi
phase sensitive when the input image is symmetrical, phase in
sitive when it is confined in the upper half of planeP1 . f is the focal
distance of the lenses.
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a~z,qW ,V!52 i @kz~qW ,V!2ks#a~z,qW ,V!

1se2 iD0za†~z,2qW ,2V!, ~1!

d

dz
a†~z,2qW ,2V!5 i @kz~2qW ,2V!2ks#a

†~z,2qW ,2V!

1s* eiD0za~z,qW ,V!.

The first term on the right-hand side~r.h.s.! describes linear
propagation inside the crystal,kz(qW ,V) being the wave-
vector component along thez axis of a plane-wave mode o
frequencyvp/21V and transverse wave-vectorqW . The sec-
ond term in Eqs.~1! describes the nonlinear interaction b
tween different modes; the coupling constants is propor-
tional to the pump field amplitude and to the nonline
susceptibility of the medium. The parameter

D052ks2kp ~2!

is the phase mismatch along thez direction between signa
and pump waves for collinear propagation.

By solving Eqs.~1!, we may write explicitly the input-
output transformation that relates the field operators in
output face of the crystal~planeP3) to those in the input face
~planeP2); we obtain the relation~see, e.g.,@11#!

a3~qW ,V!5u~qW ,V!a2~qW ,V!1v~qW ,V!a2
†~2qW ,2V!. ~3!

The gain coefficientsu(qW ,V) andv(qW ,V) are given by the
expressions

u~qW ,V!5expF i S kz~qW ,V!2ks2
D~qW ,V!

2
D l cG

3Fcosh@G~qW ,V!l c#

1 i
D~qW ,V!

2G~qW ,V!
sinh@G~qW ,V!l c#G , ~4!

v~qW ,V!5expF i S kz~qW ,V!2ks

2
D~qW ,V!

2
D l cG s

G~qW ,V!
sinh@G~qW ,V!l c#,

where

G~qW ,V!5Ausu22
D~qW ,V!2

4
, ~5!

D~qW ,V!5kz~qW ,V!1kz~2qW ,2V!2kp ,

are the parametric gain and the phase mismatch for
couple of phase-conjugate modes (qW ,V) and (2qW ,2V).
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Assuming for simplicity that the down-converted field
ordinarily polarized, all these functions depend only on
modulus ofqW , since propagation is isotropic. ForV50, per-
fect phase matching is achieved when

uqW u5Aks
22~kp/2!2'AksD0. ~6!

The gain reaches its maximum around this value ofuqW u, with
a broadplateauof width q05Aks / l c, the variation scale of
uuu and uvu in the spatial frequency domain~see @16# for
more details!.

The purpose of the two lenses shown in Fig. 1 is to m
the Fourier plane (qx ,qy) into the physical plane (x,y). In
this manner, if an optical image is injected at the degene
frequencyvp/2 in the object planeP1, the system amplifies
portions of this image rather than a band of itsq vectors.
Indeed, the presence of the lenses converts input-outpu
lation ~3! into a formally identical relation between the rea
space field operators in the planesP1 andP4:

a4~xW ,V!5ū~xW ,V!a1~2xW ,V!1 v̄~xW ,V!a1
†~xW ,2V!, ~7!

where

ū~xW ,V!52uS 2pxW

l f
,V D ,v̄~xW ,V!5vS 2pxW

l f
,V D , ~8!

and l is the wavelength of the down-converted field at d
generacy.

We must underline that all the results that follow do n
depend on the particular form of the gain functions, but r
on the fact that they satisfy the following unitarity cond
tions:

uu~qW ,V!u22uv~qW ,V!u251, ~9!

u~qW ,V!v~2qW ,2V!5u~2qW ,2V!v~qW ,V!,

which guarantee that the free-field commutation rules
preserved

@ai~qW ,V!,ai
†~qW 8,V8!#5d~qW 2qW 8!d~V2V8!, ~10!

@ai~qW ,t !,ai~qW 8,t8!#50, ~ i 51,2,3,4!.

On the other hand, with respect to other systems that exh
input/output relations of the same form~e.g., optical para-
metric oscillators, see, e.g.,@12#!, the large spatial bandwidth
q0 of the amplifier makes this traveling-wave scheme a go
candidate for high-resolution image amplification.

For the scheme of Fig. 1, the region in the transve
plane that may be efficiently amplified without distortion h
a linear size on the order of

x05
l f

2p
q0 , ~11!

which represents the width of theplateauof the real-space
gain functions~8!. Such a region has either the shape o
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disc of area;S05x0
2 centered at the origin, or a ring o

width ;x0, depending on the possibility to have colline
(D050) or noncollinear (D0.0) phasematching atV50,
respectively. We assume that the input image is a cohe
stationary field of frequencyvp/2 confined in this region of
planeP1 ~see Fig. 1! so that

^a1~xW ,V!&5A2pd~V!a in~xW !. ~12!

As explained in details in@6,10#, whenever the input image
is symmetric with respect to the system axis, the dev
works as a phase-sensitive amplifier~see in this connection
also@13#!. In this case, the phase of the input image must
selected in order to optimize the gain. Assuming the in
image is duplicated before amplification by means of a cl
sical imaging device that produces a symmetrical field di
bution @i.e., a in(2xW )5a in(xW )#, the system is able to gene
ate in the output plane two amplified copies that are far be
correlated in space time than the originals, meaning by
that they display perfectly~in the ideal case! synchronized
local intensity fluctuations. It was also demonstrated@6# that
in the limit of high gain, the signal-to-noise ratio as me
sured from a small portion of the input image before dup
cation is preserved in the corresponding portions of the
output images:noiselessamplification is therefore achieve
for both output channels taken separately~see @14# for an
experimental observation of noiseless amplification of i
ages!.

In @5#, an alternative way to generate a pair of quantu
correlated images~also calledtwin images! was considered;
it consists of injecting a single-input image asymetrically, f
example, by confining it to the upper half of planeP1 as
shown in Fig. 1. This configuration does not require a dup
cation system and presents the further advantage that
gain does not depend on the phase of the input field bec
the systems works as a phase-insensitive amplifier. Howe
the fidelity with which information is transferred is wors
than in the phase-sensitive case, since the signal-to-nois
tio is deteriorated at least by a factor of two in the ampl
cation process~a feature common to all phase-insensiti
optical amplifiers@15#!.

Most of the results presented in this paper do not dep
on the particular injection scheme, so no assumptions
made about the input intensity distributionua in(xW )u2. Imper-
fect detection can be modeled in the usual way, by coup
the output field operatora4(xW ,t) with an independent opera
tor field aN(xW ,t) which acts on the vacuum state. The cont
bution aN describes the noise added by losses in the de
tion process; thus, the effective output field measured b
detector of quantum efficiencyh<1 is

aD~xW ,t !5Aha4~xW ,t !1A12haN~xW ,t ! ~13!

and the corresponding photon flux density is

i ~xW ,t !5aD
† ~xW ,t !aD~xW ,t !. ~14!

As shown in Fig. 1, at the exit face of the crystal we inser
pupil of areaSp , an element that is able to eliminate dive
3-3
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gences arising in the calculation of the field mean inten
and correlation functions when dealing with a system of
finite transverse dimensions@10,12#. It also determines the
characteristic resolution area of the device in the detec
plane, which isSR5(l f )2/Sp . This finite-size optical ele-
ment introduces a convolution integral with the pupil r
sponse function in the r.h.s. of Eq.~7! and, as a consequenc
the points of the input image are spread into diffraction sp
of areaSR in the output image. However, analytical calcul
tions are performed in thelow-diffraction limit, assuming
that the diffraction spot sizeASR is much smaller than both
x0 and the variation scale of the input image intensity. Co
sidering a single-pixel detector~labeled by indexj ) that in-
tercepts the photons arriving on an areaRj , which is large in
comparison withSR , the mean value of the measured ph
tocurrent is then@6#

^ i j~ t !&5E
Rj

dxW ^ i ~xW ,t !&

5hE
Rj

dxW uū~xW ,0!a in~2xW !1 v̄~xW ,0!a in* ~xW !u2

1
h

SR
E

Rj

dxWE
2`

` dV8

2p
uv̄~xW ,V8!u2. ~15!

The first integral represents the amplified coherent in
field, while the second integral is the contribution comi
from spontaneous parametric down conversion. The r
S0 /SR gives an evaluation of the number of details of t
input image that can be resolved in the detection plane~e.g.,
with the pixel array of a charge-coupled device came!.
Moreover, quantum correlation effects tends to disapp
whenSR→S0, since in this limit, the signal and idler photon
of each down-converted pair can no more be resolved s
rately, because of the large diffraction spread inq space.
Making SR as small as possible with respect toS0 is there-
fore a necessary requirement that must be taken into acc
in experiments. However, this leads to an increase of
spontaneous emission contribution that goes at the exp
of the visibility of the amplified input image. This last ci
cumstance imposes a lower limit on the intensity of the in
image~see@5,10,12# for more details!.

III. FIELD QUADRATURE CORRELATIONS

A homodyne detection scheme allows the measuremen
a particular quadrature component of the field. It is sketc
in Fig. 2 and consists of a beam splitterM that combines the
output field with a coherent field of much higher intens
aL(xW ), which is usually referred to as the local oscillator fie
~LO!. In the balanced version, a 50/50 beam splitter is us
so that the operators associated to the fields coming from
two output ports of the beam splitter, labeledb andc, are

ab,c~xW ,t !5@a4~xW ,t !6aL~xW !#/A2, ~16!

and the effective fields seen by two identical detectors
quantum efficiencyh in the two portsb andc are
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b,c~xW ,t !5Ahab,c~xW ,t !1A12haN

b,c~xW ,t !, ~17!

where aN
b,c(xW ,t) describe the noise added in the detecti

process. When the corresponding intensities are electr
cally substracted, one obtains a direct measure of the qua
ture component of the output fielda4 selected by the phas
of the LO, more precisely

ZfL
~xW ,t !5aD

b†~xW ,t !aD
b ~xW ,t !2aD

c†~xW ,t !aD
c ~xW ,t ! ~18!

→
h→1

L~xW !@a4
†~xW ,t !eifL(xW )1a4~xW ,t !e2 ifL(xW )#, ~19!

where in the last line we assumed that the LO can be tre
as a classical fieldaL(xW )5rL(xW )eifL(xW ). Taking into account
the finite size of the pixel detection areaRj , the measured
quantity is

ZfL

( j )~ t !5E
Rj

dxWZfL
~xW ,t !. ~20!

We now want to compare the fluctuations of the field quad
ture measured in two symmetrical pixelsj 51 and j 52 of
the signal and idler image. To this aim, we consider the s
and the difference of the quadrature obtained from two sy
metrical detection regionsR1 andR2

ZfL

(6)~ t !5ZfL

(1)~ t !6ZfL

(2)~ t !. ~21!

The corresponding fluctuation spectra, defined as

VfL

(6)~V!5E
2`

`

dteiVt^dZfL

(6)~ t !dZfL

(6)~0!&, ~22!

dZfL

(6)~ t !5ZfL

(6)~ t !2^ZfL

(6)~ t !&,

describe the degree of correlation between the observa
ZfL

(1) andZfL

(2) . Using the input-output transformation~7!, the

commutation rules~10! and the fact that the input image
coherent, we obtain the following relations~the details of the
calculation are given in the Appendix!:

VfL

(2)~V!5VfL1p/2
(1) ~V! ~23a!

FIG. 2. Homodyne detection scheme for the measurement o
quadrature components of the amplifier output fieldZfL

(1) and ZfL

(2)

from two symmetrical areas of the image planeP4 ~labeled with 1
and 2). The high-intensity LO field is mixed with the amplifie
output field at the symmetric beam splitterM.
3-4
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5~12h!~N !LO1h2E
R11R2

dxW uū~xW ,V!aL* ~xW !

2 v̄* ~2xW ,2V!aL~2xW !u2, ~23b!

where

~N !LO5hE
R11R2

dxWrL
2~xW ! ~24!

is the shot noise level determined by the LO on the t
detectors~we assumeduaL(xW )u2@^ i (xW ,t)&). Next, we as-
sume that the LO is symmetric with respect to the syst
axis, i.e.,aL(xW )5aL(2xW ). We can write

VfL

(2)~V!5VfL1p/2
(1) ~V!5~12h!~N !LO

1h2E
R11R2

dxW F~xW ,V!rL
2~xW !, ~25!

where

F~xW ,V!5uū~xW ,V!e2 ifL(xW )2 v̄* ~2xW ,2V!eifL(xW )u2.
~26!

Note that the above expression corresponds to the fluctua
spectrum normalized to shot noise whenh51 and the pixel
side is small with respect to bothx0 and the scale of variation
of a(xW ). In this case,xW in Eq. ~25! must be taken as th
central point of pixel 1 or pixel 2; due to rotational symmet
around thez axis, the result is the same for both pixels, sin
F(xW ,V)5F(2xW ,V)

A first important result follows from the first equalit
~23a!, according to whichZfL

(1) andZfL

(2) are correlated one to

each other exactly to the same extent as the correspon
orthogonal quadrature componentsZfL1p/2

(1) andZfL1p/2
(2) are

anticorrelated. Second, the common fluctuation spectrum
the two observablesZfL

(1)2ZfL

(2) and ZfL1p/2
(1) 1ZfL1p/2

(2) as

given by expression~23b! does not depend on the intensi
and phase of the input image~as long as the LO intensity i
much larger than that of the output amplified image!. Hence,
the result is the same in the phase insensitive and in
phase-sensitive scheme, and remains the same even i
absence of an input image at all, i.e., in the case of p
parametric fluorescence. Third, this spectrum may be
duced well below the shot noise level, provided the gain
large enough and the phase of the LO is correctly adjus
Indeed, assuming that

fL~xW !5
1

2
@argū~xW ,0!1argv̄~xW ,0!#5fopt~xW ! ~27!

over the two detection areas, using the symmetry propert
the LO aL(2xW )5aL(xW ) and unitarity relations~9!, one ob-
tains from Eq.~26! for V50
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F~xW ,V50!5
1

@ uū~xW ,0!u1uv̄~xW ,0!u#2
, ~28!

which goes to zero whenuū(xW ,0)u;uv̄(xW ,0)u@1. Under con-
ditions of large gain and reasonably large quantum e
ciency, almost perfect correlation between the selec
quadratures may therefore be obtained.

It is interesting to relate the conditions for obtaining t
maximum correlation/anti-correlation with the conditions f
obtaining the maximum amplification/deamplification in th
phase sensitive configuration. The mean output field is
general

aout~xW !5^a4~xW ,t !&5ū~xW ,0!a in~2xW !1 v̄~xW ,0!a in* ~xW !,
~29!

where we used Eqs.~7! and~12!. In the phase-sensitive cas
wherea in(2xW )5a in(xW ), we may write

uaout~xW !u25G~xW !ua in~xW !u2 ~30!

with the phase-sensitive gain given by

G~xW !5uū~xW ,0!eif in(xW )1 v̄~xW ,0!e2 if in(xW )u2, ~31!

wheref in(xW ) is the phase distribution ofa in(xW ). The maxi-
mum value for the gainGmax(xW )5@ uū(xW ,0)u1uv̄(xW ,0)u#2 is
obtained for

f in~xW !5f in
max~xW !5

1

2
@argv̄~xW ,0!2argū~xW ,0!#. ~32!

From Eq.~29! with a in(xW )5ua in(xW )uexp(ifin
max) one obtains

that in this case, the phasefout of the output fieldaout is
given by

fout~xW !5fout
max~xW !5

1

2
@argū~xW ,0!1argv̄~xW ,0!# ~33!

and therefore coincides withfopt(xW ) given by Eq.~27!. On
the other hand, when the input field phase is selected
f in(xW )5f in

max(xW )1p/2, the input field undergoes the max
mal deamplification, with the phase-sensitive gain attain
its minimum value Gmin(xW )5@ uū(xW ,0)u2uv̄(xW ,0)u#2

51/Gmax(xW ). In this case, the output field phase distributi
is given byfout(xW )5fopt(xW )1p/2. This leads to the follow-
ing interpretation for the particular form of the LO phase th
gives the maximum amount of correlation/anticorrelation b
tween symmetrical pixels: the LO phase that gives the o
mum squeezing forZfL

(2) coincides with the phase of th

output field in the phase-sensitive scheme and in conditi
of maximal amplification, whereas the optimum squeez
for ZfL

(1) is achieved for the orthogonal phase. Hence, a

will be showed in more detail in the next section, when t
input phase is selected for maximal amplification, we m
say that amplitude-quadrature fluctuations on symmetric p
els are maximally correlated while phase-quadrature flu
3-5
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tions are maximally anticorrelated. On the other hand, a
phase distribution coinciding with that of the output field
conditions of maximal deamplification, permits us to rea
the optimal squeezing forZfL

(1) , while the orthogonal phas

gives the best squeezing forZfL

(2) . In this condition, we can

say that phase-quadrature fluctuations on symmetric pi
are correlated, while amplitude-quadrature fluctations are
ticorrelated.

Incidentally it should be noted that the above argume
may be easily extended to a phase-sensitive configura
corresponding to the injection of an odd image in the inp
that is a in(2xW )52a in(xW ). Maximal amplification now
takes place when the input phase is orthogonal to the
given by Eq.~32!, i.e.,f in(xW )5f in

max(xW )1p/2. The amplified
output field aout is also odd, but we can have exactly th
same situation as for the injection of an even image provi
we consider a LO odd with respect to inversion coordina
and we setfopt→fopt1p/2, fout→fout1p/2.

The results obtained for the observablesZfL

(6) closely res-

semble the situation of the EPR paradox for continous v
ables demonstrated in@8#, but generalized to many pixel
~see also@9#! and to the presence of input images. We not
indeed that the conjugated observablesXj5*

2TD/2
TD/2 dt ZfL

( j )(t)

and Pj5*
2TD/2
TD/2 dt ZfL1p/2

( j ) (t) ( j 51,2) obey the uncertainty

rule

^d2Xj&^d
2Pj&>

1

4 FTDE
R11R2

dxW rL
2~xW !G2

. ~34!

On the other hand, the following combination over the tw
pixels: X25X12X2 and P15P11P2 are commuting ob-
servables that can be simultanously determined. When
time of measurementTD is much larger than the inverse o
the temporal bandwidth of the OPA, using Eq.~22!, the un-
certainty of these observables may be directly related to
fluctuations spectrumVfL

(2)

^d2X2&5^d2P1&5TDVfL

(2)~V50!. ~35!

For h51, an optimal adjustement of the LO phase allo
these uncertainties to reach almost a zero value for la
amplification and thus to display an apparent violation of
Heisenberg rule

^d2X2&^d2P1&,
1

4 FTDE
R11R2

dxW rL
2~xW !G2

. ~36!

However, it is impractical to synthetyze a LO with the pha
variation prescribed by Eq.~27!. On the other hand, for a LO
with constant phase, the condition~27! concerning the phas
of the LO can be exactly satisfied only for a single couple
pixels of area small compared toS0, so that the gain func-
tions uū(xW ,0)u and uv̄(xW ,0)u are nearly uniform over the de
tection areas. We may however show that by introducing
appropriate curvature, the wave front of the LO field, EP
like correlations are present for each couple of symme
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pixels in the output over the whole gain regionS0. To this
end, we allow the LO phase distribution to have a quadra
dependence on the spatial coordinate~which corresponds to
a spherical wave front as one has, e.g., in Gaussian bea!.
The wave-front curvature is selected in order to have the b

fit of the spatial dependance offopt(xW ) in Eq. ~27!.

Figure 3 plots the functionF(xW ,V50) in the limit where
R1 and R2 are small compared toS0 and symmetric. The
collinear phase mismatch at degeneracy isD0l c50.5 and the
linear gain parameter isusu l c51.5.

Curve ~a! corresponds to the ideal case, withfL satisfy-
ing condition ~27! everywhere in the transverse plane, a
leads to a maximal amount of noise reduction in the wh
amplification region. In curve~b!, the phase of the LO is
constant and satisfies condition~27! only in the point of
maximum gain xG , where perfect phase matching

achieved, i.e., we havefL(xW )5fopt(xG). For our choice of

parameters in this point we haveuūu2.5.5 and F5(uū
u2uv̄u)25exp(22usulc).0.05. Curve~c! is obtained by opti-
mizing the phase with a quadratic term, that is we ta
fL(xW )5fopt(xG)11/2(d2fopt /d

2x)(x2xG)2; this is the
best that can be done with a Gaussian LO and is close to
ideal case.

Notice that in practice, there exist other tricks to perfo
the phase optimization. For example, one may use a LO w
a flat wave front in the detection planeP4, and shifts instead
the crystal sample away from the focal plane of the lensL8
by an amountd. In this case, in fact, the fielda48 in the
detection plane is related to the same field in the absenc
the d shift by a48(xW )5a4(xW )e2 iksx

2d/2f 2
. After the interfer-

ence with a local oscillator, the measured quadrature
ZfL

(xW )5a4(xW )e2 i (fL1ksx
2d/2f 2)1a4

†(xW )ei (fL1ksx
2d/2f 2), so

that by properly adjusting thed shift, the overall effect is the
same as using a LO with a curved wave front.

FIG. 3. Plot of the noise reduction factorF(xW ,0). Subscripts~a!
refer to the optimal phase of the LO while~b! and~c! refer, respec-
tively, to a constant phase and to a phase with a quadratic de
dence on the distance from the optical axis. The dashed line is
phase-sensitive gain of the OPA@see Eq.~31! divided by a factor
10#. D0l c50.5 andusu l c51.5.
3-6
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IV. PHASE-INTENSITY ENTANGLEMENT OF
THE TWIN IMAGES

Although the phase-sensitive measurement scheme
sidered in the last section offers a picture of the spatial c
relations that can be observed in the output field, inten
correlation measurements are more straightforward to
form experimentally and lead also to interesting effects
quantum noise reduction@5,6,16#. The observable that dis
plays reduced fluctuations with respect to the coherent s
level is the difference between the direct photocurrents m
sured from two symmetrical detection regioni 25 i 12 i 2.
The corresponding fluctuation spectrum is

Vi 2
~V!5E

2`

`

dteiVt^d i 2~ t !d i 2~0!&. ~37!

By using Eqs.~7!, ~10!, ~13!, ~14!, and~15!, and the fact that
input image is in a coherent state one obtains after leng
but elementary calculations~the demonstration is outlined i
the Appendix!

Vi 2
~V!5~12h!^ i 1&1h2E

R11R2

dxW uū~xW ,V!aout* ~xW !

2 v̄* ~xW ,2V!aout~2xW !u21h2
1

SR
E

R11R2

dxW

3E dV8

2p
@ uū~xW ,V8!u2uv̄~xW ,V1V8!u22ū~xW ,V

1V8!v̄~xW ,2V2V8!ū* ~xW ,V8!v̄* ~xW ,2V8!#,

~38!

where aout(xW ) is given by Eq.~29!. The shot noise leve
corresponds to the photocurrent sum^ i 1&5^ i 11 i 2&. The
second term on the r.h.s. of Eq.~38! arises from the interfer-
ence between the amplified input field and the fluoresce
field. The last term, which does not depend on the prese
of an input field, is a pure noise contribution due to the s
interference of the fluorescence field and reduces to zero
V50 becausev̄(xW ,2V)5 v̄(xW ,V) @5#.

Using the explicit expression of the amplified input fie
~29! and the fact thatū(xW ,V)5ū(2xW ,V), v̄(xW ,V)5 v̄
(2xW ,V) and Eq.~9!, we find for the zero frequency value o
the spectrum

Vi 2
~0!5~12h!^ i 1&1h2E

R11R2

dxW ua in~xW !u2. ~39!

As shown in@5#, in the case of ideal detection (h51), the
noise level ofi 2 reduces therefore to the noise of the inp
image overR11R2. As a consequence, under conditions
large gain, fluctuations are well below the shot noise lev

It is important now to connect with the result for quadr
ture components obtained in the previous section. To
aim, let us first assume that the input field is strictly differe
from zero at least in some region of the transverse pla
Second, let us assume that the parametric values are
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that the pure noise contribution inVi 2
(V) @i.e., the last term

in Eq. ~38!# is negligible and, similarly, that the second ter
in Eq. ~15! may be dropped. Thus, expression~38! reduces to

Vi 2
~V!5~12h!N21h2E

R11R2

dxW uū~xW ,V!aout* ~xW !

2 v̄* ~xW ,2V!aout~2xW !u2, ~40!

where

N25hE
R11R2

dxW uaout~xW !u2 ~41!

and we used Eq.~29!. By comparing with Eqs.~23b! and
~24!, we see that this expression coincides withVfL

(2)(V) if

we take

aL~xW !5aout~xW !. ~42!

This is expected because a LO with the configuration of
output field just picks up the amplitude fluctuations. The
lation becomes even more precise in the phase-sensitive
a in(xW )5a in(2xW ). In this case, assumingh51 and that the
pixel size is small with respect to bothx0 and the scale of
variation ofaout(xW ), one has

Vi 2
~V!

N2
5F̃~xW ,V!5uū~xW ,V!e2 ifout(x

W )

2 v̄* ~xW ,2V!eifout(x
W )u2, ~43!

where we setaout(xW )5rout(xW )exp(ifout(xW)), and xW is the
central point of any of the two symmetrical pixels. The res
coincides with that of Eq.~25! where fL is replaced by
fout . The link between intensity fluctuations and quadratu
fluctuations allows us to analyze the case of phase fluc
tions. In the small quantum noise approximation, these c
cide with the quadrature fluctuations measured with a
with a phase distribution shifted ofp/2 with respect to the
mean-field phase distribution~that is, the LO that provides
the amplitude fluctuations!. Therefore, in terms of pixels, we
are lead to consider the observablesZfL1p/2

( j ) (t) @see Eq.

~20!# with fL5fout . This naturally induces us to focus o
the observableZ(1)(t)5Zfout1p/2

(1) (t)1Zfout1p/2
(2) (t), see Eq.

~21!, which measures the degree of anticorrelation betw
the phase fluctuations in the two symmetrical pixels 1 and
The spectrumVfL1p/2

(1) (V) coincides withVfL

(2)(V), which,

as we have seen, is identical toVi 2(V) given by Eq.~43!.
Therefore, for large amplification, the fluctuations ofZ(1)(t)
are well below the shot noise level, which implies that t
phase fluctuations in the two symmetrical pixels are stron
anticorrelated, exactly as the amplitude fluctuations
strongly correlated.

One could wonder at this point how is the fluctuatio
spectrum of the sum of intensities collected from symme
3-7
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cal pixels,i 15 i 11 i 2. Under the same assumptions that
lowed us to write Eq.~43! we find

Vi 1
~V50!

N1
5G~xW !1

4uū~xW ,0!v̄~xW ,0!u2

G~xW !

3sin2@2f in~xW !22f in
max~xW !#, ~44!

where N1 is the shot noise level and coincides withN2

given by Eq.~41!. We notice that both in the case of maxim
amplification f in(xW )5f in

max, and in the case of maxima

deamplificationf in(xW )5f in
max1p/2, we have thatVi 1

(V

50)/N15G(xW ). In the latter case, howeverG(xW )
5Gmin(xW ),1 and the spectrum of fluctuations of the inte
sity sum is below shot noise. This kind of result was anti
pated in the previous section by considering a homod
measurement performed by means of LO with the sa
phase distribution of the output field.1 However, some cau
tion should be taken when considering a direct measurem
of the intensity sum. In fact, at difference from the case
the intensity difference, the spontaneous fluorescence co
bution in the noise spectrum of the intensity sum does
vanish at low frequencies. This is a consequence of the
that spontaneous fluorescence photons are emitted in
propagating in symmetrical directions, so that fluctuations
the number of photons collected from symmetrical pixels
strongly correlated; when summing the light intensities fro
symmetrical pixels, the photon number fluctuations sum
herently instead of canceling one with each other. Moreo
this term could be not negligible compared to the contrib
tion coming from the beating of the mean field with th
noise, as the mean field itself results from the deamplifi
tion of the input. Indeed, some effect of noise reduction
the intensity sum could be eventually observed only in
presence of a large intensity input, so that the deampli
output intensity is still much larger than the spontaneo
fluorescence mean intensity.

V. CONCLUSION

In this article, we analyzed extensively a system form
by an optical parametric amplifier with some imaging lens
Amplification of optical images by OPA has been alrea
studied in the literature@17#, but only from a classical view-
point.

Our results hold both for a phase-sensitive configurat
~symmetrical input image! and for a phase insensitive on
~asymmetrical injection!.

We demonstrated that the two output twin images exh
a complete spatial EPR entanglement. This was shown,
of all, by considering a pair of orthogonal quadrature co
ponents of the output field. In the case of local oscilla
symmetrical with respect to the system axis, we found

1As it should be by now clear, we hence have that the spectrum
fluctuations of the phase difference is in correspondence below
noise.
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precise prescription for the phasefL of the local oscillator
~see introduction! in order to observe maximal correlatio
between symmetrical pixels of the two output images. T
optimal value for the phase is that which corresponds to
amplitude fluctuations of the output images in the pha
sensitive configuration, when the phase of the symmetr
input images is selected to obtain maximal amplification.

We have also shown that a performance very close to
of the ideal case of the optimal LO phase may be obtained
using a LO with a quadratic wave front~as in Gaussian
beams!, with the curvature used as optimization paramete

The connection between quadrature fluctuations
amplitude/phase fluctuations allowed us to conclude a
that, while intensity fluctuations are strongly correlated in t
twin images, phase fluctuations are strongly anticorrelate
the same amount. An amusing analogy with amplitude a
phase fluctuations in entangled twin images is provided b
fossil broken in two pieces~see Fig. 4!. We see that the
structures of the two pieces have the same ‘‘amplitude’’5
thickness, but opposite ‘‘phase’’~one is concave and th
other convex, one is right handed and the other, left hand!.

It is important to underline that while the results for in
tensity and phase fluctuations hold only in the presence o
input image, the result on EPR entanglement of quadra
components hold also in the absence of any input image,
in the case of the pure parametric down conversion as
@16#. This is important for the applications to quantum te
portation of optical images@3#, as a generalization of the
Braunstein-Kimble@18,19# scheme for a single-mode field
or to quantum cryptography with images.

The results shown in this paper may be generalized to

of
ot

FIG. 4. Analogy between the two halves of a broken fossil a
quantum entangled images~see text!.
3-8
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SPATIAL ENTANGLEMENT OF TWIN QUANTUM IMAGES PHYSICAL REVIEW A65 013813
case of type II phase matching, in which the two entang
images are created in orthogonal polarization. The entan
ments is still between symmetric pixels of the two imag
but the gain functions have no longer rotational symme
around thez axis. This case will be treated in details in
subsequent paper.

We observe finally that our results hold also when
OPA is replaced by an optical parametric oscillator bel
threshold with plane mirrors~see@5# in this connection!. As
a matter of fact, also in this case, one has an input-ou
relation of the form~7!, and the results are based only on th
relation and on the general properties of the functionsū

and v̄.
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VI. APPENDIX

In this Appendix, we give the details of the calculatio
leading to the fluctuation spectra of the photocurrent diff
ence measured on symmetrical regions of the output fi
considering first the case of homodyne detection@Eqs.~23!#,
and then the case of direct intensity measurements~Eq. ~38!!.

1. Derivation of Eq. „23…

Definitions ~20! and ~21! may be used in order to write
the fluctuation
spectrum~22! in the form

VfL

(6)~V!5E
R1

dxWE
R1

dxW8E
2`

`

dteiVt^dẐf~xW ,t !dẐf~xW8,0!&

~A1!

1E
R1

dxWE
R2

dxW8E
2`

`

dteiVt^dẐf~xW ,t !dẐf~xW8,0!&

1~R1↔R2!. ~A2!

The double integrals on the same pixel areas (R1 or R2)
give the contribution of intensity self correlations, while th
double integrals on different areas describe cross corr
tions. Substituting Eqs.~16! and ~17! into Eq. ~18! and put-
ting aL(xW ,t)5aL(xW )1daL(xW ,t), we obtain

ZfL
~xW ,t !5h@a4

†~xW ,t !aL~xW !1a4~xW ,t !aL* ~xW !#

1h@a4
†~xW ,t !daL~xW ,t !1a4~xW ,t !daL

†~xW ,t !#

1Ah~12h!

2
$@a4

†~xW ,t !1aL
†~xW ,t !#aN

b ~xW ,t !

1@a4~xW ,t !1aL~xW ,t !#aN
b†~xW ,t !%

2Ah~12h!

2
$@a4

†~xW ,t !2aL
†~xW ,t !#aN

c ~xW ,t !
01381
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1@a4~xW ,t !2aL~xW ,t !#aN
c†~xW ,t !%1~12h!

3@aN
b†~xW ,t !aN

b ~xW ,t !2aN
c†~xW ,t !aN

c ~xW ,t !#.

~A3!

We now use this expression in order to evaluate the co
sponding fluctuation correlation functio

^dZfL
(xW ,t)ZfL

(xW8,t8)& appearing on the r.h.s. of Eq.~A1!.
Noting that most terms containing the annihilation operat
aN

b,c(xW ,t) vanish, being these applied to the vacuum sta

and using the relations ^aN
b,c(xW ,t)aN

b,c †(xW8,t8)&
5^daL(xW ,t)daL

†(xW8,t8)&5d(xW2xW8)d(t2t8) we get

^dZfL
~xW ,t !dZfL

~xW8,t8!&

5h2^@da4
†~xW ,t !aL~xW !1da4~xW ,t !aL* ~xW !#

3@da4
†~xW8,t8!aL~xW8!1da4~xW8,t8!aL* ~xW8!#&

1h@^a4
†~xW ,t !a4~xW ,t !&1~12h!uaL~xW !u2#

3d~xW2xW8!d~ t2t8!, ~A4!

where da4(xW ,t)5a4(xW ,t)2^a4(xW ,t)&5a4(xW ,t)2aout(xW ).
Using input-output relation~7! written here for the fluctua-
tion operatorsda4(xW ,t) andda1(xW ,V)5a1(xW ,V)2a in(xW )

da4~xW ,V!5ū~xW ,V!da1~2xW ,V!1 v̄~xW ,V!da1
†~xW ,2V!

~A5!

the Fourier transformation of Eq.~A4! yields

E
2`

`

dteiVt^dẐf~xW ,t !dẐf~xW8,0!&

5h2d~xW2xW8!@ uū~xW ,V!u21uv̄~xW ,2V!u2#uaL~xW !u2

1h2d~xW1xW8!@ ū~xW ,V!v̄~xW ,2V!aL* ~2xW !aL* ~xW !

1c.c.#1h~12h!uaL~xW !u2d~xW2xW8!1h

3^a4
†~xW ,t !a4~xW ,t !&d~xW2xW8!. ~A6!

Since we have assumed the LO field is much more inte
than the output field, the last term of this expression can
neglected. When substituted into the r.h.s. of Eq.~A1!, the
terms proportional tod(xW2xW8) give the self-correlations
contribution to the spectrum, while the term proportional
d(xW1xW8) give the cross-correlation contribution. The fin
result may be written as

VfL

(6)~V!5h~12h!E
R11R2

dxW uaL~xW !u2 ~A7!
3-9
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1h2E
R11R2

dxW @~ uū~xW ,V!u21uv̄~xW ,V!u2!uaL~xW !u2#

6h2E
R11R2

dxW @ ū~xW ,V!v̄~xW ,2V!aL* ~xW !aL* ~2xW !1c.c.#.

~A8!

The first term on the r.h.s is the shot noise level determi
by mean intensity of the LO field, while the remaining term
can easily be identified with the last term on the r.h.s of@Eq.
~23b!#. Finally, we note that the substitutionfL→fL1p/2
with fL5arg(aL) leaves the expression on the r.h.s. u
changed except for the sign of the last term and Eq.~23a!
follows.

2. Derivation of Eq. „38…

We now outline the derivation of Eq.~38! that gives the
fluctuation spectrum of the photocurrent differencei 2(t).
Using the relation~13!, and recalling thataN(xW ,t) is an op-
erator that acts on the vacuum field, so th

^aN(xW ,t)aN
† (xW8,t8)&5d(xW2xW8)d(t2t8), we can write

E
2`

`

dteiVt^d i 2~ t !d i 2~0!&

5h2E
2`

`

dteiVt^d i 4
(2)~ t !d i 4

(2)~0!&1~12h!^ i 1&, ~A9!

where

d i 4
(2)~ t !5 i 4

(2)~ t !2^ i 4
(2)~ t !&, ~A10!

i 4
(2)~ t !5 i 2~ t !uh515E

R1

dxWa4
†~xW ,t !a4~xW ,t !

2E
R2

dxWa4
†~xW ,t !a4~xW ,t !,

denotes the photocurrent difference fluctuation operator
h51. Substituting the expressiona4(xW ,t)5^a4(xW ,t)&
1da4(xW ,t)5aout(xW )1da4(xW ,t) into definition ~A10!, we
find

d i 4
(2)~ t !5dZout

(2)~ t !1d i v
(2)~ t !, ~A11!

where

Zout
(2)~ t !5Zout

(1)~ t !2Zout
(2)~ t !, ~A12!
o,

,

. A

01381
d

-

t

or

Zout
( i ) ~ t !5E

Ri

dxW @a4
†~xW ,t !aout~xW !1a4~xW ,t !aout* ~xW !#

~A13!

is the difference between the quadrature amplitude fluc
tion operators, whiled i v

(2)(t)5 i v
(2)(t)2^ i v

(2)(t)& with

i v
(2)~ t !5E

R1

dxWda4
†~xW ,t !da4~xW ,t !2E

R2

dxWda4
†~xW ,t !da4~xW ,t !

~A14!

gives the pure noise contribution to the photocurrent fluct
tion spectrum arising from spontaneous down convers
~this term is the only one present if the input is in the vacu
state!. Since any product of an odd number of fluctuati
operators has zero expectation value, there is no correla
betweendZout

(2)(t) and i v
(2)(t), and we may write

E
2`

`

dteiVt^d i 4
(2)~ t !d i 4

(2)~0!&

5E
2`

`

dteiVt^dZout
(2)~ t !dZout

(2)~0!&

1E
2`

`

dteiVt^d i v
(2)~ t !d i v

(2)~0!&. ~A15!

The quadrature fluctuations spectrum has been already
culated in the first part of the Appendix; its contribution
Eq. ~38! may be identified by looking at Eqs.~40!, and~41!,
which represent the limit of the intensity difference noi
when spontaneously down-converted photons may be
glected.

The spectrum ofi v
(2)(t) is more cumbersome to evalua

since it involves the calculation of the fourth-order field co
relation function ^da4

†(xW ,t)da4(xW ,t)da4
†(xW8,t8)da4(xW8,t8)&.

A direct substitution of input-output relation~A5! leads to
the last integral on the r.h.s. of Eq.~38! multiplied by d(xW
50). This divergence finds its explanation in the nonphy
cal assumption that the pump field is a plane wave, thus a
to provide an infinite number of spontaneously dow
converted photon pairs. The finite transverse dimension
the system can be taken into account by introducing a p
at the output face of the crystal~see@10# for more details!. If
the pupil areaSp is sufficiently large, the corresponding di
fraction spot areaSR5(l f )2/Sp is much smaller than the
coherence area of the amplifierx0

2 and it can be shown that in
this limit, d(0) is symply replaced by the factor 1/SR ~see
@16# for a full calculation!.
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