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We study the so-called limiting Sobolev cases for embeddings of the spaces W 1,n
0 (Ω),

where Ω ⊂ Rn is a bounded domain. Differently from J. Moser, we consider optimal em-
beddings into Zygmund spaces: we derive related Euler-Lagrange equations, and show

that Moser’s concentrating sequences are the solutions of these equations and thus re-

alize the best constants of the corresponding embedding inequalities. Furthermore, we
exhibit a group invariance, and show that Moser’s sequence is generated by this group

invariance and that the solutions of the limiting equation are unique up to this invari-
ance. Finally, we derive a Pohozaev-type identity, and use it to prove that equations

related to perturbed optimal embeddings do not have solutions.
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1. Introduction

In the last decades an extensive literature has been devoted to the study of Sobolev

spaces and related extensions and generalizations. In particular, a prominent role

is played by embedding theorems and the associated inequalities; for an overview

on these topics, see e.g. [1,22,8,6]. As a reference example consider the classical

Sobolev space W 1,p
0 (Ω), with Ω ⊂ Rn a bounded domain, which is the completion

of compactly supported smooth functions with respect to the norm ‖∇ · ‖p, p ≥ 1.

Then, for 1 ≤ p < n, the following classical Sobolev embedding holds

W 1,p
0 (Ω) ↪→ Lp

∗
(Ω) , namely ‖u‖p∗ ≤

1

S
‖∇u‖p , ∀ u ∈ C∞0 (Ω) , (1.1)

where p∗ := np
n−p is the so-called critical Sobolev exponent, and the positive constant

S is the Sobolev constant which is best possible, explicitly known, and depending

1
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just on n and p ; see [21].

Critical growth manifests itself through various well-known phenomena, namely:

i) For the subcritical case 2 ≤ q < p∗, the embeddings W 1,p
0 (Ω) ↪→ Lq(Ω) are

compact; hence the best embedding constants are achieved, and the cor-

responding elliptic equations −∆pu = |u|q−2u have a solution in W 1,p
0 (Ω),

where ∆p = div(|∇u|p−2∇u) denotes the p-Laplacian operator.

ii) For q = p∗ compactness is lost because of concentration phenomena which

appear due to a group invariance which both norms ‖∇·‖p and ‖·‖p∗ share:

this is the so-called bubbling of spheres phenomenon, see [16].

iii) Extremals for (1.1) are solutions of the critical equation −∆pu = |u|p∗−2u

with Dirichlet boundary conditions; via Pohožaev type variational identities

this equation has no solutions on starshaped domains, and as a consequence

the best Sobolev constant S is not achieved (this can be proved also directly

by exploiting that S is domain independent), see [20]. Existence of solutions

can be recovered by lower order perturbations of Brezis-Nirenberg type, see

[7].

The case p = n is the so-called limiting Sobolev case for the embedding (1.1): one

has the embedding W 1,n
0 (Ω) ↪→ Lp(Ω) for all 1 ≤ p <∞, but W 1,n

0 (Ω) 6⊂ L∞(Ω) if

n > 1. The maximal degree of summability for functions in W 1,n(Ω) was established

independently by Pohožaev [18] and Trudinger [23] and is of exponential type. More

precisely, W 1,n
0 (Ω) embeds into an Orlicž class of functions, namely:

u ∈W 1,n
0 (Ω) =⇒

∫
Ω

e|u|
n
n−1

dx <∞

While the Sobolev case p < n is by now well understood, criticality in the limiting

case is a very delicate issue and still presents open questions. Indeed, J. Moser

proposed in the seminal paper [17] a notion of criticality by means of the following

uniform bound:

sup
u∈C∞0 (Ω),‖∇u‖n≤1

∫
Ω

eα|u|
n
n−1

dx ≤ c0(α) |Ω|

{
<∞ , if α ≤ αn
=∞ , if α > αn

(1.2)

where αn is explicitly known: αn = nnωn
1/(n−1), where ωn denotes the measure of

the unit ball in Rn. As further developed in [16,12], the functional

J : W 1,n
0 (Ω) −→ R , J(u) =

∫
Ω

eα|u|
n
n−1

dx (1.3)

is compact for α < αn. Therefore, concerning aspects i) and ii) above, αn plays the

role of the critical Sobolev exponent, and again compactness is lost in the critical

case α = αn, cf. [16]. However, in striking contrast with the Sobolev case (point

iii) above), it was shown by Carleson-Chang [9] that the supremum in (1.2) for the
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best constant α2 is achieved if Ω is a ball. The result was extended to any domain

in R2 by Flucher [14] and to any dimension n by Lin [15]. Moreover, corresponding

semilinear elliptic equations with nonlinearities in the critical growth range do have

variational solutions [2,10,12]. From the analysis carried out in [12], this is related

to the fact that the functional (1.3) retains enough energy to avoid the critical non-

compactness level. The difficulties to gain further insight seem to lie in the fact that

for the Trudinger-Moser case (1.2) no Pohozaev type identity nor a group invariance

are known. As we are going to see, exploiting finer norms than the Orlicz norm will

yield new insights into these phenomena.

In [11] we proposed, in the case n = 2, a different approach by moving the atten-

tion from the uniform bound (1.2) to an embedding inequality for the space W 1,2
0 (Ω)

into a suitable Zygmund space. Here we further develop this line by extending the

results of [11] to the general case.

In particular, we derive the Euler-Lagrange equation associated to the corre-

sponding Moser-Zygmund inequality; for this we rely on the notion of subdifferential,

since the Zygmund norm is not differentiable.

Then, we show that this equation allows a group invariance, and that its solu-

tions, which are unique up to this group invariance, are given by the well-known

Moser-sequence (which in fact is generated by this group invariance, as already

mentioned by Moser, see also Adimurthi-Tintarev [3]). Thus, we have an analogous

situation as in ii) above, with the “bubbles” given by the Moser sequence.

Furthermore, we find a Pohozaev type identity which is obtained, as usual, by

applying a multiplier which is derived from the infinitesimal generator of the group

invariance. We recall that for the original Trudinger-Moser embedding no group

invariance nor Pohozaev identity are known.

Finally, we will consider slight variations of the Zygmund norm, and we will

determine, as a consequence of the Pohozaev identity, the threshold between at-

tainability and non-attainability of the best constants in the corresponding Moser-

Zygmund embeddings and hence between the existence and non existence of solu-

tions of the associated Euler-Lagrange equations.

Before stating our main results we briefly recall the definitions and basic prop-

erties of Zygmund spaces; for more details we refer to Section 2.

The Zygmund space Zα(Ω), α > 0, consists of all measurable functions u(x) on

a bounded set Ω ⊂ Rn such that∫
Ω

eλ|u|
1
α dx <∞, ∀ λ > 0 (1.4)

The quantity

‖u‖Zαε = sup
t∈(0,|Ω|)

u∗(t)[
ε+ log

( |Ω|
t

)]α , ε > 0 (1.5)

where u∗ denotes the monotone decreasing rearrangement of u, defines an ε-varying

family of quasinorms on Zα(Ω) which are equivalent to a real norm (by replacing
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u∗(t) with the maximal function u∗∗(t) := 1/t
∫ t

0
u∗(s) ds) which turns Zα(Ω) into

a Banach space). As ε → 0 the quasinorm (1.5) may degenerate; in the literature

the quantity

[u ]α := ‖u‖Zα0 = sup
t∈(0,|Ω|)

u∗(t)[
log
(
|Ω|
t

)]α (1.6)

seems to appear first in [4], where the following result was proved:

Theorem [Alvino, 1977] Let Ω be a bounded domain in Rn, n ≥ 2. Then, the

following inequality holds

[u ]n−1
n
≤ 1

nω
1/n
n

‖∇u‖n (1.7)

for any u ∈ W 1,n
0 (Ω), where ωn is the measure of the unit ball. Moreover, the

constant appearing in (1.7) is the best possible.

Our main results are the following:

Theorem 1. The inequality (1.7) is attained and when Ω ⊂ Rn is the unit ball, the

(normalized) radial extremals of inequality (1.7) satisfy the following Euler-Lagrange

equation 

−
(
|y′|n−2y′ rn−1

)′
= (nωn)

1−n
n µ

1−n
n δrµ , r ∈ (0, 1)

y(rµ) =
µ
n−1
n

(nωn)1/n

y′(0) = y(1) = 0 ,

(1.8)

where rµ := e−µ and µ ∈ (0,+∞) is an arbitrary parameter; furthermore, δrµ
denotes the Dirac delta function in the point rµ ∈ (0, 1).

An explicit solution of (1.8), for µ = 1 and r1 = e−1, is given by

u1(r) =
1

(nωn)1/n


− log r , 1

e ≤ r ≤ 1

1 , 0 ≤ r ≤ 1
e

(1.9)

For fixed µ = 1, the solution u1(r) is unique. On other hand, the group action

Tµ : u(r) 7→ µ−
n−1
n u(rµ) , r ≥ 0, µ ∈ (0,+∞) (1.10)

generates the entire family of Moser functions

uµ(r) =
1

(nωn)1/n


−µ−1/n log r , e−µ ≤ r ≤ 1

µ
n−1
n , 0 ≤ r ≤ e−µ

, (1.11)

which constitute all solutions of equation (1.8).
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We recall that the Moser sequence was used by J. Moser in [17] to prove that

the number αn in inequality (1.2) is optimal.

We have formally an analogue situation to the classical Sobolev case: loss of

compactness in the critical case due to the appearance of a group action. Differently

from the Sobolev case, the full group is present in bounded domains, and thus does

not obstruct the attainability of the best constant.

The group action (1.10) leaves invariant both [u ]n−1
n

and the Sobolev norm

‖∇u‖n, while this invariance fails to hold for the quasi-norm ‖u‖
Z
n−1
n

ε

as long as

ε > 0. As a consequence, we complement Alvino’s theorem and Theorem 1 in the

following way:

Theorem 2. Let Ω be a bounded domain in Rn, n ≥ 2. Then, the following in-

equality holds

‖u‖
Z
n−1
n

ε

≤ 1

nω
1/n
n

‖∇u‖n, ε ≥ 0 (1.12)

for any u ∈ W 1,n
0 (Ω), where ωn is the measure of the unit ball. Moreover, the

constant appearing in (1.12) is sharp for any domain and, when Ω is a ball, it is

never achieved by radial functions as long as ε > 0.

(As a byproduct, for ε = 0 we give a new direct proof of Alvino’s result which was

obtained by interpolation arguments.)

The proof of Theorem 2 is based on the following “Pohozaev-type” identity:

Proposition 1. Let Ω ⊂ Rn be the unit ball, and let y ∈ W 1,n
0,rad(Ω) be a solution

of the radial equation

−(|y′|n−2y′rn−1)′ = cδr0 (1.13)

where c is constant, and δr0 is the distribution with support concentrated in r0, with

r0 ∈ (0, 1). Then y is C1-piecewise and there holds∫ 1

0

|y′|nrn−1dr =
[
|y′+(r0)|n − |y′−(r0)|n

]
rn0 | log r0| (1.14)

where |y′±|(r0) = limr→r±0
|y′|(r).

The connection between the group action (1.10) and the identity (1.14) is given

by the fact that the function r log r y′, used as a multiplier in the proof of Proposition

1, is the generator of the family of scaled maps {yµ(r) = y(rµ), µ ∈ (0,∞)}.

2. Preliminaries

Let us first recall some basic definitions and properties of the Zygmund space (see

also [5,6]).
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Let u : Ω→ R a measurable function; denoting by |S| the Lebesgue measure of

a measurable set S ⊂ Rn, let

µu(s) =
∣∣{x ∈ Ω : |u(x)| > s}

∣∣, s ≥ 0

be the distribution function of u. The monotone decreasing rearrangement u∗ :

[0,+∞)→ [0,+∞] of u is defined as the distribution function of µu, that is

u∗(t) :=
∣∣{s ∈ [0,∞) : µu(s) > t}

∣∣ = sup
{
s > 0 :

∣∣ {x ∈ Rn : |u(x)| > s}
∣∣ > t

}
,

0 ≤ t ≤ |Ω|, whereas the spherically symmetric rearrangement u] of u is defined as

u](x) = u∗(ωn|x|n), x ∈ Ω] ;

here Ω] is the open ball with center in the origin which satisfies |Ω]| = |Ω|. Clearly,

u∗ is a nonnegative, non-increasing and right-continuous function on [0,∞); more-

over, the (nonlinear) rearrangement operator enjoys the following properties:

i) Positively homogeneous: (λu)∗ = |λ|u∗, λ ∈ R
ii) Sub-additive: (u+ v)∗(t+ s) ≤ u∗(t) + v∗(s), t, s ≥ 0

iii) Monotone: 0 ≤ u(x) ≤ v(x) a.e. in Ω⇒ u∗(t) ≤ v∗(t), t ∈ (0, |Ω|)
iv) u and u∗ are equidistributed and in particular (a version of the Cavalieri Prin-

ciple): ∫
Ω

A(|u(x)|) dx =

∫ |Ω|
0

A(u∗(s)) ds

for any continuous funtion A : [0,∞] → [0,∞], nondecreasing and such that

A(0) = 0

v) The following inequality holds (Hardy-Littlewood):∫
Ω

u(x)v(x) dx ≤
∫ |Ω|

0

u∗(s)v∗(s) ds

provided the integrals are defined.

vi) The map u 7→ u∗ preserves Lipschitz regularity, namely ∗ : Lip(Ω) −→
Lip(0, |Ω|).

The Zygmund space Zα(Ω), α > 0, consists of all measurable functions u(x) on

a bounded set Ω ⊂ Rn such that∫
Ω

eλ|u|
1
α dx <∞ , ∀λ > 0

The Zygmund space Zα(Ω) can be equivalently defined as measurable u : Ω → R
such that:

sup
0<t<|Ω|

u∗(t)

[1 + log( |Ω|t )]α
<∞ and lim

t→0

u∗(t)

[1 + log( |Ω|t )]α
= 0
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The proof of this equivalence can be found in [6] (Theorem D, p.15); here we prove

only one inclusion. Let u be a measurable function such that

sup
0<t<|Ω|

u∗(t)

[1 + log( |Ω|t )]α
= Cu and lim

t→0

u∗(t)

[1 + log( |Ω|t )]α
= 0 ;

define

w(s) = u∗(|Ω|e−s)

Then

sup
0<s<∞

w(s)

[1 + s]α
= Cu <∞ and lim

s→+∞

w(s)

[1 + s]α
= 0

and ∫
Ω

eλ|u|
1
α dx =

∫ |Ω|
0

eλ|u
∗|

1
α dt = |Ω|

∫ ∞
0

eλ|w|
1
α−sds

From

w(s) < Cu(1 + s)α , ∀ s > 0

follows immediately that the integral is bounded for any λ < C
−1/α
u . The existence

of the integral for any positive λ, instead, is a consequence of the second condition:

indeed, given any ε > 0, there exists a τ = τ(ε) such that w(s) < ε(1 + s)α for any

s > τ ; hence, for any fixed λ it suffices to chose ε = (2λ)−α so that∫ ∞
0

eλ|w|
1
α−sds =

∫ τ

0

eλ|w|
1
α−sds+

∫ ∞
τ

eλ|w|
1
α−sds

<

∫ τ

0

eλC
1
α
u (1+s)−sds+

∫ ∞
τ

e
1−s
2 ds <∞

The quantity

‖u‖Zα = sup
t∈(0,|Ω|)

u∗(t)[
1 + log

(
|Ω|
t

)]α (2.1)

defines a quasinorm on Zα which turns out to be equivalent to a real norm. The

space Zα(Ω) can also be obtained as the limiting case of Lorentz–Zygmund spaces

Lp,q(logL)−α(Ω), as p, q → ∞, see [6,5], and can be also realized as Orlicž classes

L
e|u|

1/α (Ω), see [5], equipped with the quasinorm (2.1). Slightly varying the defini-

tion (2.1), we obtain the family of equivalent quasinorms

‖u‖Zαε = sup
t∈(0,|Ω|)

u∗(t)[
ε+ log

( |Ω|
t

)]α , ε > 0

introduced in (1.5). Recalling that (in order to emphasize the dependence of the

quasinorm (1.5) on ε) we have denoted the space Zα(Ω) endowed with ‖ · ‖Zαε by

Zαε (Ω), the quasinorm (2.1) is a particular member of the family ‖ · ‖Zαε , realized

by ε = 1.
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In order to deal with radial functions, it is more convenient to reformulate the

definition of (1.5), (1.6) in terms of the spherically symmetric rearrangement u] of

u; recalling that u](r) = u∗(ωnr
n), r = |x|, we have

‖u‖Zαε = sup
t∈(0,|Ω|)

u∗(t)[
ε+ log

(
|Ω|
t

)]α = sup
r∈(0,(|Ω|/ωn)1/n)

u∗(ωnr
n)[

ε+ log
(
|Ω|
ωnrn

)]α
= sup

r∈(0,R)

u](r)[
ε+ n log

(
R
r

)]α , R = (|Ω|/ωn)
1/n

and

[u ]α = sup
t∈(0,|Ω|)

u∗(t)[
log
(
|Ω|
t

)]α = sup
r∈(0,(|Ω|/ωn)1/n)

u∗(ωnr
n)[

log
(
|Ω|
ωnrn

)]α
= sup

r∈(0,R)

u](r)[
n log

(
R
r

)]α , R = (|Ω|/ωn)
1/n

3. Proof of Theorem 1

Let Ω = B1 ⊂ Rn be the unit ball. We first show that the transformation (1.10),

which acts on W 1,n
0,rad , the subspace of radial functions of W 1,n

0 , leaves invariant

both [u ]n−1
n

and the Sobolev norm ‖∇u‖n.

Proposition 2. The Sobolev norm ‖∇u‖n and [u ]n−1
n

are invariant under the

group action

Tµ : u(r) 7→ µ−
n−1
n u(rµ) , µ ∈ (0,+∞)

Proof. Let u ∈ W 1,n
0,rad(B1); then (Tµu)] = Tµu

] = µ−
n−1
n u](rµ) . By (2.2), we

have

[Tµu ]n−1
n

= sup
r∈(0,1)

µ−
n−1
n

u](rµ)

[n| log r|]
n−1
n

= sup
ρ∈(0,1)

µ−
n−1
n

u](ρ)[
n| log(ρ1/µ)|

]n−1
n

= sup
ρ∈(0,1)

u](ρ)

[n| log(ρ)|]
n−1
n

= [u ]n−1
n

Furthermore

‖∇(Tµu)‖nn = nωn

∫ 1

0

∣∣∣∣ ddrµ−n−1
n u(rµ)

∣∣∣∣n rn−1dr = nωnµ

∫ 1

0

|u′(rµ)|n rµn−1dr

= nωn

∫ 1

0

|u′(ρ)|n ρn−1dρ = ‖∇u‖nn

We know that, by testing with (1.9),

1

nω
1/n
n

= sup
u∈W 1,n

0 (B1), ‖∇u‖n=1

[u ]n−1
n

(3.1)
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is attained. Thanks to the Polya–Szëgo inequality [19], we may assume that extremal

functions are positive, radially symmetric and decreasing; hence, we have

1

nnωn
= sup
u∈W 1,n

0, ] , φ(u)=1

ψ](u) (3.2)

where we denote by W 1,n
0, ] the subset of W 1,n

0 consisting of radially symmetric de-

creasing functions, namely

W 1,n
0, ] =

{
u : [0, 1]→ R+ : u(r) non increasing and u(|x|) ∈W 1,n

0 (Ω)
}

and

ψ](u) := sup
r∈(0,1)

|u](r)|n

|n log r|n−1
= [u ]nn−1

n

φ(u) := nωn

∫ 1

0

|u′|nrn−1dr = ‖∇u‖nn

where we have used (2.2). Note that the difference of two decreasing functions is in

general not decreasing, so that the set W 1,n
0, ] is not a subspace of W 1

0 . However, the

functional ψ](u) is well defined on the whole space W 1,n
0,rad, the subspace of W 1,n

0

consisting of radially symmetric functions; furthermore,

ψ](u) = ψ(u), ∀ u ∈W 1,n
0,]

where

ψ : W 1,n
0,rad −→ [0,+∞)

u 7→ ψ(u) = sup
r∈(0,1)

|u(r)|n

|n log r|n−1

which is well defined since, for any u ∈W 1,n
0,rad:

|u(r)|n =

∣∣∣∣∫ 1

r

−u′(ρ)dρ

∣∣∣∣n ≤ [∫ 1

r

|u′(ρ)|ρ
n−1
n ρ−

n−1
n dρ

]n
≤
∫ 1

r

|u′(ρ)|nρn−1dρ ·
{∫ 1

r

ρ−1dρ

}n−1

≤ 1

nωn
· φ(u) · | log r|n−1 =

1

nnωn
· φ(u) · |n log r|n−1

This inequality proves also that

1

nnωn
= sup
u∈W 1,n

0, ] , φ(u)=1

ψ](u) = sup
u∈W 1,n

0, ] , φ(u)=1

ψ(u) = sup
u∈W 1,n

0,rad, φ(u)=1

ψ(u) (3.3)

Indeed, clearly

sup
u∈W 1,n

0, ] , φ(u)=1

ψ(u) ≤ sup
u∈W 1,n

0,rad, φ(u)=1

ψ(u)
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and the reverse inequality is a consequence of the previous estimate

|u(r)|n ≤ 1

nnωn
· φ(u) · |n log r|n−1

Therefore, the extremals for (3.1) satisfy the Euler-Lagrange equation associated to

(3.3).

Note that the functional u 7→ ψ(u) is continuous, thanks to (1.7), but not

differentiable; however it is convex, as we will prove below, and its subdifferential

∂ψ(u) turns out to be well defined. For the convenience of the reader, let us briefly

recall definitions and some properties of the subdifferential and the subgradient of

a convex function.

Definition 1. Let E be a Banach space, and ψ : E → R continuous and convex.

Then the subdifferential ∂ψ(u) of ψ at u ∈ E is the subset of the dual space E′

characterized by

ηu ∈ ∂ψ(u) ⇐⇒ ψ(u+ v)− ψ(u) ≥ 〈ηu, v〉, ∀ v ∈ E

where 〈·, ·〉 denotes the duality pairing between E and E′. An element ηu ∈ ∂ψ(u)

is called a subgradient of ψ at u.

Slight modifications in the proofs of Lemma 2.2, Lemma 2.3 and Corollary 2.4

in [13] yield the following two lemmas:

Lemma 1. Let ψ : E → R be convex and continuous. Assume that ψ(x) ≥ 0 for

all x ∈ E and that for q ≥ 1 the following holds

ψ(tx) = tqψ(x), ∀t ≥ 0

Then

η ∈ ∂ψ(u)⇐⇒


〈η, u〉 = qψ(u)

〈η, v〉 ≤ 〈η, u〉, ∀v ∈ ψu := {v ∈ E : ψ(v) ≤ ψ(u)}

Lemma 2. Assume that φ ∈ C1(E;R) satisfies

〈φ′(v), v〉 = qφ(v) 6= 0, ∀v ∈ E \ {0}

and that ψ : E → R satisfies the hypotheses of Lemma 1. If y ∈ E is such that, for

some A > 0,

ψ(y) = sup
u∈E, φ(u)=1

ψ(u) =
1

A

then

φ′(y) ∈ 1

ψ(y)
∂ψ(y) ≡ A∂ψ(y).
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In order to apply the previous two lemmas to our situation let us now verify

that the functional ψ, defined by (3.3), is convex.

Lemma 3. The functional ψ : W 1,n
0,rad → R defined by (3.3) is convex.

Proof. Let u, v ∈W 1
0,rad and λ ∈ (0, 1); clearly the function λu+(1−λ)v ∈W 1

0,rad

and

ψ (λu+ (1− λ)v) = sup
r∈(0,1)

|(λu+ (1− λ)v)(r)|n

|n log r|n−1

≤ sup
r∈(0,1)

[λ|u(r)|+ (1− λ)|v(r)|]n

|n log r|n−1

≤ sup
r∈(0,1)

λ|u(r)|n + (1− λ)|v(r)|n

|n log r|n−1

≤ λ sup
r∈(0,1)

|u(r)|n

|n log r|n−1
+ (1− λ) sup

r∈(0,1)

|v(r)|n

|n log r|n−1
= ψ(u) + ψ(v)

by the convexity of the function t 7→ tn.

Specializing Lemma 2 to our situation in which E = W 1,n
0,rad, and ψ(v) defined

as in (3.3), we obtain

Proposition 3. Suppose that y ∈W 1,n
0,rad satisfies

ψ(y) = sup
u∈W 1,n

0,rad, φ(u)=1

ψ(u) = sup
u∈W 1,n

0, ] , φ(u)=1

ψ](u) =
1

nnωn
(3.4)

Then y is a weak solution of the following equation
−
(
|y′|n−2y′ rn−1

)′
= nn−2 ηy

y′(0) = y(1) = 0 ,

(3.5)

for a suitable subgradient ηy ∈ ∂ψ(y).

Proof. By Lemma 2 with A = nnωn we have that y satisfies

nωn

∫ 1

0

n|y′|n−2y′v′rn−1dr = nnωn 〈ηy, v〉, ∀ v ∈W 1,n
0,rad (3.6)

and the thesis is straightforward.

It remains to determine the subgradient ηy in equation (3.5). Following [13] and

in particular Lemmas 2.6, 2.7 and 2.8 of [13] we have
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Proposition 4. Let y be a maximizer for problem (3.4) and let

Ky =

{
r ∈ (0, 1) :

yn(r)

|n log r|n−1
= ψ(y) =

1

nnωn

}
Then

i) supp(ηy) ⊂ Ky, ∀ηy ∈ ∂ψ(y)

ii) 〈ηy, y〉 = nψ(y) =
1

nn−1ωn
iii) Ky = {r0}
iv) ∂ψ(y) = [ψ(y)]

n−1
n

n

|n log r0|
n−1
n

δr0 = n−(n−2)ω
−n−1

n
n |n log r0|−

n−1
n δr0

Proof.

i) Let v ∈ C∞0 ((0, 1) \Ky). Then, for λ ∈ R sufficiently small we get

ψ(y) = ψ(y + λv) ≥ ψ(y) + 〈ηy, λv〉

and hence 〈ηy, v〉 = 0.

ii) By choosing v = ty in the definition of the subgradient we have

ψ(y + ty) ≥ ψ(y) + 〈ηy, ty〉

for all t ∈ R, so that

(1 + t)nψ(y) ≥ ψ(y) + t〈ηy, y〉

The thesis follows letting t→ 0±.

iii) Let us first prove that supp(ηy) does not contain an interval. Suppose by

contradiction that supp(ηy) ⊃ (r1, r2) =: I, 0 ≤ r1 < r2 ≤ 1 with y(r) =

|n log r|(n−1)/n/nω
1/n
n , r ∈ I. From (3.6) and ii) we obtain

nωn

∫ 1

0

n|y′|n−2y′y′rn−1dr = nnωn〈ηy, y〉 = n

that is

nωn

∫ 1

0

|y′|nrn−1dr = 1

i.e. the constraint in problem (3.2). Performing the change of variable

w(t) = nω1/n
n y(e−t/n)

we obtain

w(t) = t
n−1
n , ∀ t ∈ (t1, t2), 0 ≤ t1 < t2 ≤ ∞,

∫ ∞
0

|w′|ndt = 1

where t1 = −n log r2 and t2 = −n log r1. Note that∫ t2

t1

|w′|ndt =
(
n−1
n

)n ∫ t2

t1

dt

t
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so that 0 < t1 < t2 <∞. Hence, for some functions ϕ1 and ϕ2

w(t) =


ϕ1(t) , 0 ≤ t ≤ t1

t
n−1
n , t1 ≤ t ≤ t2

ϕ2(t) , t2 ≤ t <∞

and letting δ =
∫ t2
t1
|w′|ndt ∈ (0, 1) we have

0 <

∫ t1

0

|w′|ndt =

∫ t1

0

|ϕ′1|ndt ≤ 1− δ

On the other hand, it is easy to verify that

inf

{∫ t1

0

|ϕ′1|ndt : ϕ1(t) is C1-piecewise , ϕ1(0) = 0 , ϕ1(t1) = t
n−1
n

1

}
is achieved by the straight line ϕ1(t) = t/t

1/n
1 with integral

∫ t1
0
|ϕ1(t)′|ndt = 1, a

contradiction. Actually in the proof of point ii) we have also proved that if r0 ∈ Ky,

then y is a Moser truncated function, so that Ky = {r0}.

iv) From point iii) we have

ψ(y + v) = sup
r∈(0,1)

|y(r) + v(r)|n

|n log r|n−1
≥ |y(r0) + v(r0)|n

|n log r0|n−1

≥ |y(r0)|n

|n log r0|n−1
+
n[y(r0)]n−1v(r0)

|n log r0|n−1

= ψ(y) + [ψ(y)]
n−1
n

nv(r0)

|n log r0|
n−1
n

Hence ηy = n [ψ(y)]
n−1
n δr0/|n log r0|

n−1
n . Conversely, let ηy be an arbitrary element

of ∂Ψ(y). Since supp(ηy) ⊂ Ky = {r0}, then supp(ηy) = {r0}; hence the distribution

ηy has finite order N and can be represented by ηy =
∑N
i=0 a1D

iδr0 . Since ηy ∈
(W 1,n

0,rad)
′ one has N = 0 and ηy = aδr0 ; by ii) the thesis follows.

By Propositions 3 and 4 we have that if y is a maximizer for (3.2), then it

satisfies (weakly) the equation
−
(
|y′|n−2y′rn−1

)′
= ω

−n−1
n

n
δr0

|n log r0|
n−1
n

y′(0) = y(1) = 0 .

In order to simplify the notation and to emphasize the role of r0 as parameter

determining the family of maximizers, we set

µ = − log r0 ∈ (0,+∞)
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and we rename r0 as rµ, so that rµ = e−µ ∈ (0, 1). Then, the equation satisfied by

the maximizer for (3.2) becomes
−
(
|y′|n−2y′rn−1

)′
= (nωn)

1−n
n µ

1−n
n δrµ

y′(0) = y(1) = 0 .

By integration against y we get
1

nωn
= (nωn)(1−n)/nµ(1−n)/n y(rµ) , i.e. rµ is such

that

y(rµ) = µ
n−1
n (nωn)−

1
n

that is (1.8).

We now determine explicitly the solution of this problem: testing the equation

with any smooth function ϕ such that rµ /∈ supp ϕ we obtain∫ 1

0

|y′|n−2y′ϕ′rn−1 dr = 0

that is, y is a classical solution of the two problems
−
(
|y′|n−2y′rn−1

)′
= 0, r ∈ (0, rµ)

y′(0) = 0

and


−
(
|y′|n−2y′rn−1

)′
= 0, r ∈ (rµ, 1)

y(1) = 0

On the other hand, for any smooth, radial function v compactly supported in the

unit ball we have ∫ 1

0

|y′|n−2y′v′rn−1 dr = (nωn)
1−n
n µ

1−n
n v(rµ)

so that

(nωn)
1−n
n µ

1−n
n v(rµ) = lim

η→0+

[∫ rµ−η

0

|y′|n−2y′v′rn−1dr +

∫ 1

rµ+η

|y′|n−2y′v′rn−1dr

]

= lim
η→0+

[
|y′|n−2y′(rµ − η)v(rµ − η)(rµ − η)n−1 −

∫ rµ−η

0

d

dr

(
|y′|n−2y′rn−1

)
v dr

−|y′|n−2y′(rµ + η)v(rµ + η)(rµ + η)n−1 −
∫ 1

rµ+η

d

dr

(
|y′|n−2y′rn−1

)
v dr

]
= lim
η→0+

[
|y′|n−2y′(rµ − η)v(rµ − η)(rµ − η)n−1

−|y′|n−2y′(rµ + η)v(rµ + η)(rµ + η)n−1
]
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Combining the previous information, we deduce that y satisfies the problem
−
(
|y′|n−2y′rn−1

)′
= 0 , r ∈ (0, rµ) ∪ (rµ, 1)

y′(0) = y(1) = 0

rn−1
µ

[
(y′−(rµ))n−1 − (y′+(rµ))n−1

]
= (nωn)

1−n
n µ

1−n
n

and

y(rµ) =
µ
n−1
n

(nωn)1/n
(3.7)

Since y′(0) = 0 and y(rµ) is given by (3.7), we get that

y(r) is constant on (0, rµ) , with y(r) =
µ
n−1
n

(nωn)1/n

On (rµ, 1) the solution y(r) must satisfy the boundary conditions y(1) = 0 and

(3.7), y(rµ) = µ
n−1
n (nωn)−1/n; hence the solution is given by

y(r) =
− log r

(nωn)1/nµ1/n
, rµ < r ≤ 1

One easily checks that y(r) also satisfies the “jump-condition” for y′ in rµ.

Thus, we have found the solutions (1.11). In particular, for µ = 1 this is the

solution u1(r) given by (1.9).

Finally, let us prove that the group action Tµ generates the entire family of

Moser functions, which constitute all solutions of equation (1.8). Indeed,

Tνu1(r) = ν−
n−1
n u1(rν) =

ν−
n−1
n

(nωn)1/n

− log(rν) , if r1 = e−1 ≤ rν ≤ 1

1 , if 0 < rν < r1 = e−1

We get

Tνu1(r) =
1

(nωn)1/n


−ν1/n log r , if r1/ν = e−1/ν ≤ r ≤ 1(

1
ν

)n−1
n , if 0 < r < r1/ν = e−1/ν

=
1

(nωn)1/n


−
(

1
ν

)−1/n
log r , if r1/ν = e−1/ν ≤ r ≤ 1(

1
ν

)n−1
n , if 0 < r < r1/ν = e−1/ν

that is (1.11) with µ = 1/ν; this concludes the proof of Theorem 1.
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4. Proof of Theorem 2

Due to the rearrangement invariance of inequality (1.12), see e.g. [19], it is clear

that the best possible constant in (1.12) is obtained when Ω is a ball and we may

assume that extremals can be taken in the class of radially symmetric functions.

Then, we will show that actually the best constant does not depend on the domain.

Let u ∈W 1,n
0,rad(Ω) and as in [17], let us make a change of variables

w(t) = nω1/n
n u](Re−t/n) (4.1)

where ωnR
n = |Ω|. Then w is monotone increasing on (0,∞) and by the Polya–

Szëgo inequality we get∫ ∞
0

(w′)ndt =

∫
Ω]
|∇u]|ndx ≤

∫
Ω

|∇u|ndx

By a standard density argument we may assume that w(t) ∈ C1
0(0,+∞), hence

w(t) =

∫ t

0

w′(s)ds ≤ t
n−1
n

(∫ ∞
0

(w′)ndt
)1/n

≤ t
n−1
n ‖∇u‖n (4.2)

and in turn by (4.1) and (4.2)

u](x) ≤ ‖∇u‖n
nω

1/n
n

[
ε+ n log

(
R

|x|

)]n−1
n

, ε ≥ 0

Then we obtain

u∗(r) = u]

((
r

ωn

)1/n
)
≤ ‖∇u‖n

nω
1/n
n

[
ε+ log

(
Rnωn
r

)]n−1
n

=
‖∇u‖n
nω

1/n
n

[
ε+ log

(
|Ω|
r

)]n−1
n

so that

‖u‖
Z
n−1
n

ε

= sup
t∈(0,|Ω|)

u∗(t)[
ε+ log

(
|Ω|
r

)]n−1
n

≤ ‖∇u‖n
nω

1/n
n

Note that

lim
t→∞

w(t)

t
n−1
n

= 0 =⇒ lim
r→0

u∗(r)[
ε+ log

(
|Ω|
r

)]n−1
n

= 0, ε ≥ 0

as one can easily prove; see [17]. The inequality (1.7) is sharp, and this can be shown

by using the Moser truncated functions:

wk(t) =

{ t
k1/n

, t ≤ k

k
n−1
n , t ≥ k

(4.3)
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for which one has ‖∇uk‖n = 1 and

nω1/n
n ‖uk‖

Z
n−1
n

ε

= nω1/n
n sup

r∈(0,|Ω|)

u∗k(r)[
ε+ log

(
|Ω|
r

)]n−1
n

= sup
t∈(0,∞)

wk(t)

(ε+ t)
n−1
n

→ 1 , as k → +∞ (4.4)

and this proves that the constant in (1.12) is optimal for any ball. Notice that the

Zygmund quasinorm ‖ · ‖Zαε (Ω) does not satisfy the zero extension property as it

depends explicitly on the measure of the domain Ω. However, by exploiting scale

invariance and then extending by zero does not affect the class of extremal functions

(4.3). In particular, denoting the best constant by C(Ω) we get C(Ω]) ≤ C(Ω) ≤
C(BR), for Ω ⊂ BR, and this concludes the proof of the first part of Theorem 2.

We point out that by setting ε = 0, the proof we have just carried out yields an

alternative proof of the original result of Alvino’s theorem obtained by interpolation.

It remains to prove that for ε > 0 the constant 1/nω
1/n
n is not achieved by radial

functions: this is a consequence of the absence of invariance under the action of the

group (1.10) for the quasinorm ‖u‖
Z
n−1
n

ε

as long as ε > 0. Indeed, let y(|x|) be a

radial extremal function for inequality (1.12); then, following line by line the proof

of Theorem 1, one can verify that y satisfies the problem
−
(
|y′|n−2y′rn−1

)′
= ω

1−n
n

n (ε+ nµ)
1−n
n δrµ ,

y′(0) = y(1) = 0,

(4.5)

so that y is a classical solution of
−
(
|y′|n−2y′rn−1

)′
= 0 r ∈ (0, rµ) ∪ (rµ, 1)

y′(0) = y(1) = 0,
(4.6)

for some µ ∈ (0,+∞) (with rµ = e−µ), with the normalization condition

y(rµ) =
(ε+ nµ)

n−1
n

nω
1/n
n

(4.7)

Testing (4.5) with smooth, radial functions v compactly supported in the unit ball,

one obtains ∫ 1

0

|y′|n−2y′v′rn−1 dr = ω
1−n
n

n (ε+ nµ)
1−n
n v(rµ)
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so that

ω
1−n
n

n (ε+ nµ)
1−n
n v(rµ)

= lim
η→0+

[∫ rµ−η

0

|y′|n−2y′v′rn−1dr +

∫ 1

rµ+η

|y′|n−2y′v′rn−1dr

]

= lim
η→0+

[
|y′|n−2y′(rµ − η)v(rµ − η)(rµ − η)n−1 −

∫ rµ−η

0

d

dr

(
|y′|n−2y′rn−1

)
v dr

−|y′|n−2y′(rµ + η)v(rµ + η)(rµ + η)n−1 −
∫ 1

rµ+η

d

dr

(
|y′|n−2y′rn−1

)
v dr

]
= lim
η→0+

|y′|n−2y′(rµ − η)v(rµ − η)(rµ − η)n−1

−|y′|n−2y′(rµ + η)v(rµ + η)(rµ + η)n−1

that is,

rn−1
µ

[
|y′−(rµ)|n−2y′−(rµ)− |y′+(rµ)|n−2y′+(rµ)

]
= ω

1−n
n

n (ε+ nµ)
1−n
n (4.8)

On the other hand, applying Proposition 1,[
|y′+(rµ)|n − |y′−(rµ)|n

]
rn0 | log rµ| =

∫ 1

0

|y′|nrn−1 dr =
1

nωn

since y is a normalized extremal function. Now, since y is a classical solution of the

problem (4.6), we easily obtain that y(r) is constant in (0, rµ), so that y′−(rµ) = 0.

Then, the previous identity reduces to

|y′+(rµ)|nrnµ | log rµ| =
1

nωn
(4.9)

and, by (4.8),

−rn−1
µ |y′+(rµ)|n−2y′+(rµ) = ω

1−n
n

n (ε+ nµ)
1−n
n

which implies directly y′+(rµ) < 0 and the previous equation can be reformulated

as follows

rn−1
µ |y′+(rµ)|n−1 = ω

1−n
n

n (ε+ nµ)
1−n
n (4.10)

Combining (4.9) with (4.10) yields

| log rµ| = µ+
ε

n

which contradicts the definition of rµ = e−µ.

Let us now conclude the section with the proof of Proposition 1

Proof. [Proof of Proposition 1] Let us first observe that if y is a weak solution of

(1.13), then it satisfies pointwise the equation

−(|y′|n−2y′rn−1)′ = 0 on (0, r0) ∪ (r0, 1)



November 29, 2012 17:15 WSPC/INSTRUCTION FILE
Cassani˙Ruf˙Tarsi˙CCM

Group invariance and Pohozaev identity in Moser type inequalities 19

Multiplying this equation by r log r y′ and integrating on (0, r0 − η) ∪ (r0 + η, 1)

yields

0 =

∫ r0−η

0

−(|y′|n−2y′rn−1)′r log ry′ dr +

∫ 1

r0+η

−(|y′|n−2y′rn−1)′r log ry′ dr

= −|y′(r0 − η)|n(r0 − η)n log(r0 − η) + |y′(r0 + η)|n(r0 + η)n log(r0 + η)

+

∫ r0−η

0

|y′|n−2y′rn−1[log ry′ + y′ + r log ry′′] dr

+

∫ 1

r0+η

|y′|n−2y′rn−1[log ry′ + y′ + r log ry′′] dr

= −|y′(r0 − η)|n(r0 − η)n log(r0 − η) + |y′(r0 + η)|n(r0 + η)n log(r0 + η)

+

∫ r0−η

0

|y′|nrn−1[log r + 1] dr +

∫ 1

r0+η

|y′|nrn−1[log r + 1] dr

+
1

n

∫ r0−η

0

(|y′|n)
′
rn log r dr +

1

n

∫ 1

r0+η

(|y′|n)
′
rn log r dr

= −n− 1

n
|y′(r0 − η)|n(r0 − η)n log(r0 − η)

+
n− 1

n
|y′(r0 + η)|n(r0 + η)n log(r0 + η)

+
n− 1

n

∫ r0−η

0

|y′|nrn−1 dr +
n− 1

n

∫ 1

r0+η

|y′|nrn−1 dr

Now, since y(|x|) ∈W 1,n
0,rad(Ω),∫ 1

0

|y′|nrn−1 dr = lim
η→0

∫ r0−η

0

|y′|nrn−1 dr +

∫ 1

r0+η

|y′|nrn−1 dr

so that, passing to the limit in the previous equation, we obtain∫ 1

0

|y′|nrn−1 dr =
[
|y′−(r0)|n − |y′+(r0)|n

]
rn0 log r0

that is our thesis (recalling that 0 < r0 < 1 implies | log r0| = − log r0).
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