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The nodal structures of atomic wave functions based on a product of spatial orbitals, namely,
restricted, unrestricted, and generalized valence bond wave functions, are shown to be equivalent.
This result is verified by fixed node–diffusion Monte Carlo simulations for atoms up to Ne. Also
for a molecular system, Li2 at the equilibrium geometry, a multideterminantal generalized valence
bond wave function does not improve the nodal surfaces of a restricted Hartree–Fock wave
function. © 2008 American Institute of Physics. �DOI: 10.1063/1.2963501�

I. INTRODUCTION

The properties of the nodal structure of atomic and mo-
lecular wave functions are at the heart of the fixed node–
diffusion Monte Carlo �FN-DMC� method.1 They directly
influence the quality of the results of the simulations, but
despite their fundamental importance little is known. Only
recently a few papers2–6 have begun to study the nodal prop-
erties of both exact and approximate wave functions.

In this paper we want to investigate and compare the
nodal structure of a family of wave functions written as a
product of optimized spatial orbitals times different spin
functions. The motivations were that, as we will discuss in
the following section, not all these wave functions can sat-
isfy the asymptotic properties the exact wave function is
known to possess, and we wanted to investigate how this
could affect the nodal structure.

II. NODAL STRUCTURE

Among the wave functions based on the approximation
that each electron is described by a single-particle function,
namely, an orbital, the restricted Hartree–Fock �RHF� wave
function, even for a closed shell system, is not the most
general one. The orbital double occupancy is removed in the
unrestricted Hartree–Fock �UHF� wave function, but this is
not an eigenfunction of S2, a problem that can be solved
within the spin-extended HF method7 by projecting a spin
eigenfunction. The most general wave function is the spin-
optimized self-consistent field �SO-SCF� wave function,8

where both spatial orbitals and spin eigenfunctions are opti-
mized. A simplified form is the generalized valence bond
�GVB� method,9 which optimizes the orbitals for an arbi-
trary, specified spin coupling.

The conventional wisdom, although not mathematically
proven, is that in variational calculations the energies of
these wave functions improve according to

E��RHF� � E��UHF� � E��GVB� � E��SO-SCF� . �1�

This ordering is what one should expect considering that the
RHF function has less variational freedom, while the UHF
function for closed shell atoms is usually similar, if not
equal, to the RHF. The GVB function, for both closed and
open shell systems, generally gives better energies putting
each electron in its own orbital and, differently from the
UHF function, still remaining a pure spin state. The SO-SCF
wave function improves only slightly upon the previous one
as usually just one spin coupling is relevant.

Even more relevant, it is known that the RHF wave
function does not satisfy the correct asymptotic behavior
when one electron is at large distance.

In general, for an N-electron system Patil10 has shown
that

�0
�N� →

r1→�

r1
a1�1 + c1r1

−1 + O�r1
−2��exp�− r1/b1�Yl1

m1�r̂1��0
�N−1�

��2, . . . ,N� . �2�

Recursively, setting the right symmetry, we obtain the
structure

� = Â�f1�1�f2�2� . . . fN�N��N� , �3�

where �N is the correct S2 spin eigenfunction. Each electron
has its own orbital, so it is clear that the simple RHF wave
function has the wrong behavior, even for the case N=2.
Note that, in general, the computational cost to evaluate such
a function scales exponentially due to the presence of the
antisymmetrizer operator.

In DMC, within the FN approximation, the energy de-
pends only on the nodes of the wave function, used as
boundary condition for the diffusion process. Two distinct
wave functions having the same nodes give exactly the same
FN-DMC energy.

It is tempting to argue that, if the quality of the wave
function improves, measured by its variational energy, the
quality of its nodes should improve, leading to better DMC
energies. However, scattered results in the literature have
shown that this is not always the case, but to our knowledge
a systematic study has never been performed.
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Consider the RHF and UHF wave functions for the ni-
trogen atom,

�RHF = �1sR2sR2p3��1sR2sR� ,
�4�

�UHF = �1sU2sU2p3��1sU� 2sU� � ,

where the subscripts U and R are meant as a reminder that
the orbitals, for the restricted and unrestricted cases, are dif-
ferent. Since the p orbitals are irrelevant in the following
discussion we omit the subscript.

If we multiply these functions by a Jastrow factor, we
can recover some correlation energy. Their variational ener-
gies must be evaluated using the variational Monte Carlo
�VMC� algorithm,1 and it is expected that the energy order-
ing of the two functions does not change,

EVMC��RHF� � EVMC��UHF� ,

�5�
EVMC��RHFJ� � EVMC��UHFJ� .

If the nodes of the two wave functions are different, it is not
possible to say, a priori, which function gives a better DMC
energy. Note that the nodes are unchanged by the multipli-
cation of an overall positive Jastrow factor,

EDMC��UHFJ� = EDMC��UHF� . �6�

Now, we extend the discussion on nodal surfaces of RHF
and UHF wave functions by Reynolds et al.11 to more gen-
eral wave functions based on an orbital product. Let us sup-
pose that the UHF wave function gives a better FN energy
than the RHF wave function. We can show that, for any
given UHF wave function for the N atom, we can always
find a RHF one with the same nodes and hence with the
same DMC energy. We can do this by noting two facts: first
the nodal topology of the UHF and RHF functions is the
same: there are two independent nodes coming from the al-
pha and beta determinants and intersecting in a lower dimen-
sional submanifold. Second, the node of the beta determi-
nant, built with only 1s and 2s orbitals, is known analytically
and is r6=r7, assuming we label the first five electrons as
alpha, and the last two as beta, something we can always do
as long as the Hamiltonian is spin independent. Furthermore,
this node does not depend on the exact form of the 1s and 2s
orbitals, but only on their spherical symmetry. This means
that we can build a restricted wave function, doubly occupy-
ing the 1sU and 2sU orbital, having exactly the same nodes of
the original unrestricted function,

�UHF = �1sU2sU2p3��1sU� 2sU� � → �1sU2sU2p3��1sU2sU�

= �RHF� . �7�

Hence

EDMC��RHF� � = EDMC��UHF� . �8�

In other words, in the �RHF� function we build the beta
determinant with the same orbitals used in the construction
of the alpha determinant. Of course the �RHF� function is not
the best, from the variational point of view, RHF wave func-
tion.

The argument can be reversed: we can also conclude that
for any given RHF function, there is always an UHF one
�actually an infinite number� with exactly the same nodal
structure, and hence giving exactly the same quantum Monte
Carlo �QMC� energy.

From this argument it seems not worth to use UHF wave
functions in DMC, despite the fact that it has more varia-
tional freedom, provided one is able to optimize the FN
DMC energy of the more commonly used functions with
doubly occupied orbitals. In other words, the RHF wave
function with the best DMC energy �not necessarily the one
with the best variational energy� has the same DMC energy
of the best UHF wave function.

The UHF wave function is still, like the RHF one, a
single determinant function. In the more general product of
single-particle functions times a single S2 spin eigenfunction,
the GVB approach, the wave function is expressed as a sum
of different determinants, and this could have, in principle, a
big effect on the nodal structure, leading to more accurate
QMC energies. We have previously seen that a wave func-
tion with doubly occupied orbitals cannot satisfy all the
boundary conditions that the exact wave function must sat-
isfy, unlike a GVB function,10,12 and in principle this could
affect the quality of the nodes.

However, we will show that, at least for atoms, this is
not the general case.

Consider the structure of the GVB wave function for the
N atom,

�GVB = �1s2s2p3��1s�2s�� − �1s�2s2p3��1s2s��

+ �1s�2s�2p3��1s2s� − �1s2s�2p3��1s�2s� . �9�

It is clear that all beta determinants, even if built with differ-
ent orbitals, have exactly the same node r6=r7, for the same
reason we discussed above. The alpha determinants might
have slightly different nodes, since a common outcome of
the GVB optimization is that the 1s and 1s� and 2s and 2s�
orbitals differ little. So the nodal topology of this function is
similar to the one of the monodeterminantal functions, with
two intersecting nodal surfaces, generating a minimum of
four nodal regions. One surface is r6=r7, while the second
surface is the result of the weighted combination of the
nodes of the alpha determinants. It has been conjectured �and
numerically verified in some cases� that the exact ground
state of an atomic and molecular system has exactly two
nodal regions.13,14 For this reason, using a GVB function,
although it is able to satisfy the asymptotic boundary condi-
tions, does not seem to improve the nodal structure. A small,
well chosen, configuration interaction �CI� or multiconfigu-
ration self-consistent field expansion can have a much more
dramatic effect in modifying the nodes of the single determi-
nant wave function.2

The above arguments can be rigorously applied only to
atoms up to Z=7. As soon as the beta determinant has elec-
trons in p orbitals, the nodal structure becomes too difficult
to treat algebraically. However, we will show numerically
that even up to Z=10 a GVB wave function does not im-
prove the nodal structure of a single determinant wave func-
tion, measured by the FN-DMC energy.
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III. CALCULATIONS

We studied the ground state of the first row atoms. In
order to investigate the effect of the analytic structure of the
wave function and to separate it from the influence of the
quality of the basis set, we decided to describe the 1s, 2s, and
2p orbitals in a very compact way.

1s = e�ar+br2�/�1+r�, 2s = �r − c�e�ar+br2�/�1+r�,

�10�
2px = xe�ar+br2�/�1+r�.

In a previous study12 we showed that using this kind of func-
tions it is possible to develop very compact, but nevertheless
accurate wave functions for two-electron systems. One im-
portant property of these functions is that the exponential
behavior close to the origin is completely decoupled from the
exponential behavior at large distance. If r→0 these func-
tions reduce to simple hydrogenoid functions. Each electron
is described by a single function. In order to reduce the num-
ber of variational parameters, to simplify our analysis, the
various a parameters have been fixed to the theoretical hy-
drogenoid value, i.e., for the 1s a=−Z, to fix the cusp con-
ditions, while for the 2s and 2p orbitals a=−Z /2. When we
tried to optimize these parameters, very little gain was ob-
served at the VMC level and nothing at the DMC level. The
parameter c of the 2s orbital, on the other hand, was found to
directly influence the FN-DMC energy and was left free to
be optimized, together with the b parameters.

Even if the nodal structure is not directly influenced by
the correlation factor, we used a simple Jastrow factor, in
order to reduce the variance of the estimated energy. We
optimized the wave functions by minimizing the variance of
the local energy using VMC simulations.15 The RHF deter-
minants have a maximum of five optimizable parameters:
one each for the Jastrow, the 1s, and the 2p orbitals, and two
for the 2s orbitals. For the GVB wave functions the number
of orbital parameters is doubled. Due to the compact form
we chose for the orbitals, there are no linear parameters com-
ing from linear combination of basis functions. In all cases
the optimized parameters, when plotted against the atomic
number, show a linear behavior. We exploited this empirical
fact to provide some good starting values of the parameters
and to check if during the nonlinear optimization something
went wrong. Sometimes the nonlinear optimization could not
escape a bad local minimum. By providing a starting point

for the parameters coming from an extrapolation between
neighboring atoms we could often improve the energy. We
performed both VMC and DMC simulations using an aver-
age of 5000 walkers.

IV. RESULTS

The results, both VMC and DMC, are shown in Table I.
In Fig. 1 we plot the correlation energy recovered for the

various functions as a function of Z. We use this way of
displaying the data instead of the more common use of the
percentage of correlation energy recovered since we think it
gives a different insight, more useful to judge the trend as a
function of Z. The percentage of the recovered correlation
energy can be found in Table I.

The plot shows that the correlation energy to be recov-
ered increases roughly quadratically with Z. The closer we
are to this exact curve the more accurate are the calculations.
Let us first comment on the VMC simulations. The RHF
functions recover approximately only a constant amount, en-
tirely due to the two-body Jastrow factor. It is surely possible
to use more sophisticated correlation factors, including three-
body correlations, but we did not use them since our aim was
to study the effect of the form of the wave function on the
nodal structure, which is not affected by the correlation fac-
tor. The effect of better correlation factors is evidenced by
the results by Luchow and Anderson,16 also reported in Fig.
1. Their correlation energies, at the VMC level, recovered
using three-body Schmidt–Moskowitz correlation factors,17

TABLE I. Energies �hartree� and correlation energy percentages.

HFa NRLa VMC HF %CE VMC GVB %CE DMC HF %CE DMC GVB

He −2.861 68 −2.903 724 −2.8933�2� 75.3 −2.9022�1� 96.5 −2.9037�1� 100.0 −2.9036�1�
Li −7.432 727 −7.478 06 −7.4704�1� 83.1 −7.4755�1� 94.6 −7.4780�1� 99.9 −7.4780�1�
Be −14.573 023 −14.667 36 −14.6261�2� 56.3 −14.6312�2� 61.7 −14.6575�1� 89.5 −14.6570�2�
B −24.529 061 −24.653 93 −24.5858�3� 45.5 −24.5971�2� 54.6 −24.6384�1� 87.6 −24.6369�1�
C −37.688 619 −37.845 0 −37.7568�5� 43.6 −37.7626�2� 47.3 −37.8292�3� 89.9 −37.8231�1�
N −54.400 934 −54.589 3 −54.4620�4� 32.5 −54.4780�3� 40.9 −54.5732�2� 91.4 −54.5746�3�
O −74.809 398 −75.067 −74.8708�6� 23.9 −74.9233�4� 44.2 −75.0501�4� 93.5 −75.0501�3�
F −99.409 349 −99.734 −99.4685�5� 18.2 −99.5567�7� 45.4 −99.7150�4� 94.2 −99.680�1�
Ne −128.547 098 −128.938 3 −128.590�1� 11.2 −128.7348�7� 48.0 −128.9027�3� 90.9 −128.8796�6�
aHartree–Fock and nonrelativistic limit from Ref. 21.

FIG. 1. �Color online� Correlation energy �hartree� for VMC and DMC
calculations. MS results are from Ref. 16.
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show the correct quadratic trend. It is interesting to note that
starting from the Be atom, the missing correlation energy is
approximately constant, and it is tempting to speculate that
this is due to the wrong nodal topology of the RHF wave
function, having four nodal regions instead of two. For He
and Li the RHF function has a topologically correct nodal
structure: for He there are no nodes and for Li only one nodal
surface. Although the nodes are not directly relevant when
discussing VMC results, if the topology of the nodal struc-
ture is wrong, the improvement of the wave function by a
positive-everywhere correlation factor is limited, as it cannot
move or vary the number of nodes. In other words including
higher terms in the correlation factor is not sufficient to con-
verge to the exact value.

Our GVB wave functions, at the VMC level, give better
results than the corresponding RHF functions, but only after
the nitrogen atom the recovered correlation energy shows a
nonconstant trend and a marked improvement over the dou-
bly occupied determinant result.

It is clear that including the correct analytical structure is
beneficial in the cases where the p orbitals start to be doubly
occupied. The GVB structure gives enough freedom to the p
electrons to avoid each other and this has a marked effect: in
the Ne case the correlation energy recovered is almost half of
the total one. We stress that this is not due to three-body
correlation terms, since the GVB theory is still a one-particle
theory and only pair correlation functions were included.

Let us now consider the DMC results. At the DMC level
our RHF wave functions recover from 87% to 100% of the
correlation energy, and again they miss an almost constant
amount starting from the Be atom. Although the purpose of
this work was not to generate very accurate wave functions,
it is interesting to note that this very compact and simple
wave function recovers almost the same energy as the more
sophisticated HF quality times Schmidt–Moskowitz term
used by Luchow and Anderson.16 Again, in both cases, the
missing correlation energy is due to the wrong nodal struc-
ture. Consider now the DMC energy of the GVB functions.
Although these functions have the correct analytical
asymptotic structure, unlike the simple RHF functions, this
fact does not seem to affect the nodal structure. Paradoxi-
cally, the fact that the GVB functions have more variation-
ally optimizable parameters, in two cases �F and Ne� leads to
worse results, presumably due to local minima in the varia-
tional space, since the parameters have been optimized at the
VMC level using the variance minimization algorithm. The
GVB functions are more costly to evaluate due to their mul-
tideterminantal structure, and more difficult to optimize due
to the greater number of parameters, and do not seem to offer
any advantage at the DMC level, even if they improve the
VMC energy by including the correct asymptotic structure.
This is in accordance with our theoretical argument in the
previous section. Furthermore, it is worth noting that the
difference between the correlation energy recovered with
DMC by our simple functions and the one recovered with
more sophisticated functions having the same structure16 is
small, our being usually only slightly less, while the missing
correlation energy usually is much greater. In this respect it
seems more useful, in general, to direct more computational

energies toward wave functions that can recover the missing
energy by altering directly the nodal structure.18–20 To give a
concrete example, with the simple four parameter RHF wave
function used in this work, for the nitrogen atom, DMC re-
covers about 91% of the correlation energy, to be compared
with the 93% obtained using the Clementi–Roetti wave func-
tion, with 27 parameters.

V. GVB FOR MOLECULES

Historically, the VB and the GVB approach have been
developed with the aim to correctly describe the bond break-
ing process, and only later applied to atoms. It is known that
the RHF wave function incorrectly describes the bond break-
ing process, even for the simple hydrogen molecule, while
the correct dissociation limit is recovered using VB or GVB
functions. Mixing covalent and ionic structures, the RHF
wave function has a wrong nodal structure asymptotically. It
could be speculated that this could somehow introduce some
nodal error even at distances close to the equilibrium, since
the nodal structure changes smoothly from the dissociation
to the equilibrium distance. In order to test this hypothesis
we performed some DMC simulations of the Li2 molecule at
the equilibrium distance using a RHF and a GVB wave func-
tion, built using as basis set the compact functions previously
described, times a simple two-body Jastrow factor. The GVB
wave function has eight determinants. As shown in Table II,
passing from the RHF to the GVB wave function, the VMC
energy improves by 16 mhartree, but the nodal structure
seems unchanged since the DMC energy is statistically the
same. It was found in previous studies2 that adding the de-
terminants 1�g

21�u
21	x

2 and 1�g
21�u

21	y
2 to the RHF trial wave

function improves the DMC energy. We built a simple CI
expansion with three determinants, using the compact basis
functions described previously. As expected the DMC energy
improves with respect to the GVB one, but interestingly the
VMC result is still inferior to the GVB one due to the double
occupancy of the orbitals. We removed this constraint using
the GVB methodology to the three determinant CI expan-
sion, obtaining an expansion of 24 determinants. The VMC
energy improves quite sensibly, but again the DMC energy
has a negligible improvement. As comparison we included in
Table II the best three determinant wave function we opti-
mized in a previous work on the Li2 system2 and the energy
obtained by a well chosen five determinants expansion, re-
covering almost the exact energy. We observe here the same

TABLE II. Energies �hartree� for Li2 at 5.05 bohrs.

Wave function VMC DMC

RHF 1 det. −14.9523�2� −14.9916�1�
GVB 8 dets. −14.9688�1� −14.9915�1�
CI 3 dets. −14.9632�1� −14.9931�1�
GVB 24 dets. −14.9782�1� −14.9936�1�
CI 3 dets.a −14.9933�2�
CI 5 dets.a −14.9952�1�
NRLb −14.9954

aReference 2.
bReference 22.
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phenomenon noted in the case of the atoms: using a GVB
trial wave function improves the variational energy, but not
the FN energy.

VI. CONCLUSIONS

The aim of this work was to investigate the effect on the
nodal surfaces of changing the analytical structure of the
wave functions, restricting them to a product of orbitals, ei-
ther doubly or singly occupied. From our work it seems that
more sophisticated single-particle-based wave functions, be-
yond the simple RHF, while recovering more energy at the
VMC level, do not seem to improve the nodal structure.
Simply adding more determinants does not necessarily
change the topology of the nodal structure, if those determi-
nants are just coming from a GVB approach. This is in ac-
cord with a previous study2 that found that only determinants
built with different angular momentum couplings than the
ground state determinant could improve the nodal structure
of the RHF wave function.
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