
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 34, No. 3, pp. 640–668

A SECOND-ORDER PERCEPTRON ALGORITHM∗

NICOLÒ CESA-BIANCHI† , ALEX CONCONI† , AND CLAUDIO GENTILE‡

Abstract. Kernel-based linear-threshold algorithms, such as support vector machines and
Perceptron-like algorithms, are among the best available techniques for solving pattern classifica-
tion problems. In this paper, we describe an extension of the classical Perceptron algorithm, called
second-order Perceptron, and analyze its performance within the mistake bound model of on-line
learning. The bound achieved by our algorithm depends on the sensitivity to second-order data
information and is the best known mistake bound for (efficient) kernel-based linear-threshold clas-
sifiers to date. This mistake bound, which strictly generalizes the well-known Perceptron bound,
is expressed in terms of the eigenvalues of the empirical data correlation matrix and depends on a
parameter controlling the sensitivity of the algorithm to the distribution of these eigenvalues. Since
the optimal setting of this parameter is not known a priori, we also analyze two variants of the
second-order Perceptron algorithm: one that adaptively sets the value of the parameter in terms of
the number of mistakes made so far, and one that is parameterless, based on pseudoinverses.
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1. Introduction. Research in linear-threshold classifiers has been recently re-
vamped by the popularity of kernel methods [1, 12, 36], a set of mathematical tools
used to efficiently represent complex nonlinear decision surfaces in terms of linear
classifiers in a high-dimensional feature space defined by kernel functions. To some
extent, statistical learning theories have been able to explain why kernel methods do
not suffer from the “curse of dimensionality”—that is, why they exhibit a remarkable
predictive power despite the fact that the kernel-induced feature space has very many
(possibly infinite) dimensions. However, these statistical results are often based on
quantities, like the “margin,” that provide only a superficial account of the way the
predictive power is affected by the geometry of the feature space.

A different approach to the analysis of linear-threshold classifiers is the mistake
bound model of on-line learning [28]. In this model, similarly to the framework of
competitive analysis, the learning algorithm must be able to sequentially classify
each sequence of data points making a number of mistakes not much bigger than
those made by the best fixed linear-threshold classifier in hindsight (the reference
predictor). The power of this approach resides in the fact that the excess loss of the
learning algorithm with respect to the reference predictor can be nicely bounded in
terms of the geometrical properties of any individual sequence on which the algorithm
is run. Furthermore, as shown in [9], mistake bounds have corresponding statistical
risk bounds that are not worse, and sometimes better, than those obtainable with a
direct statistical approach.
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So far, the best known mistake bound for kernel-based linear-threshold classifiers
was essentially the one achieved by the classical1 Perceptron algorithm [7, 32, 34].
In this paper we introduce an extension of the standard Perceptron algorithm, called
second-order Perceptron.

The standard Perceptron algorithm is a popular greedy method for learning linear-
threshold classifiers. Since the early sixties, it has been known that the performance
of the Perceptron algorithm is governed by simple geometrical properties of the in-
put data. As the Perceptron algorithm is essentially a gradient descent (first-order)
method, we improve on it by introducing sensitivity to second-order data information.
Our second-order algorithm combines the Perceptron’s gradient with a sparse (and
incrementally computed) version of the data correlation matrix. Our analysis shows
that the second-order Perceptron algorithm is able to exploit certain geometrical prop-
erties of the data which are missed by the first-order algorithm. In particular, our
bounds for the second-order algorithm depend on the distribution of the eigenvalues
of the correlation matrix for the observed data sequence, as opposed to the bound
for the first-order algorithm, relying only on trace information. A typical situation
where the second-order bound is substantially smaller than the first-order bound is
when the data lie on a flat ellipsoid, so that the eigenvalues of the correlation ma-
trix have sharply different magnitudes, whereas the trace is dominated by the largest
one.

In its basic form, the second-order Perceptron algorithm is parameterized by a
constant a > 0, which rules the extent to which the algorithm adapts to the “warped-
ness” of the data. In the limit as a goes to infinity our algorithm becomes the first-
order Perceptron algorithm and, in that limit, the second-order bound reduces to the
first-order one. The value of a affects performance in a significant way. The best
choice of a depends on information about the learning task that is typically not avail-
able ahead of time. We develop two variants of our algorithm and prove corresponding
mistake bounds. The first variant is an adaptive parameter version, while the second
variant eliminates parameter a and replaces standard matrix inversion with pseudo-
inversion. Again, the bounds we prove are able to capture the spectral properties of
the data.

In the next section, we take the classical Perceptron algorithm as a starting point
for defining and motivating our second-order extension. Our description steps through
an intermediate algorithm, called the whitened Perceptron algorithm, which serves as
an illustration of the kind of spectral behavior we mean. The section is concluded
with a precise definition of the learning model and with a description of the basic
notation used throughout the paper.

2. Perceptron and whitened Perceptron. The classical Perceptron algo-
rithm processes a stream of examples (xt, yt) one at a time in trials. In trial t the
algorithm receives an instance vector xt ∈ R

n and predicts the value of the un-
known label yt ∈ {−1,+1} associated with xt. The algorithm keeps a weight vector
wt ∈ R

n representing its internal state, and its prediction at time t is given by2

1Several kernel-based linear-threshold algorithms have been proposed and analyzed in recent
years, including relaxation methods [14], ROMMA [27], Alma [17], and variants thereof. All these
on-line algorithms are Perceptron-like, and their mistake bounds coincide with the one achieved by
the standard Perceptron algorithm.

2Here and throughout, superscript � denotes transposition. Also, sgn denotes the signum func-
tion sgn(z) = 1 if z ≥ 0 and sgn(z) = −1 otherwise (we conventionally give a positive sign to
zero).
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ŷt = sgn(w�
t xt) ∈ {−1, 1}. We say that the algorithm has made a mistake at trial t

if the prediction ŷt and the label yt disagree. In such a case the algorithm updates its
internal state according to the simple additive rule wt+1 = wt +yt xt, i.e., by moving
the old weight vector along the direction of the instance xt on which the algorithm
turned out to be wrong (with the “right” orientation determined by yt = −ŷt). If
ŷt = yt, no weight update is made (thus the number of mistakes is always equal to
the number of weight updates).

A sequence of examples is linearly separable if the instance vectors xt are consis-
tently labeled according to whether they lie on the positive (yt = +1) or the negative
(yt = −1) side of an unknown target hyperplane with normal vector u ∈ R

n and
passing through the origin. The well-known Perceptron convergence theorem [7, 32]
states that the Perceptron algorithm is guaranteed to make at most (R/γ)2 mistakes
on any number t of examples in a linearly separable sequence, where

R = max
1≤s≤t

‖xs‖,

γ = min
1≤s≤t

∣∣u�xt

∣∣.
This implies that cycling through any sequence of linearly separable examples will
eventually lead the Perceptron algorithm to compute a weight vector w ∈ R

n classi-
fying all examples correctly, i.e., such that yt = sgn(w�xt) for all t in the sequence.
The convergence speed is thus critically influenced by the degree of linear separability
of the examples, as expressed by the ratio (R/γ)2. Hence, those vectors xt which have
both a small projection component over u (i.e., they are “almost” orthogonal to u)
and have a large norm ‖xt‖ are the hardest ones for the Perceptron algorithm. The
situation is illustrated in Figure 2.1. Consider the case when the algorithm observes
instance vectors xt lying in the dotted circles on opposite sides of that figure. Such
vectors have small components along the direction of u; hence they are intuitively
irrelevant to the target vector. Still, such xt’s might significantly mislead the Percep-
tron algorithm (thereby slowing down its convergence). Trial t depicted in Figure 2.1
is a mistaken trial for the algorithm, since sgn(w�

t xt) �= sgn(u�xt) = yt = −1.
Now, the new weight vector wt+1 computed by the algorithm has a larger projection3

onto u than the old vector wt. But the algorithm’s prediction is based only upon the
direction of its current weight vector. Hence the step wt → wt+1 does not seem to
make satisfactory progress toward u.

Let us now turn to an algorithm which is related to both the first-order and
the second-order Perceptron algorithm (described in section 3). We call this algo-
rithm the whitened Perceptron algorithm. Strictly speaking, this is not an incremen-
tal algorithm. In fact, it assumes that all the instance vectors x1,x2, . . . ,xT ∈ R

n

are preliminarily available, and only the labels y1, y2, . . . , yT are hidden. For the
sake of simplicity, assume that these vectors span R

n. Therefore T ≥ n, the cor-
relation matrix M =

∑T
t=1 xt x�

t is full-rank, and M−1 exists. Also, since M is
positive definite, M−1/2 exists as well (see, e.g., [31, Chap. 3]). The whitened Per-
ceptron algorithm is simply the standard Perceptron algorithm run on the trans-
formed (whitened) sequence (M−1/2x1, y1), (M

−1/2x2, y2), . . . , (M
−1/2xT , yT ). The

transformation M−1/2 is called the whitening transform (see, e.g., [14]) and has the

3In its simplest form, the Perceptron convergence theorem exploits the measure of progress u�wt

and is based on the fact that under linear separability assumptions this measure steadily increases
through mistaken trials.
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Fig. 2.1. Behavior of the Perceptron algorithm on extreme (though linearly separable) cases.
Here u denotes the hidden target vector, wt is the weight vector maintained by the algorithm at
the beginning of trial t, and xt is the instance vector observed in that trial. We are assuming that
all instances have bounded (Euclidean) length R and that the examples are linearly separable with
margin γ > 0 (so that no vector in the sequence of examples can lie within the two dotted lines
running parallel to the decision boundary of u). Since the angle between u and xt is (slightly)
larger than 90 degrees, the label yt is assigned the value −1. On the other hand, w�

t xt > 0 holds;
hence the algorithm makes a mistake. Now, xt lies exactly on one of the two dotted lines and
has maximal length R, but it has also a small projection along the direction of u, meaning that
the direction marked by xt is (almost) irrelevant to u. However, the simple additive rule of the
Perceptron algorithm makes the new weight vector wt+1 farther from u than the old one.

effect of reducing the correlation matrix of the transformed instances to the identity
matrix In. In fact,

T∑
t=1

(
M−1/2xt

)(
M−1/2xt

)�
=

T∑
t=1

M−1/2xt x�
t M

−1/2

= M−1/2M M−1/2

= In.

Again for the sake of simplicity, suppose that the original sequence of examples is
linearly separable: γ = mint yt u�xt > 0 for some unit norm vector u. Then the
whitened sequence is also linearly separable. In fact, hyperplane z = M1/2u separates
the whitened sequence with margin γ

/∥∥M1/2u
∥∥. By the aforementioned convergence

theorem, the number of mistakes made by the Perceptron algorithm on the whitened
sequence is thus at most

1

γ2

(
max

t

∥∥∥M−1/2xt

∥∥∥2
)∥∥∥M1/2u

∥∥∥2

=
1

γ2
max

t

(
x�
t M

−1xt

) (
u�Mu

)
.(2.1)

To appreciate the potential advantage of whitening the data, note that when the
instance vectors x1, . . . ,xT are very correlated the quadratic form x�

t M
−1xt tends
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u
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γ

pos. (+1) example
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Fig. 2.2. Scattering of data which the whitened (and the second-order) Perceptron algorithm
can take advantage of. Here all instance vectors lie on a flat ellipsoid enclosed in a ball of radius R.
The examples are linearly separable with margin γ > 0 via a hyperplane whose normal vector u is
aligned with the small axis of the ellipse. Thus for any instance vector xt the projection |u�xt|
onto u is “small” (though not smaller than γ). This does not make any difference for the standard
Perceptron algorithm, whose worst-case behavior is essentially ruled by the norm of the instances
lying in the two dotted circles (recall Figure 2.1).

to be quite small (the expression maxt

(
x�
t M

−1xt

)
might actually be regarded as

a measure of correlation of the instance vectors). Also, if the instances look like
those displayed in Figure 2.2, where the separating hyperplane vector u is strongly
correlated with a nondominant eigenvector of M (i.e., if all instances have a small
projected component onto u), then the bound in the right-hand side of (2.1) can be
significantly smaller than the corresponding mistake bound maxt ‖xt‖2/γ2 = R2/γ2

for the classical (nonwhitened) Perceptron algorithm.
For the sake of clarity, consider the degenerate case when all data points in Fig-

ure 2.2 are evenly spread over the two parallel lines at margin γ (so that the ellipse
sketched in that figure is maximally squashed along the direction of u). It is not hard
to argue that this symmetric scattering of data leads to the following eigenstructure
of matrix M : Let λmin and λmax be the minimal and the maximal eigenvalues of M ,
respectively. We have that the first eigenvector of M (the one associated with λmin)
is aligned with u, while the second eigenvector (associated with λmax) is orthogonal
to u (i.e., it is parallel to the two lines mentioned above). Let us denote by u⊥ a unit
norm vector orthogonal to u. Now, since u has unit norm, we have

λmin = u�Mu = u�

(
T∑

t=1

xt x�
t

)
u =

T∑
t=1

(u�xt)
2 = γ2 T.(2.2)

Also, since λmin +λmax =
∑T

t=1 ‖xt‖2 (see, e.g., section 3.1) and since, for all x ∈ R
n,
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(u�x)2 + ((u⊥)�x)2 = ‖x‖2, for each t = 1, . . . , T we can write

xtM
−1xt =

(u�xt)
2

λmin
+

((u⊥)�xt)
2

λmax
=

γ2

γ2 T
+

‖xt‖2 − γ2∑T
t=1 ‖xt‖2 − γ2 T

,(2.3)

where in the first step we used the singular value decomposition (SVD) of M (see Ap-
pendix D). Hence, combining (2.2) and (2.3) as in (2.1) and simplifying, we conclude
that in the extreme case we sketched, the number of mistakes made by the whitened
Perceptron algorithm can be bounded by

1

γ2
max

t

(
x�
t M

−1xt

) (
u�Mu

)
= 1 +

R2 T − γ2 T∑T
t=1 ‖xt‖2 − γ2 T

.

Note that this bound approaches 2 as the norm of the instance vectors xt approaches R
(which is just the hardest case for the standard Perceptron algorithm). Thus in this
case, unlike the standard Perceptron bound R2/γ2, the whitened Perceptron bound
tends to be a constant, independent of both the margin γ and the radius R of the ball
containing the data.

Learning model and notation. In the last part of this section we precisely
describe the learning model and introduce our notation (some of this notation has
been used earlier). The formal model we consider is the well-known mistake bound
model of incremental learning, introduced by Littlestone [28] (see also [2]) and further
investigated by many authors (see, e.g., [4, 10, 11, 20, 21, 25, 26, 29, 30, 39] and the
references therein).

In incremental or sequential models, learning proceeds in trials. In each trial
t = 1, 2, . . . , the algorithm observes an instance vector xt ∈ R

n (all vectors here
are understood to be column vectors) and then guesses a binary label ŷt ∈ {−1, 1}.
Before seeing the next vector xt+1, the true label yt ∈ {−1, 1} associated with xt

is revealed and the algorithm knows whether its guess ŷt for yt was correct or not.
In the latter case we say that the algorithm has made a mistake, and we call t a
mistaken trial. Each pair (xt, yt) we call an example, and a sequence of examples is
any sequence S = ((x1, y1), (x2, y2), . . . , (xT , yT )). No assumptions are made on the
mechanism generating the sequence of examples. Similarly to competitive analyses of
on-line algorithms [8], the goal of the learning algorithm is to minimize the amount by
which its total number of mistakes on an arbitrary sequence S exceeds some measure
of the performance of a fixed classifier (in a given comparison class) on the same
sequence S.

The comparison class we consider here is the set of linear-threshold classifiers
parametrized by the unit norm vectors {u ∈ R

n : ‖u‖ = 1}. Thus we speak of the
linear-threshold classifier u to mean the classifier h(x) = sgn(u�x). For technical
reasons, the number of mistakes of the learning algorithm will be compared to the cu-
mulative hinge loss (see, e.g., [19]) of the best linear-threshold classifier in the compar-
ison class. For any γ > 0, the hinge loss of the linear-threshold classifier u on example
(x, y) at margin γ is Dγ(u; (x, y)) = max{0, γ−yu�x}. Also, for a given sequence of

examples S = ((x1, y1), (x2, y2), . . . , (xT , yT )), let Dγ(u;S) =
∑T

t=1 Dγ(u; (xt, yt)).
Note that Dγ(u;S)/γ is a strict upper bound on the number of mistakes made by u
on the same sequence S. Moreover, if u linearly separates S with margin γ, i.e., if
yt u�xt ≥ γ for t = 1, . . . , T , then Dγ(u;S) = 0.

We will prove bounds on the number of mistakes having the general form

number of mistakes on S ≤ inf
γ>0

inf
u

(
Dγ(u;S)

γ
+

spectral(u;S)

γ

)
,
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where S is any sequence of examples and spectral(u;S) measures certain spectral
properties arising from the interaction between u and S. The mistake bound shown
above reveals how the algorithm is able to optimally trade off between the terms
Dγ(u;S) and spectral(u;S) using a single pass over an arbitrary data sequence.
This aggressive adaptation can be successfully exploited in settings different from the
mistake bound model. In fact, as mentioned in the conclusions, the linear-threshold
classifiers generated by the second-order Perceptron algorithm can be easily shown to
have a probability of mistake (risk) in the statistical model of pattern classification
(see, e.g., [13]) which is tightly related to the algorithm’s mistake bound. These
risk bounds are actually among the best achievable by any algorithm for learning
linear-threshold classifiers.

The rest of the paper is organized as follows. The next section describes and
analyzes the basic form of the second-order Perceptron algorithm and also shows how
to formulate the algorithm in dual form, thereby allowing the use of kernel functions.
In section 4 we analyze two variants of the basic algorithm: the first variant has
an adaptive parameter, and the second variant computes the pseudoinverse of the
correlation matrix instead of the standard inverse. Some toy experiments are reported
in section 5. Section 6 contains conclusions, final remarks, and open problems.

3. Second-order Perceptron, basic form. The second-order Perceptron al-
gorithm might be viewed as an incremental variant of the whitened Perceptron al-
gorithm; this means that the instances in the data sequence are not assumed to be
known beforehand. Besides, the second-order Perceptron algorithm is sparse; that is,
the whitening transform applied to each new incoming instance is based only on a
possibly very small subset of the instances observed so far.

In its basic form, the second-order Perceptron algorithm (described in Figure 3.1)
takes an input parameter a > 0. To compute its prediction in trial t the algorithm
uses an n-row matrix Xk−1 and an n-dimensional weight vector vk−1, where subscript
k − 1 indicates the number of times matrix X and vector v have been updated in
the first t − 1 trials. Initially, the algorithm sets X0 = ∅ (the empty matrix) and
v0 = 0. Upon receiving the tth instance xt ∈ R

n, the algorithm builds the augmented
matrix St = [Xk−1 xt ] (where xt is intended to be the last column of St) and

predicts the label yt of xt with ŷt = sgn

(
v�
k−1

(
aIn + St S

�
t

)−1
xt

)
, with In being

the n×n identity matrix (the addition of In guarantees that the above inverse always
exists). If ŷt �= yt, then a mistake occurs and the algorithm updates4 both vk−1 and
Xk−1. Vector vk−1 is updated using the Perceptron rule vk = vk−1 + yt xt, whereas
matrix Xk−1 is updated using Xk = St = [Xk−1 xt ]. Note that this update implies
XkX

�
k = Xk−1X

�
k−1 +xt x�

t . The new matrix Xk and the new vector vk will be used
in the next prediction. If ŷt = yt, no update takes place, and hence the algorithm is
mistake driven [28]. Also, just after an update, matrix Xk has as many columns as the
number of mistakes made by the algorithm so far. Note that, unlike the Perceptron
algorithm, here wt does depend on xt (through St). Therefore the second-order
Perceptron algorithm, as described in Figure 3.1, is not a linear-threshold predictor.

Our algorithm might be viewed as an adaptation to on-line binary classification
of the ridge regression [23] method. Indeed, our analysis is inspired by the analysis of
a variant of ridge regression recently introduced by Vovk [40] and further studied by
Azoury and Warmuth [5] and Forster and Warmuth [15]. This variant is an instance of
Vovk’s general aggregating algorithm and is called the “forward algorithm” in [5]. Both

4In the degenerate case when xt = 0 no update is performed.
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Parameter: a > 0.
Initialization: X0 = ∅; v0 = 0; k = 1.
Repeat for t = 1, 2, . . . :

1. get instance xt ∈ R
n;

2. set St = [Xk−1 xt ];
3. predict ŷt = sgn(w�

t xt) ∈ {−1,+1},
where wt =

(
aIn + St S

�
t

)−1
vk−1;

4. get label yt ∈ {−1,+1};
5. if ŷt �= yt, then:

vk = vk−1 + yt xt,

Xk = St,

k ← k + 1.

Fig. 3.1. The second-order Perceptron algorithm with parameter a > 0.

our algorithm and the forward algorithm predict with a weight vector wt given by the
product of the inverse correlation matrix from past trials and a linear combination of
past instance vectors. In both cases the current instance xt is incorporated into the
current correlation matrix before prediction. However, unlike the forward algorithm,
we only keep track of past trials where the algorithm made a mistake. To complete this
qualitative analogy, we note that the analysis of our algorithm uses tools developed
in [5] for the forward algorithm.

The reader might wonder whether this nonlinear dependence on the current in-
stance is somehow necessary. As a matter of fact, if in Figure 3.1 we predicted
using Xk−1 instead of the augmented matrix St, then the resulting algorithm would
be a linear-threshold algorithm.5 It is easy to show that the margin value yt w�

t xt

achieved by the latter algorithm is always equal to the margin value of the algorithm
in Figure 3.1 multiplied by a positive quantity depending on all instances observed

5In this case, the weight vector wt computed when the algorithm is run on a sequence of examples
((x1, y1), . . . , (xt−1, yt−1)) can be defined by

wt = argmin
v

⎛⎝ ∑
s∈Mt−1

(
v�xs − ys

)2
+ a ‖v‖2

⎞⎠ ,

where Mt−1 is the set of all trials s ≤ t−1 such that ys w�
s xs < 0, and w0 = 0. This way of writing

the update rule shows that this version of the second-order Perceptron algorithm can also be viewed
as a sparse variant of an on-line ridge regression algorithm, whose prediction rule is ŷt = sgn(w�

t xt),
where the weight vector wt is just

wt = argmin
v

(
t−1∑
s=1

(
v�xs − ys

)2
+ a ‖v‖2

)
.

This is actually the approach to binary classification taken in [33], where it is called the regularized
least-squares classification (RLSC) method. The reader might also want to check [37] for an approach
having a similar flavor. This comparison also stresses the role played by the sparsity: First, our
algorithm is more efficient than RLSC, as we have only to store a (potentially small) submatrix
of the data correlation matrix—the algorithm becomes significantly more efficient on the “easy”
sequences where it makes very few mistakes. Second, the mistake-driven property, which causes
sparsity, is a key feature when deriving spectral bounds on the number of mistakes that hold for
arbitrary data sequences: no such bounds are currently known for RLSC.
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so far. Therefore, unlike the linear regression framework considered in [5, 40], for
binary classification the inclusion of the current instance makes no difference: run-
ning the two algorithms on the same sequence of examples would produce the same
sequence of predictions. This is true even for the second-order Perceptron algorithm
with pseudoinverse described in Figure 4.2 (section 4.2).

Hence, the algorithms in Figures 3.1 and 4.2 can be equivalently viewed as gener-
ators of linear-threshold classifiers. The reason we did not formulate our algorithms
directly in this way is threefold. First, the above equivalence does not hold in gen-
eral when parameter a changes with time, as in Figure 4.1 (section 4.1). Thus, in
order to maintain a uniform style of exposition, we preferred to keep the difference
between Figures 3.1, 4.2, and 4.1 as little as possible. Second, including the current
instance for prediction seems to be naturally suggested by the way we analyzed the
algorithms. Third, in scenarios where the margin plays a crucial role, such as the
information filtering problems studied in [9], including the current instance in the
margin computation seems to give a slight improvement in performance.

3.1. Analysis. We now claim the theoretical properties of our algorithm. The
following theorem is proved in Appendix A.

Theorem 3.1. The number m of mistakes made by the second-order Perceptron
algorithm of Figure 3.1, run on any finite sequence S = ((x1, y1), (x2, y2), . . . ) of
examples, satisfies

m ≤ inf
γ>0

min
‖u‖=1

⎛⎝Dγ(u;S)

γ
+

1

γ

√√√√(a + u�Xm X�
mu)

n∑
i=1

ln (1 + λi/a)

⎞⎠ ,

where λ1, . . . , λn are the eigenvalues of Xm X�
m.

Some remarks are in order.
First, observe that the quantity u�Xm X�

mu in the above bound always lies be-
tween mini λi and maxi λi. In particular, u�Xm X�

mu = λi when u is aligned with
the eigenvector associated with λi. This fact entails a trade-off between the hinge loss
term and the square-root term in the bound.

Second, the larger a gets, the more similar the “warping” matrix (aIn +St S
�
t )−1

becomes to the diagonal matrix a−1In. In fact, as the reader can see from Figure 3.1,
in the limit as a → ∞ the second-order Perceptron algorithm becomes the classical
Perceptron algorithm, and the bound in Theorem 3.1 takes the form

m ≤ inf
γ>0

min
‖u‖=1

⎛⎝Dγ(u;S)

γ
+

1

γ

√√√√ n∑
i=1

λi

⎞⎠ .

Now, since the trace of a matrix equals the sum of its eigenvalues and the nonzero
eigenvalues of Xm X�

m coincide with the nonzero eigenvalues of X�
m Xm, we can im-

mediately see that
∑n

i=1 λi = trace(X�
m Xm) =

∑
t∈M ‖xt‖2 ≤ m

(
maxt∈M ‖xt‖2

)
,

where M ⊆ {1, 2, . . . } is the set of indices of mistaken trials. Thus, setting R2 =
maxt∈M ‖xt‖2, we can solve the resulting bound for m. This gives

m ≤ inf
γ>0

min
‖u‖=1

(
R2

2 γ2
+

Dγ(u;S)

γ
+

R

γ

√
Dγ(u;S)

γ
+

R2

4 γ2

)
,

which is the Perceptron bound in the general nonseparable case [18]. This shows
that, in a certain sense, the second-order Perceptron algorithm strictly generalizes the
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classical Perceptron algorithm by introducing an additional parameter a. In general,
the larger a becomes, the more the algorithm in Figure 3.1 resembles the Perceptron
algorithm.

Third, in the linearly separable case the mistake bound for the Perceptron algo-
rithm is (R/γ)2. This bound is determined by the aforementioned trace inequality∑n

i=1 λi ≤ R2 m. The second-order algorithm, on the other hand, has the bound√
(a + u�Xm X�

mu)
∑n

i=1 ln (1 + λi/a) / γ, which is determined by the core spectral
quantity

(
a + u�Xm X�

mu
)∑n

i=1 ln (1 + λi/a). A quick comparison of the two bounds
suggests that data sequences that are linearly separable by hyperplanes whose nor-
mal vectors are nearly aligned with eigenvectors having small eigenvalues should be
advantageous for the second-order Perceptron algorithm (see Figure 2.2).

A more precise quantitative comparison between the two bounds might go as
follows. We first note that in order to carry out this comparison, we need to somehow
renounce the second-order dependence on the eigenvalues λi. Introduce the notation
λu = u�Xm X�

mu. We have

(a + λu)

n∑
i=1

ln (1 + λi/a) ≤ max
λ1,...,λn :

∑n
i=1 λi≤R2m

(a + λu)

n∑
i=1

ln (1 + λi/a)

= (a + λu) n ln

(
1 +

R2m

na

)
,

since the maximum is achieved when all λj are equal to R2m/n. Now, finding condi-
tions on the data for which the second-order algorithm is advantageous is reduced to
finding conditions on a, λu, and r = R2m/n such that

(a + λu) ln
(
1 +

r

a

)
≤ r(3.1)

is satisfied. The next lemma, proved in Appendix B through a simple derivative
argument, shows that if λu < r/2, then a = rλu/(r − 2λu) makes (3.1) a strict
inequality. With this setting of a, the smaller λu is when compared to r/2, the
smaller the left-hand side of (3.1) is when compared to the right-hand side, that is,
the smaller the second-order bound is when compared to the first-order one. Thus,
as we expected, if the data tend to be “flat” and u has irrelevant components along
the direction of large instance vectors (as in Figure 2.2), then it is convenient to pick
a small value of a. In particular, when λu is “small” the above setting of a becomes
a � λu (independent of r). On the other hand, the lemma also shows that whenever
λu ≥ r/2, then (3.1) is satisfied (as an equality) only for a → ∞. Thus when λu is
“not small” the best thing to do is to resort to the first-order algorithm.

Lemma 3.2. Let f(a, λ, r) = (a + λ) ln
(
1 + r

a

)
, where a, λ, r > 0. Then the

following hold:
1. lima→∞ f(a, λ, r) = r; moreover, if λ and r are such that λ ≥ r/2, then

f(a, λ, r) ≥ r for all a > 0.
2. If λ and r are such that λ < r/2, then setting a = a(λ, r) = rλ

r−2λ gets
f(a, λ, r) < r and lim2λ/r→0 f(a, λ, r)/r = 0.

We finally observe that the running time per trial of the second-order algorithm
is Θ(n2), since by the well-known Sherman–Morrison formula (see, e.g., [24, Chap. 0])
if x is a vector and A is a positive definite matrix, then so is B = A + xx� and

B−1 = A−1 −
(
A−1x

) (
A−1x

)�
1 + x�A−1x

.(3.2)
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This formula allows us to perform matrix inversion incrementally. In particular, since
the n×n positive definite matrix aIn+St S

�
t equals aIn+Xk−1 X

�
k−1+xtx

�
t , one can

compute in time Θ(n2) the n-dimensional vector
(
aIn + Xk−1 X

�
k−1

)−1
xt and use it

along with the Sherman–Morrison formula to obtain
(
aIn + St S

�
t

)−1
, again in time

Θ(n2).

3.2. The algorithm in dual variables and the use of kernel functions.
In this section we show that the second-order Perceptron algorithm can be equiva-
lently formulated in dual variables. This formulation allows us to run the algorithm
efficiently in any given reproducing kernel Hilbert space. As a consequence, we are
able to derive a kernel version of Theorem 3.1 where the mistake bound is expressed
in terms of the eigenvalues of the kernel Gram matrix.

We recall that a kernel function (see, e.g., [12, 36, 38]) is a nonnegative function
K : R

n × R
n → R satisfying

m∑
i=1

m∑
j=1

αi αj K(xi,xj) ≥ 0

for all α1, . . . , αm ∈ R, x1, . . . ,xm ∈ R
n, and m ∈ N (such functions are also called

positive definite). Given a kernel K, we can define the linear space

VK =

{
f(·) =

m∑
i=1

αi K(xi, ·) : αi ∈ R, xi ∈ R
n, i = 1, . . . ,m, m ∈ N

}
,

with norm defined by

‖f‖K =

√√√√ m∑
i=1

m∑
j=1

αi αj K(xi,xj) .

If this space is completed by adding all limit points of sequences f1, f2, . . . ∈ VK that
are convergent in the norm ‖f‖K , the resulting space, denoted by HK , is called the
reproducing kernel Hilbert space (induced by the kernel K). Classical examples of
kernel functions include the so-called polynomial kernel K(x,y) = (1+x�y)d, where
d is a positive integer, and the Gaussian kernel K(x,y) = exp(−‖x−y‖2/2σ2), σ > 0.

In practice, any algorithm depending on the instance vectors xi only through inner
products x�

i xj can be turned into a more general kernel version just by replacing the
standard inner products x�

i xj throughout by the kernel inner products K(xi,xj).
The following theorem is a slight modification of the dual formulation of the ridge

regression algorithm derived in [35].
Theorem 3.3. With the notation of Figure 3.1, let ỹt be the k-component vector

whose first k−1 components are the labels yi where the algorithm has made a mistake
up to trial t− 1 and whose last component is 0. Then, for all xt ∈ R

n, we have

v�
k−1

(
aIn + St S

�
t

)−1
xt = ỹ�

t (aIk + Gt)
−1 (

S�
t xt

)
,

where Gt = S�
t St is a k × k (Gram) matrix and Ik is the k-dimensional identity

matrix.
Proof. Recalling Figure 3.1, we have vk−1 = St ỹt. This implies

v�
k−1

(
aIn + St S

�
t

)−1
= ỹ�

t S
�
t

(
aIn + St S

�
t

)−1
.
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Thus we need only prove that

S�
t

(
aIn + St S

�
t

)−1
= (aIk + Gt)

−1
S�
t

holds. But this follows from, e.g., part (d) of Exercise 17 in [6, Chap. 1].
From a computational standpoint, we remark that the update rule of this algo-

rithm can exploit a known adjustment formula for partitioned matrices (see, e.g., [24,
Chap. 0]). This formula relates the inverse of a matrix to the inverses of some of its
submatrices. In our simple case, given a (k − 1) × (k − 1) positive definite matrix A,
a (k − 1)-dimensional column vector b, and a scalar c, we have[

A b

b� c

]−1

=

[
A−1 + vv�/d −v/d

−v�/d 1/d

]
,

where v = A−1b and6 d = c − b�v can be computed with Θ(k2) multiplications.
Using the notation of Theorem 3.3 it is easy to see that

aIk + Gt =

[
aIk−1 + X�

k−1Xk−1 X�
k−1xt

x�
t Xk−1 a + x�

t xt

]
.

Thus, using the above formula for the inverse of partitioned matrices, it follows
that the k-dimensional matrix (aIk + Gt)

−1
can be computed incrementally from

the (k − 1)-dimensional matrix
(
aIk−1 + X�

k−1Xk−1

)−1
with only Θ(k2) extra dot

products. Also, sweeping through a sequence of T examples needs only Θ(m2 T ) dot
products, where m is upper bounded as in Theorem 3.1.

The following result is a kernel version of Theorem 3.1. The hinge loss of any
function f ∈ HK is defined by Dγ(f ; (x, y)) = max{0, γ − y f(x)}.

Corollary 3.4. The number m of mistakes made by the dual second-order Per-
ceptron algorithm with kernel K, run on any finite sequence S = ((x1, y1), (x2, y2), . . . )
of examples, satisfies

m ≤ inf
γ>0

min
‖f‖K=1

⎛⎝Dγ(f ;S)

γ
+

1

γ

√√√√(
a +

∑
t∈M

f(xt)2

)∑
i

ln (1 + λi/a)

⎞⎠ .

The numbers λi are the nonzero eigenvalues of the kernel Gram matrix with entries
K(xi,xj), where i, j ∈ M and M is the set of indices of mistaken trials.

Considerations similar to those made after the statement of Theorem 3.1 apply
here as well. Note that the number of nonzero eigenvalues λi of the kernel Gram
matrix is, in general, equal to m, since the very nature of kernel functions makes
the dimension of the space HK very large, possibly infinite (hence the kernel Gram
matrix is likely to be full-rank). Note also that if a linear kernel K(xi,xj) = x�

i xj is
used in Corollary 3.4, then the mistake bound of Theorem 3.1 is recovered exactly. To
see this observe that λu = u�Xm X�

mu =
∑

t∈M(u�xt)
2 and also that the nonzero

eigenvalues of the matrix Xm X�
m coincide with the nonzero eigenvalues of the Gram

matrix X�
mXm.

6The quantity d is called the Schur complement of the augmented matrix [
A b

b� c
] with respect to

matrix A. From the positive definiteness of both A and [
A b

b� c
] it follows that d > 0 (see, e.g., [24,

Chap. 7]).
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4. Getting rid of parameter a. A major drawback of the algorithm described
in Figure 3.1 is that its input parameter a is fixed ahead of time. It turns out that in
any practical application the value of this parameter significantly affects performance.
For instance, a bad choice of a might make the second-order Perceptron algorithm
similar to the first-order one, even in cases when the former should perform far better.

In this section we analyze two variants of the basic algorithm: The first variant
(section 4.1) is an adaptive parameter version of the algorithm in Figure 3.1; the
second variant (section 4.2) eliminates the need for the trade-off parameter a by
replacing the “warping” matrix (aIn + St S

�
t )−1 with the matrix (St S

�
t )+, i.e., the

pseudoinverse of St S
�
t .

4.1. Second-order Perceptron with adaptive parameter. In this section
we refine the arguments of section 3.1 by motivating and analyzing an adaptive pa-
rameter version of the algorithm in Figure 3.1. Ideally, we would like the resulting
algorithm to be able to learn on the fly the “best” a for the given data sequence, such
as the value of a that minimizes the bound in Theorem 3.1. The optimal a clearly
depends on unknown quantities, like the spectral structure of data and the unknown
target u. This ideal choice of a would be able to automatically turn the second-order
algorithm into a first-order one when the actual scattering of data has, say, spherical
symmetry. This is a typical eigenstructure of data which a second-order algorithm
cannot take advantage of.

To make our argument, we first note that the value of a in Theorem 3.1 affects
the bound only through the quantity

(a + λu)

n∑
i=1

ln (1 + λi/a) .(4.1)

In turn, both λu and the λi’s depend only on the examples where the algorithm has
made a mistake. Therefore it seems reasonable to let a change only in mistaken trials
(this keeps the algorithm mistake driven).

Our second-order algorithm with adaptive parameter is described in Figure 4.1.
The algorithm is the same as the one in Figure 3.1, except that we now feed the
algorithm with an increasing sequence of parameter values {ak}k=1,2,..., indexed by
the current number of mistakes k. The algorithm is analyzed in Theorem 4.1 below.
From the proof of that theorem (given in Appendix C) the reader can see that any
strictly increasing sequence {ak} results in a bound on the number of mistakes. In
Theorem 4.1 we actually picked a sequence which grows linearly with k. This choice
seems best according to the following simple upper bounding argument. Consider
again (4.1). As we noted in section 3.1,

(4.1) ≤ (a + λu)n ln

(
1 +

R2m

na

)
,(4.2)

where R = maxt∈M ‖xt‖. Now, from the Cauchy–Schwarz inequality one gets λu =∑
t∈M(u�xt)

2 ≤ R2m. On the other hand, if the data sequence is linearly separable

with margin γ > 0, then λu =
∑

t∈M(u�xt)
2 ≥ γ2m. Hence, in many interesting

cases, λu is linear in m. A further glance at (4.2) allows us to conclude that, viewed as
a function of m, the right-hand side of (4.2) cannot grow less than linearly. Moreover,
this minimal growth speed is achieved when a is a linear7 function of m.

7The reader will note that if a grows faster than linearly, then (4.2) is still linear in m. However,
the resulting (multiplicative) constants in (4.2) would be larger.
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Parameter sequence: {ak}k=1,2,..., ak+1 > ak > 0, k = 1, 2, . . . .
Initialization: X0 = ∅; v0 = 0; k = 1.
Repeat for t = 1, 2, . . . :

1. get instance xt ∈ R
n;

2. set St = [Xk−1 xt ];
3. predict ŷt = sgn(w�

t xt) ∈ {−1,+1},
where wt =

(
akIn + St S

�
t

)−1
vk−1;

4. get label yt ∈ {−1,+1};
5. if ŷt �= yt, then

vk = vk−1 + yt xt,

Xk = St,

k ← k + 1.

Fig. 4.1. The second-order Perceptron algorithm with increasing parameter sequence {ak}k=1,2,....

It is important to point out that this qualitative argument does not depend on
the number of nonzero eigenvalues of matrix Xm X�

m. For example, our conclusions
would not change even if all instances x1,x2, . . . lived in a small subspace of R

n or,
alternatively, if we mapped the same instances into a high-dimensional feature space
via a kernel function (see also the discussion after Corollary 3.4).

Theorem 4.1 below uses8 ak = cR2k, where c is a small positive constant. This
tuning captures the “right” order of growth of ak, up to a multiplicative constant c,
whose best choice depends again on unknown quantities.

Theorem 4.1. If the second-order Perceptron algorithm of Figure 4.1 is run
with parameter sequence ak = cR2k, where c > 0, on any finite sequence S =
((x1, y1), (x2, y2), . . . ) of examples such that ‖xt‖ ≤ R, then the total number m
of mistakes satisfies

m ≤ inf
γ>0

min
‖u‖=1

⎡⎣Dγ(u;S)

γ
+

1

γ

√√√√(am + λu)

(
B(c,m) +

n∑
i=1

ln

(
1 +

λi

am

))⎤⎦ ,(4.3)

where λ1, . . . , λn are the eigenvalues of Xm X�
m, am = cR2m, and

B(c,m) =
1

c
ln

m + 1/c

1 + 1/c
.

To see why the algorithm with adaptive parameter might be advantageous over
the one with fixed parameter, recall the tuning argument around (3.1). There, it was
shown that the second-order algorithm is able to exploit the spectral properties of
data when λu is “small.” In such a case, a good tuning of a is a = rλu/(r − 2λu),
which, for small values of λu, becomes a � λu. Now, for the sake of concreteness, let
us focus on the linearly separable case. We have already observed that in this case
λu = c′R2m, where γ2/R2 ≤ c′ ≤ 1 and γ ∈ (0, R] is the minimal margin on the
data. We emphasize that the tuning a � λu = c′ R2m matches the one mentioned
in Theorem 4.1 up to a scaling factor. In particular, after comparing the bounds in

8The presence of the scaling factor R2 simplifies the analysis in Appendix C.
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Theorems 3.1 and 4.1, we see that Theorem 4.1 replaces a with am = cR2m, i.e., with
a function having a linear dependence on m. The price we pay for this substitution is
a further additive term B(c,m) which has a mild (logarithmic) dependence on m. The
resulting bound has an inconvenient implicit form. An upper bound on an explicit
solution can be clearly computed, but the calculations get overly complicated and do
not add any new insights into the heart of the matter. Therefore we feel justified in
omitting any further analytical detail.

As in section 3.2, one can derive a dual formulation of the algorithm in Figure 4.1
and prove a result similar to the one contained in Corollary 3.4.

In general, the total number of mistakes made by the algorithm conveys relevant
information about the specific dataset at hand. Using a parameter that scales with
this number allows one to partially exploit this information. Note, for instance, that
if the second-order algorithm of Figure 4.1 is making “many” mistakes (and c is not
too small), then the algorithm tends to behave as a first-order algorithm, since ak is
growing “fast.” In other words, we might view the algorithm as being able to detect
that its second-order structure is not suitable to the data it is processing, thereby
trying to turn itself into a first-order algorithm. On the other hand, if the algorithm
is making only a few mistakes, then ak tends to remain small, meaning that the
current second-order structure of the algorithm appears to be the right one for the
dataset at hand. This approach to parameter tuning is similar to the self-confident
tuning adopted in [3].

We finally note that, unlike the algorithm with fixed a, here incremental matrix
inversion looks a bit more troublesome. In fact, making a change from trial to trial
results in a matrix update which is no longer a low-rank adjustment. Therefore the
algorithm in Figure 4.1 (as well as its dual version) does not seem to have an update
rule requiring only a quadratic number of operations per trial.

4.2. Second-order Perceptron with pseudoinverse. A more radical way of
dealing with the trade-off parameter a is to set it to zero and replace the inverse
of aIn + StS

�
t with the pseudoinverse (StS

�
t )+. This is done in the algorithm of

Figure 4.2. The matrix (StS
�
t )+ does always exist and coincides with (StS

�
t )−1 in the

case when StS
�
t is nonsingular. In Appendix D we collected some relevant information

about pseudoinverses and their connection to the SVD. A classical reference in which
to learn about them is [6].

The following result is proved in Appendix E.

Theorem 4.2. If the second-order Perceptron algorithm of Figure 4.2 is run on
any finite sequence S = ((x1, y1), (x2, y2), . . . ) of examples such that ‖xt‖ ≤ R, then
the total number m of mistakes satisfies

m ≤ inf
γ>0

min
‖u‖=1

[
Dγ(u;S)

γ
+

1

γ

√
λu

(
r +

1

2
r(r + 1) ln

(
1 +

2R2

λ∗
m

r(r + 1)

))]
,

(4.4)

where r = rank(Xm X�
m) ≤ n and λ∗ is the minimum among the smallest positive

eigenvalues of the matrices Xk X
�
k , k = 1, . . . ,m, produced by the algorithm during

its run.

Inequality (4.4) depends on a lower bound on the positive eigenvalues of the cor-
relation matrices produced by the algorithm. In a sense, this dependence substitutes
the dependence on a in the bound of Theorem 3.1. In fact, adding the matrix aIn to
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Initialization: X0 = ∅; v0 = 0; k = 1.
Repeat for t = 1, 2, . . . :

1. get instance xt ∈ R
n;

2. set St = [Xk−1 xt ];
3. predict ŷt = sgn(w�

t xt) ∈ {−1,+1},
where wt =

(
St S

�
t

)+
vk−1;

4. get label yt ∈ {−1,+1};
5. if ŷt �= yt, then:

vk = vk−1 + yt xt,

Xk = St,

k ← k + 1.

Fig. 4.2. The second-order Perceptron algorithm with pseudoinverse.

the current correlation matrix of the data might be viewed as a way of setting a lower
bound on the positive eigenvalues of the resulting matrix.

As we have observed in section 4.1, when the data are linearly separable with
margin γ > 0 the quantity λu is linear in m. Thus, once we set λu = c′R2m, with
γ2/R2 ≤ c′ ≤ 1, and simplify, bound (4.4) takes the form

m ≤ c′R2

γ2

(
r +

1

2
r(r + 1) ln

(
1 +

2R2

λ∗
m

r(r + 1)

))
.(4.5)

As for Theorem 4.1, the two bounds (4.4) and (4.5) are in implicit form with respect
to m. The bounds can be made explicit at the cost of adding a few logarithmic terms.
Again, we decided not to carry out such calculations since they are not very insightful.

Comparing bounds (4.4) and (4.5) to the one in Theorem 3.1, one can see that
the second-order algorithm with pseudoinverse might be advantageous over the basic
version when the effective dimension r of the data is relatively small. Also, the bounds
(4.4) and (4.5) are nonvacuous only when r < m.

Actually, as for the algorithm in Figure 3.1, it is not hard to turn the algorithm
in Figure 4.2 into an equivalent dual form. Again, one can exploit known methods
to incrementally compute the pseudoinverse (see, e.g., the so-called Greville’s method
in [6]), reducing the computational cost per trial from cubic to quadratic.

Unfortunately, the bounds (4.4) and (4.5) are generally not useful in the presence
of kernel functions9 since the bounds have a linear10 dependence on r which cannot
be avoided in the worst case. This is due to the simple fact that each time the new
instance xt lies outside the column space of the previous matrix Xk−1 the pseudo-
inverse (St S

�
t )+ maps xt to the orthogonal space of this column space, so that the

algorithm has a degenerate margin w�
t xt = 0.

5. Simulations on a toy problem. With the purpose of empirically verifying
our theoretical results, we ran our second-order Perceptron algorithm on two sets of

9In the kernel case, r is likely to be equal to m, giving rise to a vacuous bound.
10Note that the quadratic dependence on r is essentially fictitious here since the r(r + 1) factor

occurs both at the numerator and at the denominator inside the logarithm.
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Fig. 5.1. Projection on the two most relevant coordinates of the 100-dimensional datasets used
in our simulations.

Table 5.1

Algorithm Mistakes, 1st dataset Mistakes, 2nd dataset

Perceptron 30.20 (6.24) 29.80 (8.16)
second-order Perceptron, a = 1 9.60 (2.94) 5.60 (2.80)
second-order Perceptron, a = 10 10.60 (2.58) 3.20 (1.47)
second-order Perceptron, a = 50 14.00 (4.36) 10.40 (6.05)

linearly separable data with 100 attributes. The two datasets are generated by sam-
pling a Gaussian distribution whose correlation matrix has a single dominant eigen-
value, the remaining eigenvalues having the same size (in the sample realizations, the
dominant eigenvalue is about eight times bigger than the others). In the first dataset
(leftmost plot in Figure 5.1), labels are assigned so that the separating hyperplane is
orthogonal to the eigenvector associated with the dominant eigenvalue. In the sec-
ond dataset (rightmost plot in Figure 5.1), labels are assigned so that the separating
hyperplane is orthogonal to the eigenvector associated with the first nondominant
eigenvalue in the natural ordering of the coordinates.

According to the remarks following Theorem 3.1, we expect the Perceptron algo-
rithm to perform similarly on both datasets (as the radius of the enclosing ball and
the margin do not change between datasets), whereas the second-order Perceptron
algorithm is expected to outperform the Perceptron algorithm on the second dataset.
This conjecture is supported by the results in Table 5.1. These results were obtained
by running the Perceptron algorithm and the second-order Perceptron algorithm (for
different values of parameter a) for two epochs on a training set of 9000 examples,
and then saving the final classifier generated by each algorithm after its last training
mistake. The numbers in the table are the average number of mistakes made by these
classifiers on a test set of 3000 examples, where the averages are computed over 5 ran-
dom permutations of the training set (standard deviations are shown in parentheses).
Normalizing the instances did not alter significantly Perceptron’s performance.

To offer a familiar context for the reader experienced in empirical comparisons of
learning algorithms, the predictive performance in our experiments has been evaluated
using the standard test error measure. However, we could have drawn the same
conclusions using, instead of the test error, the number of mistakes made by the
two algorithms during training. This quantity, which is the one we bound in our
theoretical results, is different from the standard training error, since in the on-line
model each new mistake is made by a different classifier. A theory accounting for the
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relationship between the fraction of mistakes in the on-line model and the test error
is developed in [9].

6. Conclusions and open problems. We have introduced a second-order Per-
ceptron algorithm, a new on-line binary classification algorithm for learning linear-
threshold functions. The algorithm is able to exploit certain spectral properties of
the data sequence, expressed as an interaction between the underlying target vector
and the eigenvalues of the correlation matrix of the data.

The second-order Perceptron algorithm retains the standard Perceptron’s key
properties of sparsity and efficient dual variable representation. This allows us to
efficiently run the algorithm in any reproducing kernel Hilbert space. We have proved
for this algorithm the best known mistake bound for efficient kernel-based linear-
threshold classifiers to date.

Since the performance of our algorithm is critically influenced by an input param-
eter a, whose optimal setting depends on the whole training set, we have developed
two variants of our basic algorithm. The first variant increases the parameter a as
a function of the number of mistakes made. The second variant avoids altogether
the parameter a by replacing the inverse correlation matrix (aI + XX�)−1 with the
pseudoinverse (XX�)+.

We have also run a simple experiment on synthetic data to give some evidence of
the theoretical properties of our algorithm (in its basic form).

Our second-order Perceptron algorithm might be seen as a new on-line classifica-
tion technique. As such, this technique could be combined with previous techniques,
such as the shifting target technique [4, 22] and the approximate on-line large margin
technique (see, e.g., [17, 27]).

As shown in [9], our analysis can be used to derive linear-threshold classifiers
whose statistical risk can be bounded, in probability, by quantities directly related
to the mistake bounds of Theorems 3.1, 4.1, and 4.2. The resulting data-dependent
generalization bounds are similar in spirit, though not readily comparable, to the
bounds given in [41, Thm. 5.2]. In fact, the results in [41] are derived, via involved
covering numbers arguments, in terms of the correlation matrix XX� of the whole
sequence of examples. More precisely, these results are expressed in terms of all
the “large” eigenvalues of XX�, taken in decreasing order of magnitude up to the
“effective number of dimensions.”11 In contrast to that, our bounds are in terms
of all the eigenvalues of the submatrix of XX� made up of instances where the
algorithm has made a mistake. In this sense, the sparsity of the solution produced by
our algorithm is directly reflected by the magnitude of the eigenvalues of the above
submatrix. To see this, go back to the primal variable form of Theorem 3.1 and observe
that adding rank-one matrices of type x x� to a correlation matrix XX� results in
a new correlation matrix whose eigenvalues can only be larger. Hence few mistakes
are equivalent to high sparsity, which, in turn, is equivalent to small eigenvalues.

We also observe that the application of mistake bounds to the statistical learning
setting is not straightforward for the whitened Perceptron algorithm described in
section 2. Since the whitening matrix M−1/2 depends on the whole training data, the
whitening transformation x → M−1/2x does not preserve stochastic independence
among the (whitened) instance vectors M−1/2x1, . . . ,M

−1/2xT .
There are several directions in which this work can be extended. In the following

we briefly mention three of them.

11The “effective number of dimensions” depends, for instance, on the margin of the data.
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First, it might be possible to refine the analysis of the second-order Perceptron al-
gorithm with adaptive parameter (Theorem 4.1). The linear growth of ak is certainly a
first step toward on-line parameter adaptation, though somewhat unsatisfactory since
it leaves the leading coefficient of ak unspecified. Moreover, we are not aware of any
incremental updating scheme for this algorithm (neither in primal nor in dual form).
Second, it might be possible to refine the analysis of the second-order Perceptron with
the pseudoinverse (Theorem 4.2) so as to eliminate the dependence on λ∗. Third, we
would like to combine the second-order classification technology with dual-norm al-
gorithms such as the p-norm algorithms [18, 20] and the Winnow/weighted majority
algorithms [28, 29, 30]. This would probably give rise to new attractive algorithms
for learning sparse linear-threshold functions.

Appendix A. Proof of Theorem 3.1. Fix an arbitrary finite sequence S =
((x1, y1), (x2, y2), . . . ), and let M ⊆ {1, 2, . . . } be the set of trials where the algorithm
of Figure 3.1 made a mistake. Let A0 = aIn and Ak = aIn + Xk X

�
k . We study the

evolution of v�
k A

−1
k vk over mistaken trials. Let t = tk be the trial where the kth

mistake occurred. We have

v�
k A

−1
k vk = (vk−1 + yt xt)

�
A−1

k (vk−1 + yt xt)

(since ŷt �= yt implies vk = vk−1 + yt xt)

= v�
k−1A

−1
k vk−1 + 2yt

(
A−1

k vk−1

)�
xt + x�

t A
−1
k xt

= v�
k−1A

−1
k vk−1 + 2yt w�

t xt + x�
t A

−1
k xt

(since ŷt �= yt implies Xk = St and A−1
k vk−1 = wt)

≤ v�
k−1A

−1
k vk−1 + x�

t A
−1
k xt

(since ŷt �= yt implies yt w�
t xt ≤ 0).

Now, note that Ak can be recursively defined using Ak = Ak−1 + xtx
�
t . Hence,

applying the Sherman–Morrison formula (3.2), we get

v�
k−1A

−1
k vk−1 = v�

k−1A
−1
k−1vk−1 −

(
v�
k−1A

−1
k−1xt

)2
1 + x�

t A
−1
k−1xt

≤ v�
k−1A

−1
k−1vk−1,

where the inequality holds since A−1
k−1 is the inverse of a positive definite matrix (and

so A−1
k−1 is positive definite). Thus we get

v�
k A

−1
k vk ≤ v�

k−1A
−1
k−1vk−1 + x�

t A
−1
k xt,

holding for all k = 1, . . . ,m = |M|. Summing the last inequality over k (or, equiva-
lently, over t ∈ M) and using v0 = 0 yields

v�
mA−1

m vm ≤
m∑

k=1

x�
t A

−1
k xt

=

m∑
k=1

(
1 − det(Ak−1)

det(Ak)

)
(using Lemma A.1 from [5] or Lemma D.1 in Appendix D)

≤
m∑

k=1

ln
det(Ak)

det(Ak−1)
(since 1 − x ≤ − lnx for all x > 0)
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= ln
det(Am)

det(A0)

= ln
det(aIn + XmX�

m)

det(aIn)

=

n∑
i=1

ln

(
1 +

λi

a

)
,(A.1)

where λ1, . . . , λn are the eigenvalues of Xm X�
m.

To conclude the proof, note that A
1/2
m does exist since Am is positive definite (see,

e.g., [31, Chap. 3]). Pick any unit norm vector u ∈ R
n and let z = A

1/2
m u. Then,

using the Cauchy–Schwarz inequality, we have√
v�
mA−1

m vm =
∥∥∥A−1/2

m vm

∥∥∥
≥

(
A

−1/2
m vm

)�
z

‖z‖

=
v�
mu√

u�Amu

=
v�
mu√

a + u�Xm X�
mu

≥ γ m−Dγ(u;S)√
a + u�Xm X�

mu
,(A.2)

where the last inequality follows from the very definition of Dγ(u;S) and holds for
any γ > 0. Putting together (A.1) and (A.2) and solving for m gives the statement
of the theorem.

Appendix B. Proof of Lemma 3.2. We first check the limiting behavior of f
as a function of a: we have f(a, λ, r) → ∞ as a → 0 and f(a, λ, r) → r as a → ∞ for
any fixed λ, r > 0. To prove the remainder of part 1, note that since ∂2f/∂a2 has the
same sign as

2 aλ + r λ− a r,(B.1)

it follows that when λ ≥ r/2, no choice of a > 0 exists, which makes (B.1) negative.
In this case, f(a, λ, r), viewed as a function of a, is convex and decreasing. Hence its
minimal value r is achieved only asymptotically (a → ∞).

When λ < r/2 a finite value of a exists which minimizes f . However, computing
the minimizing a analytically does not seem to be easy. Therefore we resort to the
approximation a = rλ

r−2λ , which is actually the value of a where (B.1) vanishes, i.e.,
where f changes concavity. To prove part 2 we set β = r/(2λ) > 1 and g(β) =

2β−1
2β(β−1) ln(2β − 1) = f( rλ

r−2λ , λ, r)/r. It thus suffices to show that g(β) < 1 for

all β > 1 and limβ→∞ g(β) = 0. The first statement can be proved by showing
that limβ→1 g(β) = 1 and that for any β > 1 the first derivative of ln(2β − 1) is

always smaller than the first derivative of 2β(β−1)
2β−1 . We omit the details of these

easy calculations. The second statement trivially follows from g(β) = O(lnβ/β), as
β → ∞.
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Appendix C. Proof of Theorem 4.1. The proof is a more refined version of
the proof of Theorem 3.1 and proceeds along the same lines.

Again, we assume that the kth mistake occurs when processing example (xt, yt),
t = tk, and we let M ⊆ {1, 2, . . . } be the set of trials where a mistake occurred. Let
Ak = akIn + Xk X

�
k , k = 1, 2, . . . , and A0 = a1In. We have

Ak = Ak−1 + (ak − ak−1)In + xtx
�
t , k = 1, 2, . . . ,(C.1)

where a0 = a1. We study the evolution of the quantity v�
k A

−1
k vk over mistaken trials.

As in the proof of Theorem 3.1, we have

v�
k A

−1
k vk ≤ v�

k−1A
−1
k vk−1 + x�

t A
−1
k xt.(C.2)

We need to bound v�
k−1A

−1
k vk−1 from above. From (C.1) we see that when k ≥ 2 the

matrix Ak is the sum of the nonsingular matrices Ak−1 and (ak − ak−1)In + xt x�
t

(the latter is nonsingular since ak > ak−1). Thus, when k ≥ 2, computing A−1
k can

be done through the general inversion formula

(B + C)−1 = B−1 −B−1(B−1 + C−1)−1B−1

with B = Ak−1 and C = (ak−ak−1)In+xt x�
t . Now, since both B and C are positive

definite, so is the matrix B−1(B−1 + C−1)−1B−1 (this easily follows from the fact
that the inverse of a positive definite matrix is again positive definite and that both
the sum and the product of two positive definite matrices give rise to positive definite
matrices). Hence if k ≥ 2, we can write

v�
k−1A

−1
k vk−1 = v�

k−1(B + C)−1vk−1

= v�
k−1

(
B−1 −B−1(B−1 + C−1)−1B−1

)
vk−1

≤ v�
k−1B

−1vk−1

= v�
k−1A

−1
k−1vk−1.(C.3)

On the other hand, when k = 1, inequality (C.3) is trivially true since v0 = 0.
Thus the inequality holds for all k ≥ 1. We plug (C.3) back into (C.2), sum over
k = 1, . . . ,m = |M|, and take into account that v0 = 0. We obtain

v�
mA−1

m vm ≤
m∑

k=1

x�
t A

−1
k xt

=

m∑
k=1

(
1 − det(Ak−1 + (ak − ak−1)In)

det(Ak)

)
(applying Lemma A.1 in [5] or Lemma D.1 in Appendix D to (C.1))

≤
m∑

k=1

ln
det(Ak)

det(Ak−1 + (ak − ak−1)In)
.(C.4)

The presence of matrix term (ak − ak−1)In makes the rest of the proof a bit more
involved than the proof of Theorem 3.1. Since we want to obtain bounds in terms
of eigenvalues of matrices, we rewrite the rightmost side of (C.4) as a function of the
eigenvalues of matrices Xk X

�
k . Let λk,i be the ith eigenvalue of matrix Xk X

�
k , with

λ0,i = 0. We can write

ln
det(Ak)

det(Ak−1 + (ak − ak−1)In)
=

n∑
i=1

ln
ak + λk,i

ak + λk−1,i
.
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Now, simple manipulations yield

m∑
k=1

n∑
i=1

ln
ak + λk,i

ak + λk−1,i
=

m∑
k=1

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk,i

)
(recall that a0 = a1)

+

m∑
k=1

n∑
i=1

ln

(
ak + λk,i

ak + λk−1,i

)

+

n∑
i=1

ln

(
am + λm,i

am

)

=

m∑
k=1

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk−1,i

)
+

n∑
i=1

ln

(
1 +

λm,i

am

)
.

Hence from (C.4) we have obtained

v�
mA−1

m vm ≤
m∑

k=1

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk−1,i

)
+

n∑
i=1

ln

(
1 +

λm,i

am

)
.(C.5)

The reader can see that (C.5) is analogous to (A.1) but for the presence of a spurious
double sum term.

We turn to upper bounding the double sum in (C.5) as a function of m. We
proceed as follows. We first note that for k = 1 the inner sum is zero. Therefore we
continue by assuming k ≥ 2 in the inner sum. Since Xk−1 X

�
k−1 has size n×n and has

rank at most k − 1, only min{k − 1, n} among the eigenvalues λk−1,1, . . . , λk−1,n can
be nonzero. Also, as we have observed elsewhere, Xk−1 X

�
k−1 has the same nonzero

eigenvalues as the (Gram) matrix X�
k−1Xk−1. Since the trace of a matrix equals the

sum of its eigenvalues and the trace of X�
k−1Xk−1 is at most (k − 1)R2, we have, for

k = 2, . . . ,m,

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk−1,i

)

≤ max

⎧⎨⎩
k′∑
j=1

ln

(
ak

ak−1

ak−1 + µj

ak + µj

)
: µ1, . . . , µk′ ≥ 0,

k′∑
j=1

µj ≤ (k − 1)R2

⎫⎬⎭ ,

where k′ = min{k− 1, n}. The maximum is achieved when all µj equal (k− 1)R2/k′.
Thus

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk−1,i

)
≤ k′ ln

(
ak

ak−1

ak−1 + (k − 1)R2/k′

ak + (k − 1)R2/k′

)
= k′ ln

(
k′ ak ak−1 + ak (k − 1)R2

k′ ak ak−1 + ak−1 (k − 1)R2

)
(C.6)

for k = 2, 3, . . . ,m. Now, a derivative argument shows that the function f(x;α, β) =
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x ln
(
x+α
x+β

)
is increasing in x > 0 whenever α > β ≥ 0. Therefore we see that

(C.6) =
1

ak ak−1
f
(
ak ak−1k

′; ak(k − 1)R2, ak−1(k − 1)R2
)

≤ 1

ak ak−1
f
(
ak ak−1(k − 1); ak(k − 1)R2, ak−1(k − 1)R2

)
= (k − 1) ln

(
ak

ak−1

ak−1 + R2

ak + R2

)
.

Hence we can write

m∑
k=1

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk−1,i

)
≤

m∑
k=2

(k − 1) ln

(
ak

ak−1

ak−1 + R2

ak + R2

)

=

m−1∑
k=1

k ln

(
k + 1

k

cR2k + R2

cR2(k + 1) + R2

)
(using ak = cR2k)

=

m−1∑
k=1

k ln

(
1 +

1

c k2 + c k + k

)

≤
m−1∑
k=1

1

c k + c + 1
(using ln(1 + x) ≤ x)

≤ 1

c

∫ m+1/c

1+1/c

dx

x

=
1

c
ln

m + 1/c

1 + 1/c

= B(c,m).

To bound
√

v�
mA−1

m vm from below, one can proceed as in the proof of Theorem 3.1,
yielding √

v�
mA−1

m vm ≥ γ m−Dγ(u;S)√
am + u�Xm X�

mu
,

where am = cR2m. We plug this lower bound back into (C.5) together with the
previous upper bound. After rearranging we obtain(

γ m−Dγ(u;S)√
am + u�Xm X�

mu

)2

≤ B(c,m) +

n∑
i=1

ln

(
1 +

λm,i

am

)
.

Solving for m occurring in the numerator of the left-hand side gives the desired bound.

Appendix D. Pseudoinverse and SVD of a matrix. In this section we
recall basic facts about the pseudoinverse and the SVD of a matrix. This background
material can be found, e.g., in [6]. We then exploit these facts to prove two technical
lemmas which will be used in the subsequent sections. These lemmas build on ancillary
results proven, e.g., in [5, 15, 16].
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The pseudoinverse of an n × n real matrix A is the (unique) n × n matrix A+

satisfying the following four conditions:

AA+A = A,

A+AA+ = A+,

(A+A)� = (A+ A),

(AA+)� = (AA+).

If the matrix is nonsingular, then the pseudoinverse coincides with the usual inverse,
i.e., A+ = A−1.

In order to state the properties of the pseudoinverse that we need, we exploit the
well-known connection between the pseudoinverse of a matrix and its SVD. In what
follows we will focus only on (symmetric) positive semidefinite matrices. This allows
us to simplify the exposition and replace the notion of singular value with the more
familiar notion of eigenvalue.

Let r ≤ n be the rank of A. An SVD of a matrix A takes the form A = U DU�,
where U is an orthogonal matrix (i.e., such that U U� = U�U = In), and D is a
diagonal matrix whose first r diagonal entries are the positive eigenvalues λ1, . . . , λr

of A, and the remaining entries are zero. The first r columns of U form an orthonormal
basis for span(A), the space spanned by the columns of A, whereas the remaining n−r
columns of U form an orthonormal basis for the orthogonal complement span⊥(A).
Recall that in the case under consideration, span⊥(A) coincides with null(A), the null
space of A.

A more convenient form of an SVD is one in which only the eigenvectors corre-
sponding to positive eigenvalues are shown. Let Ur be the n × r matrix made up
of the first r columns of U and let Dr be the r × r diagonal matrix whose diagonal
entries are the positive eigenvalues of A. Then one immediately sees that the finer
SVD holds:

A = Ur Dr U
�
r .(D.1)

Every positive semidefinite matrix admits an SVD like (D.1).
Given an SVD of a matrix, computing its pseudoinverse is a rather simple matter.

In particular, given (D.1), one can easily show that

A+ = Ur D
−1
r U�

r ,(D.2)

where D−1
r is the inverse of the (nonsingular) matrix Dr.

Many properties of pseudoinverses which are relevant to this paper can be derived
from (D.1) and (D.2). For instance, one can immediately see that, viewed as linear
transformations from R

n to R
n, both A+A and AA+ are the identical transformation

onto span(A) and the null transformation on span⊥(A), i.e.,

A+Ax = AA+x =

{
x if x ∈ span(A),

0 if x ∈ span⊥(A).
(D.3)

This property easily follows from the matrix identity

A+A = AA+ = Ur U
�
r .(D.4)

We are now ready to prove the following lemma, which generalizes the valuable
Lemma A.1 in [5] to positive semidefinite matrices.
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Lemma D.1. Let A be an arbitrary n × n positive semidefinite matrix, let x be
an arbitrary vector in R

n, and let B = A− x x�. Then

xA+ x =

{
1 if x /∈ span(B),

1 − det �=0(B)
det �=0(A) < 1 if x ∈ span(B),

(D.5)

where det�=0(M) denotes the product of the nonzero eigenvalues of matrix M . Note
that det�=0(M) = det(M) when M is nonsingular.

Proof. If x = 0, the lemma is trivially verified. Hence we continue by assuming
x �= 0. We first prove that x�A+x = 1 if and only if x /∈ span(B). From Lemma A.3
in [16] it follows that BA+x = 0 when x /∈ span(B). Hence, using (D.3) we can write

0 = BA+x = (A− xx�)A+x = x − x x�A+x,

which implies x�A+x = 1. On the other hand, if x ∈ span(B), we can always apply
the Sherman–Morrison formula (3.2) and conclude that

x�A+x = x�(B + x x�)+x =
x�B+x

1 + x�B+x
< 1.

Let us now continue by assuming x ∈ span(B). Let A = UrDrU
�
r be an SVD for A,

in the sense of (D.1). Since Ur U
�
r x = x we can write

B = A− xx� = UrMU�
r ,

where M is the r × r symmetric matrix M = Dr − U�
r xx�Ur. We now claim that

B and M have the same nonzero eigenvalues, so that det �=0(B) = det�=0(M). Let
µ1, µ2, . . . , µk, k ≤ r, be the nonzero eigenvalues of M and let e1, e2, . . . ,ek be the
corresponding orthonormal eigenvectors. It is then easy to verify that µ1, µ2, . . . , µk

are also eigenvalues of B with corresponding orthonormal eigenvectors Ure1, Ure2,
. . . , Urek. Let Ek be the orthonormal matrix whose columns are e1, e2, . . . ,ek, let
M = EkSkE

�
k be an SVD of M , and let v ∈ span⊥(UrEk). We have

Bv = UrMU�
r v = UrEkSkE

�
k U�

r v = 0,

where the last equality follows from the orthogonality v�UrEk = 0. Thus v ∈ null(B),
rank(B) = rank(M), and the only nonzero eigenvalues of B are µ1, µ2, . . . , µk.

Computing the nonzero eigenvalues of M is actually fairly straightforward. We
have

M = Dr − U�
r xx�Ur = Dr(Ir −D−1

r U�
r xx�Ur).

Now, det�=0(Dr) = det(Dr) = det�=0(A), while it is easy to verify by direct inspection
that the matrix Ir − D−1

r U�
r xx�Ur has eigenvalue 1 with multiplicity r − 1 corre-

sponding to r− 1 eigenvectors forming an orthogonal basis for span⊥(D−1
r U�

r x), and
eigenvalue 1 − x�UrD

−1
r U�

r x = 1 − x�A+x corresponding to eigenvector D−1
r U�

r x.
Since x ∈ span(B) we already know that 1−x�A+x > 0. Therefore we have obtained

det
�=0

(B) = det
�=0

(M) = det(Dr) det
�=0

(Ir −D−1
r U�

r xx�Ur) = det
�=0

(A)(1 − x�A+x).

Rearranging gives the desired result.
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Lemma D.2. Let A be an arbitrary n × n positive semidefinite matrix. Set
B = A−x x�, where x /∈ span(B). Then for any v,w ∈ span(B) we have v�A+w =
v�B+w.

Proof. We have

v�A+w = v�B+BA+w

(by (D.3) and the fact that v ∈ span(B))

= v�B+(A− xx�)A+w

= v�B+AA+w − v�B+x x�A+w

= v�B+w − v�B+x x�A+w

(by (D.3) and the fact that w ∈ span(B) ⊆ span(A))

= v�B+w

(since x�A+w = 0 by Lemma A.3 in [16]).

Appendix E. Proof of Theorem 4.2. The proof is again similar to the proof
of Theorem 3.1.

Let M ⊆ {1, 2, . . . } be the set of trials where the algorithm in Figure 4.2 made a
mistake, and let Ak = Xk X

�
k , k = 1, . . . ,m = |M|. We investigate how the quadratic

form v�
k A

+
k vk changes over mistaken trials. Suppose the kth mistake occurred in trial

t = tk. Proceeding as in the proof of Theorem 3.1, one can show that

v�
k A

+
k vk ≤ v�

k−1A
+
k vk−1 + x�

t A
+
k xt.(E.1)

Now, as in the proof of Theorem 3.1, if xt ∈ span(Ak), we can apply the Sherman–
Morrison formula (3.2) and obtain v�

k−1A
+
k vk−1 ≤ v�

k−1A
+
k−1vk−1. On the other

hand, in the case when xt /∈ span(Ak) we can apply Lemma D.2 and conclude that
v�
k−1A

+
k vk−1 = v�

k−1A
+
k−1vk−1. Thus in both cases v�

k−1A
+
k vk−1 ≤ v�

k−1A
+
k−1vk−1.

Combining with (E.1) we obtain

v�
k A

+
k vk ≤ v�

k−1A
+
k−1vk−1 + x�

t A
+
k xt,

holding for all k = 1, . . . ,m. We now sum over k = 1, . . . ,m using v0 = 0. We get

v�
mA+

mvm ≤
m∑

k=1

x�
t A

+
k xt.(E.2)

In order to upper bound the right-hand side of (E.2), we proceed as follows. We
separate the mistaken trials k such that xt ∈ span(Ak−1) (i.e., the trials such that
rank(Ak) = rank(Ak−1)) from the mistaken trials k such that xt /∈ span(Ak−1) (i.e.,
the trials such that rank(Ak) = rank(Ak−1) + 1). Then, in applying Lemma D.1, we

count 1− det �=0(Ak−1)
det �=0(Ak) for the first kind of trials and 1 for the second kind. Finally, we

upper bound taking the worst possible case of arranging the two kinds of trials within
the sequence M, taking into account that the number of trials of the second kind is
equal to r = rank(Am).

We assume the following general scenario:

rank(Ak) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, k = 1, 2, . . . , 1 + i1,

2, k = 2 + i1, 3 + i1, . . . , 2 + i2,

3, k = 3 + i2, 4 + i2, . . . , 3 + i3,
...

r, k = r + ir−1, r + ir−1 + 1, . . . , r + ir,
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where 0 ≤ i1 ≤ i2 ≤ · · · ≤ ir = m− r. With this notation the right-hand side of (E.2)
can be rewritten as follows (here and in what follows we assume i0 = 0):

m∑
k=1

x�
t A

+
k xt =

r∑
�=1

⎛⎝x�
t A

+
�+i�−1

xt +

�+i�∑
k=�+i�−1+1

x�
t A

+
k xt

⎞⎠
=

r∑
�=1

⎛⎝1 +

�+i�∑
k=�+i�−1+1

(
1 − det�=0(Ak−1)

det�=0(Ak)

)⎞⎠ (using Lemma D.1)

= r +

r∑
�=1

�+i�∑
k=�+i�−1+1

(
1 − det�=0(Ak−1)

det�=0(Ak)

)

≤ r +

r∑
�=1

�+i�∑
k=�+i�−1+1

ln
det�=0(Ak)

det�=0(Ak−1)

= r +

r∑
�=1

ln
det�=0(A�+i�)

det�=0(A�+i�−1
)
.(E.3)

We now proceed by bounding from above the logarithmic terms in (E.3). By con-
struction we have rank(A�+i�) = rank(A�+i�−1

) = �, which is also equal to the number
of nonzero eigenvalues of the two matrices. Let λi, i = 1, . . . , �, denote the positive
eigenvalues of A�+i�−1

. Since A�+i� − A�+i�−1
is positive semidefinite, the positive

eigenvalues of A�+i� can be expressed as λi + µi, i = 1, . . . , �, for some nonnegative

values µi, such that
∑�

i=1 µi ≤ d� R
2, where d� = i� − i�−1 is the number of rank-one

matrices of the form xt x�
t which have been added to A�+i�−1

in order to obtain A�+i� .
We have

ln
det�=0(A�+i�)

det�=0(A�+i�−1
)

= ln
�∏

i=1

λi + µi

λi

≤
�∑

i=1

ln
(
1 +

µi

λ∗

)
(recall that λ∗ ≤ λi, i = 1, . . . , �)

≤ max
µ1,...,µ� :

∑�
i=1 µi≤R2d�

�∑
i=1

ln
(
1 +

µi

λ∗

)
= � ln

(
1 +

R2d�
λ∗�

)
since the maximum is achieved when µi = R2d�/�, i = 1, . . . , �. Now, since

∑r
�=1 d� =

m − r ≤ m, we can plug back into (E.3) and maximize over d1, . . . , dr such that∑r
�=1 d� ≤ m. We have

∑
t∈M

x�
t A

+
k xt ≤ r +

r∑
�=1

� ln

(
1 +

R2d�
λ∗�

)

≤ r + max
d1,...,dr :

∑r
�=1 d�≤m

r∑
�=1

� ln

(
1 +

R2d�
λ∗�

)
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= r +
r(r + 1)

2
ln

(
1 +

2R2

λ∗
m

r(r + 1)

)
(E.4)

(since the maximum is achieved when d� = 2 �m
r(r+1) , � = 1, . . . , r),

which is the required upper bound on the right-hand side of (E.2).

When u /∈ span⊥(Am) we can bound
√

v�
mA+

mvm from below as in the proof of
Theorem 3.1. This yields √

v�
mA+

mvm ≥ γ m−Dγ(u;S)√
u�Xm X�

mu
.

Plugging back into (E.2) and combining with (E.4) gives(
γ m−Dγ(u;S)√

u�Xm X�
mu

)2

≤ r +
r(r + 1)

2
ln

(
1 +

2R2

λ∗
m

r(r + 1)

)
.

Solving for m occurring in the numerator of the left-hand side gives (4.4). On the

other hand, when u ∈ span⊥(Am) we have
Dγ(u;S)

γ = m and u�Xm X�
mu = 0, and

thus (4.4) is vacuously verified as an equality.
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