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ABSTRACT

It is known that the potential clinical use of farnesyl-

transferase inhibitors (FTI) could be expanded to include

cancers harboring activated receptor tyrosine kinases.

Approximately 70% of malignant pleural mesotheliomas

(MPM) overexpress epidermal growth factor receptors

(EGFR) and a subset express both EGFR and transforming

growth factor A (TGF-A), suggesting an autocrine role for

EGFR in MPM. We checked on MPM cells (10 human cell

lines, 11 primary cultures obtained by human biopsies, and

7 short-term normal mesothelial cell cultures) concerning the

following: (a) the relative overexpression of EGFR (Western

blotting, flow cytometry, immunohistochemistry), (b) the

relative expression of EGFR ligands (EGF, amphiregulin,

TGF-A, ELISA), (c) the relative increase of the activated

form of Ras (Ras-bound GTP) after EGF stimulation (Ras

activation assay), (d) the efficacy of five different FTIs (HDJ2

prenylation, cell cytotoxicity, and apoptosis using ApopTag

and gel ladder). EGFR was overexpressed in MPM cells

compared with normal pleural mesothelial cells in equiva-

lent levels as in non––small cell lung cancer cells A549.

MPM cells constitutively expressed EGFR ligands; however,

Ras activation was attenuated at high EGF concentrations

(100 ng/mL). Growth of MPM cells was substantially not

affected by treatment with different FTIs (SCH66336, BMS-

214662, R115777, RPR-115135, and Manumycin). Among

these, BMS-214662 was the only one moderately active.

BMS-214662 triggered apoptosis in a small fraction of cells

(not higher than 30%) that was paralleled by a slight

decrease in the levels of TGF-A secreted by treated MPM

cells. Our data highlighted the concept that the same

signaling pathway can be regulated in different ways and

these regulations can differ between different cells of

different origin.

INTRODUCTION

The incidence of malignant pleural mesothelioma (MPM), a

primary tumor of the pleural, peritoneal, and pericardial cavities,

with an estimated incidence of 2,000 to 3,000 cases annually in

the United States, is relatively high in Italy: about 1,000 patients

are observed every year. The total number of male deaths from

pleural mesothelioma in France, Germany, and Italy has

continued to increase during the last decade of the 20th century,

growing from f7,550 in 1985-1989 to 8,750 in 1990-1994, and

9,550 in 1995-1999 (1). However, for the latest period, all the

observed values were lower than predicted (2). This, together

with the stabilization of age-standardized mortality rates and the

consistent decrease in mortality at younger ages, supports the

hypothesis that the rising trend in deaths from mesothelioma in

men could level off in the near future (3).

A unique feature of MPM is its strong relationship with

asbestos fiber exposure, which has recently led to great public

concern in view of the ubiquitous presence of that mineral.

Exposure can be occupational, environmental, or even familial

by household contamination. The median interval between onset

of symptoms and death is usually 6 to 8 months (4) and long-

term survivors are rare. MPM usually progresses locally, causing

death by cardiac/respiratory failure in most cases.

To date there is no standard effective treatment for MPM

(5, 6). Complex therapeutic protocols, including the combination

of surgery, chemotherapy, and radiation therapy, as pioneered by

Sugarbaker et al. (7) in 1991 in highly selected groups of

patients represent the best-documented potentially curative

approach, with 5-year survival not exceeding 15%. Such dismal

prognosis status despite the aggressive therapeutic effort

represents the rationale to foster investigation (6).

Very recently, some interesting positive results have been

obtained by introducing new chemotherapeutic agents such as

pemetrexed + cisplatin supplemented with folate and B12 (8),

but the profound sense of nihilism surrounding treatment of this

disease remains and the state of the art still seems unsatisfactory.

Moreover, knowledge of the biology of this cancer is still

somewhat confused. Further efforts in the evaluation of the

basics and of the response of this tumor to the newly proposed

therapies are needed.

Specialized information is necessary for the planning of

studies with a translational attitude, based both on clinical failure

experiences and on advances in basic molecular oncology.

To date, we know that f70% of MPMs have high levels of

expression of the epidermal growth factor receptor (EGFR), and
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a subset of cell lines derived from MPM patients express both

EGFR and transforming growth factor a (TGF-a) suggesting an

autocrine role for EGFR in MPM (9–11).

Ras-mitogen-activated protein kinase pathway is an impor-

tant signaling pathway activated by EGF as shown in Fig. 1 (12–

17). Studies have shown that farnesylation of Ras is the obligatory

first step in a series of posttranslational modifications leading to

membrane association which, in turn, determines the switch from

an inactive to an active Ras-GTP bound form (18–22). Based on

the theoretical assumption that preventing Ras farnesylationmight

result in the inhibition of Ras functions, a range of farnesyl-

transferase inhibitors (FTI) have been synthesized (21, 22).

Farnesylated proteins such as Ras, RhoB, the centromere-

binding proteins CENP-E and CENP-F, the phosphatases PRL1,

2 and 3, the chaperone protein DnaJ, and Rheb are involved in

cell growth crucial pathways and may represent an ideal target for

novel molecular targeted therapies with a wide anticancer

spectrum (21, 22). Preclinical experiments have confirmed that

FTIs are able to effectively inhibit farnesylation of several targets,

leading to powerful anticancer effect in a variety of cell lines and

xenograft animal models (21, 22). Moreover, it is well known that

FTIs block the growth of a variety of tumor cells without Ras

activation (21, 22). It is possible that this occurs because activated

receptor tyrosine kinases constitutively activate Ras that is then

inhibited by FTIs; alternatively, FTIs may inhibit TGF-a and

amphiregulin expression, as shown by Sizemore et al. (23).

In support of this hypothesis, Noorgaard et al. (24, 25) reported

that the FTI L744,382 decreases levels of TGF-a in mammary

cystic fluid and inhibits the growth of mammary tumors in

MMTV-TGF-a transgenic mice. Furthermore, we have shown

that the FTI RPR-115135 inhibits the growth of MCF10A cells

transfected with erb-B2 gene (26).

In a translational attitude, Trombino et al. (27) and others

(28–30) have focused attention on MPM. We studied 10 human

MPM cell lines, 11 MPM cell lines in primary cultures obtained

by human biopsies, and 7 short-term normal mesothelial cell

cultures to investigate the following:

1. The relative overexpression of EGFR using different

methodologies: Western blotting, flow cytometry, and

immunohistochemistry;

2. The relative expression of EGFR ligands (TGF-a and

amphiregulin) using ELISA;

3. The relative increase of the activated form of Ras (Ras-bound

GTP) after EGF stimulation (Ras activation assay);

4. The relative extracellular signal-regulated kinase (ERK)

activation after EGF stimulation (Western blotting);

5. The efficacy of five different FTIs using cell cytotoxicity

assays, HDJ2 mobility shift, and apoptosis detection

(ApopTag, gel ladder). The efficacy of other potential Ras-

targeting agents such as methotrexate, which interferes with

carboxymethyl transferase [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2- (4-sulfophenyl)-2H- tetrazolium,

inner salt (MTS) assay and cloning in agar].

The results of this analysis are described herein.

MATERIALS AND METHODS

Cell Lines and Primary Cell Cultures. Human meso-

thelioma cancer cell line MSTO-211H, non–small cell lung

cancer (NSCLC) A549 cell line, and human colon cancer

HCT116 cell line were obtained from American Type Culture

Collection (Rockville, MD). Human mesothelioma cancer cell

lines H28, H513, H2052, and H290 were courtesy of Dr J.D.

Minna (Hamon Center for Therapeutic Oncology Research,

University of Texas Southwestern Medical Center, Dallas, Texas).

Human mesothelioma cancer cell lines IST-MES-1, MPP-89,

ZL55, and ZL34 were courtesy of Dr. S. Ferrini (National Institute

for Research on Cancer, Genoa, Italy). They were grown in RPMI

1640 (Life Technologies, Inc., Grand Island, NY) supplemented

with 10% non–heat inactivated fetal bovine serum (FBS, Life

Technologies). Cell counts were determined using a Coulter

Counter with Channelyzer attachment to monitor cell size

(Coulter Electronics, Hialeah, FL). Cell membrane integrity was

determined by trypan blue dye exclusion assay.

Fig. 1 EGFR and Ras cascade. The adaptor protein growth factor
receptor binding protein 2 (Grb2) plays a critical role in coupling signal
from EGFR kinase with Ras. Grb2 contains a single SH2 domain flanked
by two Src homology 3 (SH3) domains. The SH2 domain of Grb2
recognizes and binds to specific phosphotyrosine-containing motifs on
EGFR, whereas the SH3 domains bind to the guanine nucleotide-releasing
factor son of sevenless (SOS), which catalyzes the exchange of GDP to
GTP on Ras, resulting in Ras activation (12–16). Interestingly, it has been
reported that Grb2 directly binds to the cytoplasmic domain of EGFR at
phosphorylated residues Tyr1068 and Tyr1086 to initiate the activation of the
Ras-mitogen-activated protein kinase pathway. Ras, in turn, activates the
downstream kinases sequentially, which eventually leads to the activation
of mitogen-activated protein kinases/ERKs. ERKs phosphorylate tran-
scription factors that regulate gene transcription (12–16).
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Tumor tissue samples from mesothelioma patients were

taken from the operating room at room temperature immediately

after resection. Primary cells were obtained as described

previously (27). Briefly, the specimens were dissected with

scalpels into <5-mm cubes. The pieces of tumor were placed in

triple enzyme medium (1� collagenase, 1� hyaluronidase, and

1� DNase; Sigma, St. Louis, MO) in HBSS (Life Technologies)

with a magnetic bar and were then spun on a stir plate at room

temperature for 2 to 3 hours until most of the solid tumor was

dissociated. The cells were filtered through a 70-Am nylon cell

strainer (Becton Dickinson, Lincoln Park, NJ) and suspended in

RPMI 1640 with 10% FBS (Life Technologies).

Normal pleural tissues samples were obtained from resected

specimens of patients who underwent surgery for nonneoplastic

reasons. Short-term mesothelial cell cultures were established as

described previously (27) after triple enzyme medium (Sigma)

disaggregation. Mesothelial cells were grown as primary cultures

on fibronectin-coated culture flasks in RPMI 1640 supplemented

with 20% heat-inactivated FBS (Life Technologies), epidermal

growth factor (20 ng/mL), hydrocortisone (1 Amol/L) and insulin

(10 Ag/mL), transferrin (5 Ag/mL), and gentamicin (50 Ag/mL,

Life Technologies) at 37jC in a humidified 5% CO2 atmosphere.

Fresh complete medium was replaced every 2 to 3 days until

cells were confluent. Upon confluence the cells were lifted by

1� trypsin-EDTA (Life Technologies) and subcultured at 1:2

dilution. The cells were identified as mesothelial cells by

immunocytochemical staining with antikeratin antibodies (Dako,

Glostrup, Denmark). Third- to fourth-passage confluent cultures

were used for binding assay and cell growth.

EGFR determination was evaluated by immunostaining,

Western blot, and flow cytometry. Immunostaining against

EGFR was done as follows: fixed cells were rinsed in cold

PBS containing 0.5 mol/L glycine, blocked with PBS containing

1% bovine serum albumin and 5% FBS. The incubation was

carried out overnight at 4jC in the primary antibody EGFR

(SC-03; Santa Cruz Biotechnology, Santa Cruz, CA) diluted

1:200 in PBS-0.1% bovine serum albumin-1% FBS. After

incubation, samples were rinsed with PBS and stained with the

appropriate secondary anti-IgG, diluted 1:100 (Santa Cruz

Biotechnology) in PBS containing 0.1% bovine serum albumin

and 1% FBS. Specificity controls were done by use of normal

serum as primary antibody or by omitting the incubation in

the primary antibody. Peroxidase controls were done by

preincubating cells in PBS containing 0.1% hydrogen peroxide

before the incubation in the secondary antibody.

For Western blot analysis, equal amounts of protein were

subjected to 12.5% SDS-PAGE and then transferred electropho-

retically to a nitrocellulose membrane. Nonspecific binding sites

were blocked with blocking buffer containing TBS and 0.1%

Tween 20 with 5% nonfat milk powder for 2 hours at room

temperature, and the blot was incubated with specific antibody in

blocking buffer. The EGFR (SC-03) or the h-actin antibody

(AC-15 (Sigma) was incubated at 4jC overnight. After washing,

the blot was incubated with an appropriate secondary antibody

(Santa Cruz Biotechnology) for 1 hour at room temperature. After

extensive washing, detection was done using the enhanced

chemiluminescence system with exposure to Hyperfilm MP.

For flow cytometry, cells were incubated in 1% bovine

serum albumin in PBS for 30 minutes and then stained with the

FITC-conjugated anti-EGFR monoclonal antibody (PharMingen,

San Diego, CA; 1:50) for 1 hour on ice. As a negative control, an

aliquot of the cells was stained with the FITC-conjugated

monoclonal antibody of the same phenotype (PharMingen;

1:50). Flow cytometry was done on a FACScan analyzer (Becton

Dickinson, Mountain View, CA), and median EGFR-positive

values in cells were calculated by using the CellQuest program

(Becton Dickinson).

Analysis of Growth Factor Release. MPM cell lines and

primary MPM cells were seeded into 24-well culture trays,

whereas primary pleural mesothelial cells were seeded into

24-well fibronectin-coated culture trays at 0.75 � 105 cells per

well in complete medium, as described above, and cultured for 96

hours. After 24 hours, plating cells were treated for an additional

48 hours with FTI. The conditioned medium was then removed

from the cells, clarified by centrifugation, and stored frozen until

assay. ELISA kits for TGF-a (CN Biosciences, Nottingham,

United Kingdom.), amphiregulin (R&D Systems, Abingdon,

United Kingdom), and EGF were used according to the

manufacturer’s instructions; the minimum detectable amount of

each factor in these assays was 10, 15, and 30 pg/mL, respectively.

Ras Activation Assay. A Ras activation assay kit was

obtained from Upstate Biotechnology Inc. (Waltham, MA), and

the experiment was conducted according to the manufacturer’s

protocol. Briefly, cells were serum starved overnight followed by

growth factor stimulation (EGF for 10 minutes). Cells were lysed

followed by addition of Raf-1 Ras-binding domain agarose to cell

lysates followed by incubation for 30 minutes at 4jC. Beads were
washed twice and the bound Ras was detected by incubation in

SDS sample buffer and boiling followed by electrophoresis and

Western blotting with an anti-Ras antibody (clone RAS 10).

Cell Proliferation Assay. All of the experiments for each

drug were done at least twice with a minimum of six replicates per

data point per experiment. Mesothelioma cell lines were plated

with an eight-channel pipette at 250 cells per well in 96-well

plates, whereas human normal mesothelial cells at 500 cells per

well on fibronectin-coated 96-well plates. Drugs were added

immediately after cell plating. The final medium volume of each

well was 200 AL. At 10 days of incubation, an MTS-based assay,

as described previously (27) was used to measure cell growth.

Twenty microliters of MTS reagent (cell Titer 96 Aqueous;

Promega Corporation, Madison, WI) were added per well, and

absorbance at 490 nm was recorded 2 hours later.

Cell Proliferation in Soft Agar Assay. Primary human

mesothelioma cells (106) were cultured in 60-mm dishes in 0.5%

low-gelling agarose (Sea Plaque) on a base layer of 1% noble

agar (Difco-BD, Franklin Lakes, NJ) in the presence of indicated

amounts of FTI (added on day 1) or vehicle control in complete

medium (according to American Type Culture Collection

recommendations) and colonies were scored after 10 days.

During the experiment, 0.5 mL of fresh complete medium (with

or without drug) was added every 5 days. The cell clonogenic

fraction was calculated using the following equation:

Clonogenic fraction

¼ ðColoniescounted=Numberof cells seededÞ � 100

Detection of Apoptosis. Apoptosis was detected with

two different methods: ApopTag and internucleosomal DNA

fragmentation.
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ApopTag. After cytospinning the cells to slides, the

ApopTag Peroxidase in situ apoptosis assay was done as

described by the manufacturer (Intergen, Purchase, NY) and by

ourselves previously (31). Briefly, 1.0 � 104 cells were

cytospinned to the poly-L-lysine–precoated slides at 750 � g

for 5 minutes. The cells were fixed in 4% paraformaldehyde for

30 minutes. Cells were incubated in a humidified chamber with

terminal deoxynucleotidyltransferase enzyme for 1 hour at 37jC
(for the negative control, water was used instead of the enzyme),

then soaked in a stop-wash buffer (Intergen) for 30 minutes,

rinsed thrice in PBS, and finally incubated with antidigoxigenin-

peroxidase (Intergen) at room temperature in a humidified

chamber for 30 minutes. The brown color development was

achieved by incubating for 6 minutes at room temperature with a

substrate solution containing 0.008% 3,30-diaminobenzidine-

tetrahydrochloride and 0.02% hydrogen peroxide. The slides

were counterstained in a methyl green solution for 10 minutes and

visualized and scored under a light microscope. One thousand

cells were randomly scored per slide to evaluate dark brown color

in the nuclei. Pictures were taken at 400� magnification.

Internucleosomal DNA Fragmentation. Internucleosomal

DNA fragmentation was shown by the harvesting of total

cellular DNA, as previously described (27). Briefly, adherent and

detached cells were harvested separately, washed, and lysed with

50 mmol/L Tris (pH 7.5) 10 mmol/L EDTA, 0.5% Triton X-100,

and 0.5 mg/mL proteinase K for 2 hours at 50jC. Samples were

then extracted twice with phenol/chloroform/isoamyl alcohol

and precipitated with ethanol. The pellet was resuspended in

Tris-EDTA and 10 Ag/mL Rnase A, and the DNAwas separated

on a 2% agarose gel.

Analysis of Protein Prenylation. Cells were treated with

inhibitors for 24 hours and then lysed in radioimmunoprecipi-

tation assay buffer [40 mmol/L Tris-HCl (pH 7.5), 150 mmol/L

NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100,

and 0.1 mmol/L EDTA] and protease inhibitors. Lysates were

subjected to SDS-PAGE using 8% precast Novex Tris-glycine

gels (Invitrogen, Carlsbad, CA) and then immunoblotted using

antibodies specific for HDJ2 (Lab Vision Inc., Fremont, CA).

Blots were developed using alkaline phosphatase–conjugated

anti-IgG (Cappel Laboratories, West Chester, PA) followed by

detection with fluorescent alkaline phosphatase substrate (ECF,

Amersham Pharmacia Biotech, Piscataway, NJ). Unfarnesylated

and farnesylated proteins were distinguished by virtue of their

different electrophoretic mobilities; thus the unfarnesylated

forms of these proteins display reduced mobility in SDS-PAGE

relative to their farnesylated versions.

p-ERK Detection. Standard protocols were used for

Western blotting, as described above. A detergent-compatible

protein assay kit (Bio-Rad, Hercules, CA) was used for

quantitation of proteins. Western blots were developed with

enhanced chemiluminescence reagents (Amersham). Anti p-ERK

and anti total ERK antibodies were used (Santa Cruz

Biotechnology).

Statistical Analysis. Student’s t test (P > 0.05, not

significant) was used.

RESULTS

EGFR Expression. The relative expression of EGFR in

MPM cells (cell lines and primary cultures) as well as in primary

short-term normal pleural mesothelial cells was determined using

different methodologies: Western blotting, flow cytometry, and

immunohistochemistry (Fig. 2).

A quantitative analysis of the intensity of the bands

obtained by Western blotting (Fig. 2) revealed that the apparent

EGFR/actin ratio was substantially near to 1.0 in human normal

pleural mesothelial cells. In MPM cells, on the contrary, it was

much higher than 1.0, such as in the NSCLC cell line A459

(positive control). These data suggest that in MPM EGFR is

overexpressed in comparison with normal mesothelial cells at a

level comparable with that of NSCLC cells, in agreement with

data previously reported by Janne et al. (11).

Flow cytometry and immunohistochemistry confirmed

Western blotting results (Fig. 2).

TGF-A, Amphiregulin, and EGF Release from Primary

Pleural Mesothelial Cells, MPM Cell Lines, and Primary

Cultures. Overexpression of released EGF or EGFR ligands

(TGF-a and amphiregulin) was observed in MPM cells. In

normal pleural mesothelial cells, their levels were at the limit of

sensitivity of the assay (Table 1).

FTIs Sensitivity. Different FTIs [i.e., SCH66336

(Sarasar), BMS-214662, and R115777 (Zarnestra), which have

reached clinical testing (21, 22), RPR-115135, a new non-

peptidomimetic compound (26, 32, 33), and Manumycin

(a natural compound)] were studied in human MPM cell lines,

in short-term normal mesothelial cells, and in MPM cells in

primary culture. In MTS assay, MPM cell lines were very

resistant to the effect of all FTIs (Table 2). Only BMS-214662

was moderately active; hence, it was less active than in the

human colon cancer cell line HCT116 or in the NSCLC cell line

A549 (from 20- to 60-fold).

In short-term human normal mesothelial cells the IC25

was not reached after administration of each drug under test

(Table 3).

Effects on human MPM cells in primary culture were

evaluated on soft agar. Cells obtained from human samples were

more resistant than cell lines. Although BMS-214662 was the

only active drug among the five tested, its activity was

drastically reduced (from 195- to 480-fold in comparison with

HCT116 cells; Table 4).

Methotrexate, one of the oldest chemotherapeutic drugs,

may work, in part, by inhibiting carboxyl methylation of Ras

(34, 35). Methotrexate was studied in human MPM cell lines

and in MPM cells in primary culture. Both MPM cell lines

(Table 2, MTS assay) and MPM cells in primary culture

(Table 4, soft agar assay) were very sensitive to the effect of

this drug.

To gain insight into the mechanisms of cell inhibition

induced by BMS-214662, its possible effect on apoptosis

induction was studied. MPM cells were treated with the

respective IC50 for 10 days. The ApopTag peroxidase in situ

apoptosis assay revealed that BMS-214662 triggers moderate

apoptosis in MPM cells (Fig. 3); only a fraction corresponding to

30% of all MPM cells presented the typical features of apoptosis.

Gel ladder confirmed these data (Fig. 4).

Effects of FTIs on EGFR Ligand Release. The release

of TGF-a was measured after treatment with two different FTIs,

namely, BMS-214662 (moderately active) and RPR-115135

(nonactive). Both drugs did not affect the release of TGF-a in
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Fig. 2 Expression of
EGFR in human mesothe-
lioma cell lines, in human
mesothelioma biopsies,
and normal human biop-
sies of mesothelial cells.
Top: A, Western blotting
for EGFR and actin: 1,
MSTO cel l l ine ; 2 ,
MPP89; 3, IST-MES1; 4,
IST-MES2; 5, H28; 6,
H513; 7, H2052; 8,
H290; 9, Zl-55; 10, ZL-
34, 11. A549 (positive
control). B, EGFR evalu-
ates with cell flow (two
cell lines as an example).
C, immunohistochemistry
(two cell lines as an
example). Middle: A,
Western blotting for
EGFR and actin in human
mesothelial biopsies: 1,
A549 (positive control);
2 to 12, from different
samples. A, Western blot-
ting for EGFR and actin
in normal human meso-
thelial biopsies: from 1 to
7 different samples. B,
EGFR evaluates with cell
flow (as an example). C,
immunohistochemistry
(as an example). Bottom:
quantitative analysis of
the intensity of the bands
was done and the table
shows the EGFR/actin ra-
tio (in arbitrary units).
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normal pleural mesothelial cells. In MPM cells, BMS-214662

moderately reduced (from 11% to 33%) the release of TGF-a in

the culture medium. RPR-115135, on the contrary, increased the

level of its release (Table 5). In the NSCLC A549 positive

control, both drugs drastically reduced the release of TGF-a in

the culture medium.

Effects of FTIs on HDJ2 Prenylation. When MPM

cells were exposed to BMS-214662, SCH66336, R11577, RPR-

115135 or Manumycin for 24 hours at the concentrations

reported in Table 2 or in Table 4, a mobility shift on SDS-PAGE

was observed in HDJ2 (Fig. 5), reflecting inhibition of FTase. In

agreement with results previously reported by Kurzrock et al.

(36), our data show that growth inhibition did not occur despite

the substantial inhibition of FTase enzymatic activity.

Ras Activation. To determine whether EGF could

enhance activity of Ras, a Ras activation assay was done using

cell lysates of serum-starved cells.

The effect of EGF on Ras loading of GTP was examined in

normal human mesothelial cells and compared with MPM cells.

As shown in Fig. 6, in normal human mesothelial cells, EGF-

induced Ras loading was detectable almost equally at both low

(1 ng/mL) and high concentrations of EGF (100 ng/mL).

Whereas Ras loading was efficient at low concentrations of EGF

in MPM cells, surprisingly, stimulation with a high concentration

(100 ng/mL) of EGF failed to activate Ras in these cells.

The activation of the ERKs is an important step in

growth factor– induced mitogenic signal transduction. We find

that EGF-induced ERK activation is significantly attenuated in

MPM cells that overexpress the EGFR. ERK activation was

determined by using an anti–phospho-ERK antibody in

Western blots. This antibody recognizes phosphorylated forms

of both ERK1 and ERK2. In normal mesothelium cells, EGF-

induced ERK activation was high at low concentrations of

EGF (1 ng/mL) and increased slightly at a high EGF

concentration (100 ng/mL). In MPM cells, ERK activation

was attenuated at all concentrations tested (Fig. 7) and did not

increase at high concentration.

DISCUSSION

Consistently with previous reports (9–11), we showed that

EGFR was overexpressed in MPM cells compared with normal

pleural mesothelial cells. We showed that EGFR protein was

expressed in MPM cells at a level equivalent to that of the A549

cell line derived from a patient with NSCLC. Numerous groups

reported that EGFR was expressed and activated in A549

(37, 38). MPM cells constitutively expressed several EGFR

ligands such as EGF, TGF-a, and amphiregulin. All of these

Table 2 Values of IC50 or IC25 (Amol/L) in human MPM cell lines evaluated after 10 days of uninterrupted treatment in MTS assay

Cell lines BMS-214662 SCH66336 R115777 RPR-115135 Manumycin Methotrexate

MSTO 1.48 F 0.5 30 F 0.0 21.8 F 2.6 >30 [IC25] >30 F 0.0 [IC25] 0.007 F 0.004
MPP-89 1.21 F 0.01 30 F 0.0 30 F 0.0 [IC25] >30 [IC25] 28.2 F 1.8 [IC25] 0.014 F 0.008
IST-MES1 1.00 F 0.5 30 F 0.0 [IC25] 27.2 F 2.6 [IC25] >30 [IC25] 29.2 F 2.6 [IC25] 0.015 F 0.004
IST-MES2 1.68 F 0.02 22.0 F 4.6 3.4 F 0.6 [IC25] >30 [IC25] 28.7 F 1.5 [IC25] 0.009 F 0.007
H28 1.18 F 0.01 1.7 F 0.3 3.1 F 0.7 >30 [IC25] 26.3 F 2.6 [IC25] 0.008 F 0.003
H513 1.40 F 0.05 15.5 F 2.3 27.7 F 2.9 >30 [IC25] 29 F 1.5 [IC25] 0.005 F 0.002
H2052 2.98 F 0.8 14.5 F 2.1 [IC25] >30 [IC25] >30 [IC25] >30 [IC25] 0.015 F 0.008
H290 3.5 F 0.4 12.4 F 3.1 [IC25] 30 F 0.0 [IC25] >30 [IC25] >30 [IC25] 0.006 F 0.004
ZL-55 1.8 F 1.1 13.1 F 2.4 [IC25] 10 F 1.3 [IC25] >30 [IC25] >30 [IC25] 0.018 F 0.01
ZL-34 1.2 F 2.2 15.8 F 1.6 [IC25] 30 F 0.0 [IC25] >30 [IC25] >30 [IC25] 0.025 F 0.06
HCT116* 0.06 F 0.002 5.8 F 3.8 1.30 F 0.6 2.28 F 0.8 0.52 F 0.05 0.003 F 0.001
A549* 0.04 F 0.001 — — — — 0.011 F 0.003

NOTE. When the IC50 was not reached the IC25 was calculated (extrapolated as linear regression). Data are expressed as the mean F SE of at least
three independent experiments, each done in duplicate.

*Human colon cancer cell line HCT116 and human NSCLC cell line A549 were considered as a standard sensitive control for FTI action.

Table 1 Release of TGF-a, amphiregulin, and EGF from primary
pleural mesothelial cells, MPM, cell lines and primary culture

Cells
TGF-a
(pg/mL)

Amphiregulin
(pg/mL)

EGF
(pg/mL)

HNMC
From biopsy n.1 10 21.1 F 0.4 33.1 F 1.4
From biopsy n. 2 11 F 0.4 21.4 F 0.3 34.4 F 2.3
From biopsy n. 3 18 F 2.5 21.6 F 0.2 32.8 F 0.6
From biopsy n. 4 10 21.6 F 0.4 31.9 F 0.5
From biopsy n. 5 16 F 1.2 21.9 F 0.8 33.9 F 2.6
From biopsy n. 6 18 F 2.2 22.8 F 1.5 33.8 F 0.5
From biopsy n. 7 10 22.6 F 1.7 34.6 F 1.2

MPM cell lines
MSTO 280 F 15.6 244 F 22.4 332 F 42.6
MPP-89 122 F 14.1 102 F 12.6 142 F 11.4
IST-MES1 180 F 16.2 108 F 26.4 188 F 16.1
IST-MES2 110 F 18.2 98 F 8.4 178 F 4.5
H28 150 F 25.7 115 F 29.3 178 F 22.3
H513 130 F 11.1 101 F 17.8 161 F 22.3
H2052 140 F 35.6 87 F 22.4 107 F 39.6
H290 190 F 5.9 104 F 15.9 144 F 35.9
ZL-55 170 F 21.7 104 F 31.5 124 F 21.8
ZL-34 110 F 44.8 80 F 24.4 95 F 14.8

MPM biopsy
From biopsy n.1 211 F 25.8 262 F 14.2 322 F 24.7
From biopsy n. 2 132 F 13.1 102 F 10.0 132 F 17.2
From biopsy n. 3 142 F 18.9 108 F 26.5 138 F 16.2
From biopsy n. 4 140 F 14.1 114 F 15.5 144 F 25.7
From biopsy n. 5 280 F 22.4 215 F 35.2 284 F 25.7
From biopsy n. 6 264 F 11.6 166 F 31.4 185 F 42.4
From biopsy n. 7 245 F 25.1 214 F 36.1 245 F 46.8
From biopsy n. 8 184 F 12.6 155 F 18.2 221 F 15.8
From biopsy n. 9 241 F 10.8 144 F 1.8 165 F 12.2
From biopsy n. 10 175 F 21.4 178 F 24.4 228 F 26.1
From biopsy n. 11 211 F 5.8 152 F 11.1 202 F 16.5

Positive control
A549 248 F 24.6 211 F 44.8 311 F 14.4

NOTE. Cells were cultured for 96 hours. Then the cell medium was
assayed by ELISA for EGF and EGF-ligands. Data are the mean of
duplicate determinations.
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ligands are made as membrane-spanning prohormones that are

processed and released through regulated proteolysis. The

current paradigm is that membrane-anchored growth factors act

as juxtacrine regulators of cell-cell signaling (39, 40). The

observations that MPM cells overexpress amphiregulin, EGFR,

EGF, and TGF-a suggest that excessive EGFR activation can

contribute to mesothelioma aggressiveness.

Nørgaard et al. (24, 25) have shown data suggesting that the

potential clinical use of FTIs could be expanded to include

cancers harboring activated receptor tyrosine kinases as well as

those containing activated Ras. Thus, working with MMTV-

TGF-a mice, they showed that L-744,832 induced reversible

regression of mammary tumors that was paralleled by a decrease

in serum levels of TGF-a secreted by the tumor cells.

We tested the activity of five different FTIs [i.e., SCH66336

(Sarasar), BMS-214662, R115777 (Zarnestra), which have

reached clinical testing (21, 22), RPR-115135, a new non-

peptidomimetic compound (26, 32, 33), and Manumycin (a

natural compound)] on MPM cells. Growth of MPM cells was

substantially not affected by treatment with these FTIs. Among

these five, BMS-214662 was the only one moderately active.

BMS-214662 triggered apoptosis in a small fraction of cells (not

higher than 30%) that was paralleled by a slight decrease in the

levels of TGF-a secreted by treated MPM cells.

Interestingly, MPM cells are sensitive to methotrexate. The

antifolate methotrexate is one of the most successful drugs in

cancer chemotherapy. Although its efficacy is widely attributed

to a decrease in nucleotide biosynthesis (41), methotrexate is

known to increase homocysteine. A potential mechanism for the

detrimental effects of homocysteine is cellular hypomethylation

from an increase in S-adenosylhomocysteine, an inhibitor of

methyltransferases including isoprenylcysteine carboxyl meth-

yltransferase (Icmt). Among the substrates of Icmt is Ras, and

carboxyl methylation of Ras is important for proper plasma

membrane localization and function (42, 43). Recent results (34)

showed that after methotrexate treatment, Ras is mislocalized to

the cytosol, and its signaling functions are impaired, suggesting

that methotrexate has an additional mechanism of action that

leads to an inhibition in Ras signaling. Proteins that terminate

with a carboxyl-terminal CAAX motif, such as the Ras and

RhoB proteins, undergo three sequential posttranslational

processing events:

1. The cysteine (i.e., the C of the CAAX sequence) is

isoprenylated by FTase or geranylgeranyltransferase type I.

2. The last three amino acids of the protein (i.e., the -AAX) are

cleaved off by Rce1, an integral membrane protein of the

endoplasmic reticulum.

3. The newly exposed isoprenylcysteine is methylated by an

endoplasmic reticulum membrane–bound methyltransferase,

Icmt.

These modifications render the C terminus of CAAX

proteins more hydrophobic, facilitating binding to membranes

(21, 22, 42, 43). A search for factors involved in the

intracellular trafficking of Ras has identified a specific and

prenylation-dependent interaction between tubulin/microtubules

and K-Ras. It was found that the polylysine region of K-Ras

located immediately upstream of the prenylation site is required

for binding of K-Ras to microtubules. Removal of the three

carboxyl-terminal amino acids of farnesylated K-Ras with

the specific endoprotease Rce1 abolished its binding to

Table 4 Values of IC50 or IC25 (Amol/L) in human mesothelioma cells in primary culture obtained by human biopsies evaluated after 10 days of
uninterrupted treatment in soft agar

MPM biopsy BMS-214662 SCH66336 R115777 RPR-115135 Manumycin Methotrexate

n. 1 28.8 F 1.4 4.5 F 0.9 [IC25] 12.5 F 2.6 [IC25] >30 25.2 F 1.1 [IC25] 0.017 F 0.02
n. 2 27.0 F 1.3 12.1 F 2.4 [IC25] 11 F 3.1 [IC25] >30 27.2 F 0.3 [IC25] 0.019 F 0.07
n. 3 21.7 F 0.4 5.0 F 0.8 [IC25] >30 [IC25] >30 29 F 1.3 [IC25] 0.025 F 0.04
n. 4 26.5 F 1.1 4.0 F 0.7 [IC25] 4.2 F 0.3 [IC25] >30 28 F 1.2 [IC25] 0.009 F 0.002
n. 5 28.7 F 0.7 30 F 0.0 [IC25] 30 F 0.0 [IC25] >30 22.2 F 0.5 [IC25] 0.018 F 0.03
n. 6 22.1 F 4.2 30 F 0.0 [IC25] 30 F 0.0 [IC25] >30 26.0 F 0.7 [IC25] 0.015 F 0.03
n. 7 24.5 F 1.6 14.0 F 1.5 [IC25] 14.6 F 1.3 [IC25] >30 28 F 1.2 [IC25] 0.025 F 0.07
n. 8 29.5 F 1.4 22.2 F 1.5 [IC25] 25.3 F 0.8 [IC25] >30 >30.0 [IC25] 0.009 F 0.002
n. 9 27.5 F 0.4 30 F 0.0 [IC25] 30 F 0.0 [IC25] >30 >30.0 [IC25] 0.028 F 0.01
n. 10 26.5 F 1.8 300 F 0 [IC25] 30 F 0.0 [IC25] >30 >30.0 [IC25] 0.032 F 0.08
n. 11 30 F 0.0 30 F 0.0 [IC25] 30 F 0.0 [IC25] >30 >30.0 [IC25] 0.017 F 0.02

NOTE. When the IC50 was not reached the IC25 was calculated (extrapolated as linear regression). Data are expressed as the mean F SE of at least
three independent experiments, each done in duplicate.

Table 3 Values of IC25 (Amol/L) in human short-term culture of normal epithelium cells evaluated after 10 days of uninterrupted treatment
in MTS assay

HNMC BMS-214662 SCH66336 R115777 RPR-115135 Manumycin

From biopsy n. 1 >30 >30 >30 >30 >30
From biopsy n. 2 >30 >30 >30 >30 >30
From biopsy n. 3 >30 >30 >30 >30 >30
From biopsy n. 4 >30 >30 >30 >30 >30
From biopsy n. 5 >30 >30 >30 >30 >30
From biopsy n. 6 >30 >30 >30 >30 >30
From biopsy n. 7 >30 >30 >30 >30 >30

NOTE. Data are expressed as the mean F SE of at least three independent experiments, each done in duplicate.
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microtubules. Interestingly, however, methylation of the

carboxyl-terminal prenylcysteine restored binding (43).

A potential drawback of the clinical use of FTIs is that K-Ras

and N-Ras (the isoforms most often mutated in human tumors)

can be efficiently geranylgeranylated in the setting of FTI therapy

(21, 22). This alternate prenylation of the Ras proteins could limit

the efficacy of FTIs in the treatment of Ras-induced tumors. The

existence of an alternate means for prenylation has led several

groups to focus on the postisoprenylation steps mediated by Rce1

and Icmt because those steps are shared by farnesylated and

geranylgeranylated CAAX proteins (34, 35).

In our study all the five drugs inhibited the farnesylation of

HDJ2 protein. Although the inhibition of HDJ2 farnesylation may

indicate that these drugs are truly affecting their intended target,

FTase, the degree of concordance between the farnesylation status

of the HDJ2 chaperone protein, Ras, and/or other farnesylated

proteins that are linked to clinical end points is not known.

Therefore, serial evaluations of HDJ2 farnesylation may be used

as general pharmacodynamic indices of protein farnesylation;

however, concordant studies relating the farnesylation of HDJ2 to

that of proteins linked to tumor proliferation are necessary to

determine the overall use and significance of such assessments.

Indeed, Kurzrock et al. (36) reported that tumor inhibition did not

occur despite the substantial inhibition of FTase enzymatic

activity. Interestingly, the results of preclinical and clinical studies

of the effects of L-778,123, an inhibitor of FTase, as well as

geranylgeranyltransferase type I (to a lesser degree) on various

prenylated proteins clearly showed that the agent was highly

capable of inhibiting HDJ2 farnesylation, whereas the prenylation

of K-Ras was not affected (44). Although these results are likely

explained by the alternate prenylation of N- and K-Ras by residual

geranylgeranyltransferase type I, they illustrate the lack of

correlation between the inhibition of FTase activity and Ras

functionality. A final issue pertaining to assessing the farnesyla-

tion status of HDJ2 and other proteins (i.e., Lamin B) that might

Fig. 3 Detection of apoptosis by ApopTag staining (representative
figure from independent experiments) of MPM cell lines and of MPM in
primary culture treated with the respective IC50 of BMS-214662 for 10
days and stained after 24 hours’ incubation in drug-free medium. The
nuclei of apoptotic cells were stained dark brown. A, MSTO; B, MPP89;
C, from biopsy n. 1; D, from biopsy n.2. The table reports the percentage
(over controls) of apoptotic cells.

Fig. 4 Induction of apoptosis evaluated by internucleosomal DNA
fragmentation (gel ladder). MPM cell lines and MPM in primary culture
were treated with the respective IC50 of BMS-214662 for 10 days.
Representative of three replicate experiments yielding similar results.
Top, untreated cells; bottom, treated cells. m, marker. MPM cell lines: 1,
MSTO cell line; 2, MPP89; 3, IST-MES1; 4, IST-MES2; 5, H28; 6,
H513; 7, H2052; 8, H290; 9, Zl-55; 10, ZL-34; 11, HCT116 (positive
control). MPM primary culture from 1 to 11 different samples.
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suffice as surrogates of relevant target effects is that the precise

mechanism by which FTIs inhibit tumor proliferation and/or

induce cytotoxicity is not known. This is shown by the

responsiveness of cancers with both wild-type Ras and K-Ras

mutations in preclinical studies and clear tumor regressions in

patients with advanced malignancies with an inherently low

incidence of Ras mutations including breast carcinoma, high-

grade astrocytoma, and several types of hematopoietic malignan-

cies (21, 22). In addition, one of the first studies on FTI action (45)

showed that sensitivity/resistance was not related to the inability

of the drug to inhibit the processing of Lamin B. Also, in our

studies the ability of the drugs to inhibit the processing of HDJ2

protein is not correlated with MPM growth inhibition.

It is well known that the observed antitumor properties of

FTIs are not solely due to Ras inhibition but may reflect

inhibition of farnesylation. Prenylated proteins such as RhoB

and centromere-associated CENP-E and -F have been

proposed as the molecular targets of FTIs in all or some

tumor cells (21, 22, 46). However, there remains no consensus

as to the relevant target(s) of FTIs that can satisfactorily

account for the pharmacology of FTIs. BMS-214662, the only

active drug among the five assayed, is the most potent

apoptotic FTI known and exhibits curative responses in mice

bearing a variety of staged human tumor xenografts such as

HCT-116 human colon tumor (47, 48). A recent study (48)

showed that BMS-214662 and BMS-225975, two tetrahydro-

benzodiazepine-based FTIs that have nearly identical structures

and very similar pharmacologic profiles associated with FTase

inhibition, displayed different apoptotic property. BMS-225975

did not cause tumor regression and at best caused partial

tumor-growth inhibition in staged HCT-116 human colon

tumor xenografts. Lack of tumor regression activity in BMS-

225975 was attributable to its relatively weak apoptotic

potency, not to poor cell permeability or pharmacokinetics.

The study concluded that it is very unlikely that FTase

inhibition alone can account for the apoptotic potency of

BMS-214662.

Table 5 Release of TGF-a from primary pleural mesothelial cells,
MPM cell lines, and primary culture

Cells BMS-214662 RPR-115135

HNMC
From biopsy n. 1 14 F 1.3 10
From biopsy n. 2 16 F 1.4 10
From biopsy n. 3 14 F 1.8 19 F 2.7
From biopsy n. 4 10 11 F 0.4
From biopsy n. 5 17 F 19 13 F 1.7
From biopsy n. 6 14 F 1.3 21 F 3.3
From biopsy n. 7 10 14 F 0.6

MPM cell lines
MSTO 211 F 10.2* (�24.6) 395 F 12.8* (41.1)
MPP-89 98 F 4.1* (�19.7) 232 F 13.5* (90.2)
IST-MES1 146 F 1.2* (�18.9) 280 F 26.7* (55.6)
IST-MES2 76 F 8.7* (�31.0) 253 F 38.1* (130)
H28 100 F 15.4* (33.3) 232 F 21.1* (54.7)
H513 98 F 1.9* (�24.6) 260 F 18.5* (100)
H2052 110 F 15.1* (�21.4) 210 F 41.6* (90.9)
H290 135 F 15.7* (�29) 250 F 15.8* (31.6)
ZL-55 135 F 11.2* (�23.7) 242 F 22.5* (79.3)
ZL-34 82 F 16.8* (�25.4) 182 F 24.6* (65.5)

MPM biopsy
n.1 176 F 25.8* (�16.6) 298 F 35.1* (41.2)
n. 2 95 F 18.6* (�28.0) 258 F 23.4* (95.5)
n. 3 103 F 8.2* (�27.5) 258 F 17.2* (81.7)
n. 4 118 F 17.6* (�15.7) 262 F 19.2* (87.1)
n. 5 243 F 12.3* (13.2) 397 F 28.8* (41.8)
n. 6 242 F 8.2* (�13.6) 395 F 21.8* (41.1)
n. 7 217 F 8.6* (�11.4) 428 F 33.3* (74.7)
n.8 221 F 16.4* (�19.3) 448 F 16.7* (63.5)
n. 9 142 F 17.3* (�16.5) 338 F 18.8* (98.8)
n.10 138 F 11.8* (�26.8) 411 F 22.5* (42.6)
n. 11 198 F 27.6* (6.6) 310 F 33.5* (68.1)

Positive control
A549* 55 F 4.1* (�77.8) 85 F 24.6* (65.7)

NOTE. Cells were cultured for 24 hours and then drug was added
for following 48 hours. The cell medium was then assayed for TGF-a
release by ELISA. Controls are reported in Table 1. Data are the mean of
duplicate determinations. Values in parentheses are the percentage
decrease or increase in the amount of TGF-a released in the medium
after 48 hours’ treatment.

*P = 0.05, statistically significant with respect to control values
(reported in Table 1).

Fig. 5 Inhibition of farnesylation in MPM cells. A, cell lines; B, cells
in primary culture obtained by biopsies. Extract from cells treated for
24 hours with FTIs were resolved by SDS-PAGE and protein detected
by immunoblotting as described in Materials and Methods. CTRL,
controls. Representative of three replicate experiments yielding similar
results.
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It is not clear at present if and how FTI-induced apoptosis is

related to FTase inhibition in cells because no systematic attempt

has been made to conduct studies at concentrations that are

relevant to FTase inhibition and apoptosis. Manne et al. (48)

reported that the BMS-214662 IC50 concentration able to inhibit

the farnesylation of H-Ras or K-Ras was 1.3 and 8.4 nmol/L,

respectively. This concentration is very close to that inducing

apoptosis in human colon cancer cell line HCT-116 (0.1-1.0

Amol/L continuous exposure for 48 hours). In MPM cell lines

and in MPM primary cells the IC50 values were in the range 1.0

to 4.0 Amol/L and 22.0 to 30.0 Amol/L, respectively. These

concentrations induced apoptosis in �30% of cells after 10 days’

continuous exposure. It may be possible to suppose that the

BMS-214662–induced apoptosis in MPM would not be related

to inhibition of farnesylation.

Exposure of cells to growth factors results in a rapid

increase in GTP-bound Ras, which is the activated form of the

protein. Activated Ras binds to a downstream kinase RAF, which

in turn becomes activated (12–20). When we examined the

effect of EGF concentration on Ras loading of GTP in normal

pleural mesothelial cells and in MPM, we observed a different

sensitivity. In normal cells, EGF-induced Ras loading was

detectable almost equally at both low and high concentrations.

Interestingly, in MPM cells, Ras activation was detectable at low

concentrations of EGF whereas it was impaired at high EGF

concentrations, suggesting that in these cells EGFR over-

expression leads to alterations in EGF-induced Ras loading.

ERK phosphorylation paralleled Ras activation by EGF; in

normal mesothelium cells, EGF-induced ERK activation was

high at low concentrations of EGF and increased slightly at a

high EGF concentration. In MPM cells ERK activation was

attenuated at all concentrations tested. It is, therefore, interesting

to speculate that one mechanism of resistance involves the

presence of Ras-independent mechanisms for growth factor

activation of the mitogen-activated protein kinase signaling

cascade. This mechanism might explain the resistance to FTI

action.

As suggested by Habib et al. (40), an interesting general

principle is that in cells expressing a high level of the EGFR,

downstream signaling is strongly influenced by the concentra-

tion of EGF in the medium. Thus, increasing the expression of

the EGFR might not result in a uniform alteration or

Fig. 6 Ras activation assays
in response to EGF. Normal
mesothelial cells were com-
pared with MPM cells in pri-
mary cultures. The assay was
done as described in Materials
and Methods. Ras activation is
impaired in MPM cells in
primary cultures at high EGF
concentrations (100 ng/mL).
Cells were treated with EGF
for 10 minutes. Representative
of three replicate experiments
yielding similar results.

Fig. 7 Erk activation in re-
sponse to EGF. Normal meso-
thelial cells were compared with
MPM cells in primary cultures.
The assay was done as de-
scribed in Materials and Meth-
ods. Erk activation is impaired
in MPM cells in primary cul-
tures at high EGF concentra-
tions (100 ng/mL). Cells were
treated with EGF for 10
minutes. Representative of three
replicate experiments yielding
similar results.
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amplification of downstream signals. For example, even among

signals that are attenuated, differences can be detected. In MPM

cells, Ras activation is attenuated at high EGF concentrations.

Our data highlighted the concept that the same signaling

pathwaycanberegulatedindifferentwaysandtheseregulationscan

differ between different cells of different origin. Furthermore,

distinct signaling pathways cross talk with each other. Therefore, a

compensatory pathway can emerge or selectively strengthen after

inhibitorsblockonespecificpathway.Differentsignalingpathways

can control or affect the same cellular function, and one single

signaling pathway can regulate different cellular functions. This

apparently redundant cell signaling network actually may reflect a

minor change mechanism for cells to respond and adjust to

combined effects of simultaneous or sequential stimulation by

many extracellular or internal signals and to control duration and

intensity of each signal.

The results reported and commented in this article confirm the

peculiar nature of MPM and add new information on its typical

resistance to virtually any adopted chemotherapeutic strategy. The

message we would like to draw from our experience is that by

realizing a translational study,wehave gathered froma single set of

experiments a double set of information: an explanation for the

clinical failure of drugs, together with a deeper basic knowledge on

the disease.

Ideally, translational research is defined as the process of

translating findings derived in basic science to the development

of new understanding of disease mechanisms, diagnosis, and

therapeutics. It is a functional bidirectional bridge among basic

and clinical researchers realized through ad hoc collaborative

efforts (48–53).

The data derived from our experience could help in

planning future translational studies in MPM.
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