
JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 7 15 FEBRUARY 2002

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università dell'Insubria
Annihilation rate in positronic systems by quantum Monte Carlo:
e¿LiH as test case

Massimo Mellaa) and Simone Chiesab)

Dipartimento di Chimica Fisica ed Elettrochimica, Universita´ degli Studi di Milano, via Golgi 19,
20133 Milano, Italy

Gabriele Morosic)

Dipartimento di Scienze Chimiche, Fisiche e Matematiche, Universita´ dell’Insubria, via Lucini 3,
22100 Como, Italy

~Received 4 October 2001; accepted 28 November 2001!

An accurate method to compute the annihilation rate in positronic systems by means of quantum
Monte Carlo simulations is tested and compared with previously proposed methods using simple
model systems. This method can be applied within all the quantum Monte Carlo techniques, just
requiring the accumulation of the positron–electron distribution function. The annihilation rate of
e1LiH as a function of the internuclear distance is studied using a model potential approach to
eliminate the core electrons of Li, and explicitly correlated wave functions to deal with all the
remaining particles. These results allow us to compute vibrationally averaged annihilation rates, and
to understand the effect of the Li1 electric field on positron and electron distributions. ©2002
American Institute of Physics.@DOI: 10.1063/1.1436464#
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I. INTRODUCTION

In positron and positronium~Ps! chemistry and physics
the annihilation rateG2g plays an important role since
correlates with many aspects of the local environment wh
the positron annihilates. For instance, ‘‘pick-off’’ annihila
tion in solutions and in solid materials, ‘‘on the fly’’ annih
lation in atomic and molecular gases, and bound state a
hilation of positronic compounds are just few of th
experiments whereG2g can be measured and successiv
interpreted.

Although these experiments are relevant both tech
logically and scientifically,1,2 only few theoretical studies
have been devoted to accurately compute annihilation r
for realistic systems like atoms and molecules in order
compare with experimental data or to predict trends.3–11

Moreover, these have been restricted to deal with at m
four active electrons, so that only a bunch of systems h
been studied so far. We believe this scarceness of resul
be primarily due to the intrinsic difficulty in obtaining accu
rate wave functions for larger systems, and to the comp
tional effort requested with respect to ordinary matter co
pounds when standardab initio methods are employed.12

For these reasons, quantum Monte Carlo~QMC!
methods13 represent an alluring alternative to these metho
to density functional theory, and to explicitly correlated wa
functions in computing energies and properties of reali
positronic systems. QMC techniques are well described
the literature, so we avoid burdening this paper with the
tails of the methods and constrain ourselves to discuss
the technical issues relevant for the specific problem.

a!Electronic mail: Massimo.Mella@unimi.it
b!Electronic mail: Simone.Chiesa@unimi.it
c!Electronic mail: Gabriele.Morosi@uninsubria.it
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Not requiring the analytical calculation of integral
QMC allows one to use any physically sensible wave fu
tion. This possibility increases the chances to obtain an
curate description of any class of systems once all the
evant physical information is included in the chos
analytical form of the wave function. Having defined a tri
wave functionCT for a system, QMC techniques allow on
to compute the differential and nondifferential properties
the system by samplingCT

2, CTC0 , or C0
2. Here,C0 is the

exact ground-state function of the system. This task is u
ally accomplished by creating a distribution of points~also
known as configurations or walkers! in configurational space
whose density is proportional to the aforementionedCT

2,
CTC0 , or C0

2.
Keeping in mind the above remarks, it might appear t

the QMC methods should accurately predict any interes
observable for positronic systems. This is indeed correct
cept for extremely local operators like Dirac’s delta~d!, and
hence forG2g which is proportional to its expectation value
for which an accurate sampling of small configuration
space volumes is needed. These operators are well know
represent a challenge for QMC due to the discrete natur
the configuration ensemble and the finite length of the sim
lations.

As far as the mean value of the Dirac’s delta~d! operator
is concerned, one faces an additional difficulty when tryi
to estimate its mean value. Even admitting a perfect sa
pling in the regions where two particles are close to ea
other, the primitive method of counting the number of tim
the interparticle distancer is smaller than a given radiusr w

~i.e., counting the ones that fall into a spherical well of rad
r w!5 has an associated statistical error that diverges forr w

→0.11 This fact means that the estimation of the statisti
error of the extrapolated value is based on shaky ground
2 © 2002 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

https://core.ac.uk/display/53551454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a
sia

th
th
u

a
th

th
es
tia

e

,

am
e

d
a

-
lin

a
j

al
nc

x
e
bu

e

te
e

ards
e-
m-
at-

ond

ble

ms
ron

r-
tes
t-
na-
ve,

n
le
n

the
of
ma-
the

e of
t
tely

hod

al
-

-

n
by

e
ct
le

r
Al-

rk
d
to

2853J. Chem. Phys., Vol. 116, No. 7, 15 February 2002 Positronic systems
Although not a solution, a slightly better approach w
devised by substituting the simple sphere with a Gaus
function centered at the coalescence point.8,9,11The variance
of this estimator also goes to infinity upon decreasing of
Gaussian width, but it diverges less fast than the one of
spherical well, therefore allowing a statistically more acc
rate estimation of̂d(r 21)&5( i^d(r i 1)&.

Due to the interest in computinĝd(r )& for many sys-
tems, efforts have been made to solve these problems,
remedies have been suggested in the framework of all
QMC techniques.

As far as variational Monte Carlo~VMC! is concerned,
different methods have been proposed that may solve
difficulty, allowing one to compute the needed quantiti
One of these methods starts from the distribution differen
identity

¹2
1

r
524pd~r !, ~1!

which allows one to write, after specializing for th
electron–positron pair10

^d~r 11!&T5E d~r 11!CT
2~R!dR

52
1

2p E CT
2~R!

3H ¹ r1

2 CT~R!

CT~R!
1@¹r1

ln CT~R!#2J 1

r 11
dR,

~2!

where R5(r1 ,r2 ,...,r1) is a point in configuration space
and the trial wave functionCT is normalized. Although this
integral has a well-defined value that can be computed s
pling CT

2, it is well known that its variance diverges over th
same distribution.14 This fact implies that no error boun
~i.e., standard deviation! can be associated with its value,
dangerous situation one would like to avoid.

Langfelderet al.14 proposed a possible way to circum
vent this problem based on a modified importance samp
transformation, whereCT

2( i1/r i 1
2 is sampled instead ofCT

2.
Always starting from Eq.~2!, one could also exploit the

approach proposed by Assaraf and Caffarel15 to compute the
expectation value needed to obtain nuclear forces by me
of the Hellman–Feynmann theorem. They showed that a
dicious choice of a renormalized operator, whose mean v
is equal to the original one, can reduce the infinite varia
to a finite value.16

A completely different approach was pursued by Ale
ander and Coldwell.17 They proposed to compute all th
mean values sampling an analytically normalizable distri
tion function g(R), so that the normalizationNT of CT is
easily estimated by means of

1

NT
2 5M 21(

i 51

M

CT
2~Ri !/g~Ri !, ~3!

where theM points sample the normalizedg. If a second
normalizable distributiongc(R), constrained on the subspac
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r15r1 , is employed to guide the simulation and to compu
NT

c in Eq. ~3!, then^d(r 21)& can be easily estimated by th
(NT

c /NT)2 ratio.
Although these three methods represent a step tow

the solution of this complicated problem in the VMC fram
work, and are currently used for ordinary electronic co
pounds with success, the situation still remains far from s
isfactory for positronic systems. For these systems bey
the problem of the method used to compute^d&, there is
another difficulty: as far as we know, nobody has been a
to optimize an accurateCT for a positronic system with
more than four electrons. More specifically, for large syste
explicit correlation between the electrons and the posit
has been difficult to introduce.11 This means that the
‘‘pileup’’ of the electron density over the positron is not co
rectly described, therefore giving rise to annihilation ra
that are too small.18 Possible sources of this unwanted ou
come are the lack of knowledge about the complicated a
lytical form that such an accurate wave function should ha
and some drawbacks of the optimization method used.19

In order to go beyond these difficulties, the diffusio
Monte Carlo~DMC! method is usually employed to samp
CTC0 .20–22This technique is able to project the contributio
of the excited states from the startingCT , allowing the exact
calculation of the ground-state energy. Unfortunately,
d(r 21) operator does not commute with the Hamiltonian
the system, so the simulation results are only an approxi
tion to the exact mean value when computed by means of
mixed estimator

^d~r21!&M5E d~r 21!CTC0 dR. ~4!

Although this value represents a more accurate estimat
the exact̂ d(r 21)& than ^d(r 21)&T , it has been found tha
the quality of the results strongly depends on how accura
CT mimics the correct interparticle distributions.

Whereas both the spherical well and Gaussian met
can be employed to estimate^d(r 21)&M in Eq. ~4!, Jiang
and Schrader5 pointed out that the use of the differenti
identity Eq. ~1! in a DMC simulation requires some uncon
trolled approximation, sinceCTC0 is not known analytically
but only sampled.

Nevertheless, it has been shown10 that an accurate esti
mate of^d(r 21)& can be obtained simply by substitutingCT

2

in Eq. ~2! with CTC0 , if CT correctly describes the
positron–electron distribution.

A possible solution to the difficulty that DMC meets i
estimating the exact expectation values is represented
samplingC0

2 instead ofCTC0 , and computinĝ d(r 21)&
without resorting toCT in any way. This idea rules out th
possibility of using Eq.~1!, since one just samples the exa
C0

2 distribution and no analytical information is availab
about its form.

In order to overcome this problem, Langfelderet al.14

proposed to correct̂d(r )&T by accumulating the walke
weights in a small sphere around the coalescence point.
though this way may look promising, we noticed in our wo
on positron complexes23 that long decaying times are neede
in order to project all the excited-state contributions and
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



he
o-
in

t

th
s

d
th
C
d

o

p
n
t

u

a
ro

s
re
e

bl
th
ed
on
q.
a
ty

he

fo
o

c

nt
ic

ith
re

lie

-

lu

e-

on
ht-

e
e-

r-

nd

vin

tri-
f

he

an

2854 J. Chem. Phys., Vol. 116, No. 7, 15 February 2002 Mella, Chiesa, and Morosi
correctly build the pileup of the electron density over t
positron if CT poorly describes this feature. This fact pr
duces large fluctuations in the weight values, therefore
creasing the statistical noise of the results.

A better approach may be represented by the use of
tagging algorithm proposed by Barnettet al.24 in connection
with the branching step usually employed in DMC. Here,
ratio C0 /CT , needed to sampleC0

2, is computed by mean
of the number of daughters of each configuration.

Moreover, Baroni and Moroni25 have recently propose
an alternative algorithm that appears to be well suited for
task. This is based on a ‘‘path integral’’ view of the DM
algorithm, where the branching step has been substitute
an accept/reject step in order to exactly sampleC0

2.
Unfortunately, these approaches do not solve the pr

lem of the scarce sampling in the volume aroundr 50, a
problem that is present even for small simulation time ste
As stated previously, this comes from the finite length a
discrete nature of the QMC simulations. As an attempt
overcome this difficulty, Langfelderet al.14 implemented in
their algorithm the correct sampling of the electron–nucle
cusp region as proposed by Umrigaret al.:26 this adaptation,
however, does not appear straightforward to correct the s
pling of both the electron–electron and electron–posit
cusps.

Keeping in mind all the aforementioned problems in e
timating ^d&, we believe the Monte Carlo practitioners a
left only with the hope of devising an approximate, but hop
fully solid and accurate, method to compute this observa

The main aim of this paper is to discuss and test
accuracy of computinĝd& using some simple methods bas
only on the sampling of the positron–electron distributi
function without any usage of the differential identity E
~1!. These methods will be compared with the Gaussian
proximation discussing relative merits and applicabili
Moreover, we apply them to the realistic e1LiH model case
in order to study the annihilation rate as a function of t
internuclear distanceR. The G2g versusR results will allow
us to compute the vibrationally averaged annihilation rate
this system and to discuss molecular environment effects
the annihilation rate itself and on contact distribution fun
tions.

The outline of this work follows. In Sec. II we prese
the basis of the methods. Section III describes their appl
tions to model systems for which the exact^d&’s are known.
As an application of this technique, we deal in Sec. IV w
the model e1LiH. Our conclusions and proposals for futu
work are then presented in Sec. V.

II. METHODS

Since we want to develop a method that can be app
to any QMC technique, henceforth we will usef (R) to in-
dicate cumulatively CT

2(R), CT(R)C0(R), or C0
2(R).

Here,R5(r1 ,r2 ,...,r1) is a point in configuration space,r i

and r1 being, respectively, thei th electron and positron po
sitions.

We are interested in computing the expectation va
^d(r 21)& over the distributionf (R), i.e.,
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^d~r 21!&5
* f ~R!d~r 21!dR

* f ~R!dR
. ~5!

Recalling thatf (R) is symmetric under any exchange b
tween electrons, Eq.~5! can be rewritten as

^d~r 21!&5
*r~r2 ,r1!d~r 21!dr2 dr1

*r~r2 ,r1!dr2 dr1
, ~6!

where r(r2 ,r1)5Nele* f (R)dr2 ,...,drN . Introducing the
new coordinatesR215r21r1 andr215r12r2 , after in-
tegration overR21 and spherically averaging overr21 , one
gets

^d~r 21!&5
*V~r21!d~r 21!dr21

*V~r21!dr21

5
*V~r21!d~r 21!r 21

2 dr21

*V~r 21!r 21
2 dr21

5
V~0!

*V~r 21!r 21
2 dr21

, ~7!

whereV(r 21) is the spherically averaged positron–electr
distribution. Although these manipulations are quite straig
forward, they highlight that in order to compute^d(r 21)&
one must have accurate values for bothV~0! and the denomi-
nator *V(r 21)r 21

2 dr21 . Therefore, both the coalescenc
region and the tail of the distribution must be correctly d
scribed.

In order to thoroughly present the complexity of the cu
rent problem, Fig. 1 shows a typical behavior ofV(r 21) as
sampled from the model wave function for one electron a
one positron

C1~r2 ,r1!5exp@2r 220.25r 120.25r 21#, ~8!

by means of a standard VMC simulation using the Lange
algorithm and the accept/reject step.13 This simulation was
carried out sampling a grand total of 3.753109 configura-
tions and using a time step of 0.01 hartree21, a fairly small
time step for this simple wave function. The sampled dis
bution of r 215r was collected on a grid with a bin width o
dr 50.025 bohr, and then the number of timesr 21 was
found inside a given bin was divided by the volume of t
spherical crown@r 2dr ,r #, V(r ,dr )54p/3@3r 2dr 23rdr 2

1dr 3#. The values so obtained were attributed to the me
radius of the spherical crown,r̄ 5pdr @4r 326r 2dr 14rdr 2

FIG. 1. Behavior ofV(r 21) sampled fromC1 .
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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2dr3#/V(r,dr). This is equivalent to approximatingV(r ) as a
straight line inside each spherical crown, a fairly good a
proximation in such a small bin.

We want to stress that the shape of the distribution w
found independent of the time step over a broad range
values. This ensures that no systematic bias is present d
the finite time step. From Fig. 1 one can easily notice
abrupt decrease of the distribution in the region close tr
50. This represents the aforementioned inability of Mon
Carlo simulations to correctly sample the distribution clo
to a coalescence point in spite of the large number
sampled configurations. It also seems to indicate that, du
this inability, any well-based method~e.g., both the spherica
well and Gaussian methods! should return an inaccurate an
swer for rw smaller than a certain threshold. Conversely,
the regions withr .0.5 bohr seem to be adequately describ
by the sampled distribution, and therefore we propose to a
lytically continue their shape extrapolating tor 50 by means
of a suitable functional form. This idea allows one to expl
the knowledge about the exact form ofV to improve the
local description in the small radius regions. For instance
one samplesf 5C0

2, the exact value of the cusp conditio
can be used as a way to constrain the model to behave
rectly. This trick can also be used in both the VMC and DM
simulations, since it is often easy to obtain the cusp condi
of the sampledf knowing the analytical form ofCT . This
method could be implemented in two different ways. Fir
one could choose an analytical functionv(r ) to fit V for all
the electron–positron distances. This function should
flexible enough to properly describe both short-range
long-range behavior ofV. More specifically, close tor 50
V(r ) behaves like exp(2ar), wherea is strictly related to
the cusp condition. Differently, in the large r regionsV(r )
follows exp(2br), whereb is dependent on the positron a
finity ~PA! of the system. A possible choice forv(r ) is the
Padé–Jastrow form

v~r !5Nv expF2
ar 1br 2

11gr G , ~9!

wherea can be chosen to havev(r ) satisfy the correct loca
behavior close tor 50. The fitted form can successively b
used to estimate bothV~0! and the denominator in Eq.~7!.

Second, if the form ofV(r ) is more complicated~e.g., it
has multiple maxima!, it is possible to resort to a local fit b
v(r ) in the region close to the cusp in order to get theV~0!
value. Then, the normalization integral could be split in tw
parts, one computed usingv(r ) and the other directly using
the sampled distribution. Specifically for the distribution
Fig. 1, one could fit the sampledV values in the range@0.5,
1.0# bohr constrainingv(r ) to have both the exact cusp b
havior and to have the same value of the sampledV for r
51.0 bohr. Then, the normalization integral can be e
mated integrating numericallyv(r ) for 0<r<1.0, and em-
ploying the trapezoidal formula for the remaining samp
values. We would like to mention that this necessity is
ready present for small systems like e1Be.27

Although the two proposed methods are approxima
they might prove themselves to be quite accurate in prac
allowing the Monte Carlo practitioner to easily estimate t
Downloaded 03 Feb 2002 to 159.149.53.27. Redistribution subject to A
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collision probability between two particles. In turn, this w
allow us to compute the annihilation rate in positronic sy
tems, therefore presenting the chance to directly comp
with the experimental results.

In order to show that this is exactly the case, in the n
section we present the results obtained computing^d(r 21)&
for some model systems whose exact values are easily
tained using different methods.

Methods similar to ours, although quite different
many details, have been applied by Ortiz28 and by Mairı´
Fraser29 to the case of a positron embedded in the jelliu
Their methods were somehow tailored to the specific sys
under study, so that no direct comparison with our propos
can be made. Nevertheless, the results they extracted
the simulations can be useful to seek possible correlat
between the magnitude of the pileup effect and the lo
electron density.

III. TEST OF THE METHODS USING MODEL
SYSTEMS

To test the accuracy of the proposed methods, we c
puted thê d(r 21)& expectation value for simple model sy
tems containing only one electron and one positron. M
specifically, some model wave functionsC i were chosen in
order to represent the variety of electron, positron, a
electron–positron distributions that could be found in a p
itron atomic system. Then, theC i

2’s were sampled by mean
of VMC simulations similar to the one discussed above,
order to collect the electron–positron distributionV.

We selected three model systems as representative
fairly large class of positron complexes. The first one
given by the wave functionC1 @see Eq.~8!#. The second has
the analytical wave function

C2~r2 ,r1!5expF2r 21
0.15r 120.5r 1

2

11r 1
20.5r 21G ,

~10!

where the simple exponential inr 1 of C1 is substituted by a
Padé–Jastrow type, and the exact cusp condition betw
electron and positron has been introduced.

To mimic the presence of core and valence shells,
chose as a third function

C3~r2 ,r1!5H expF2
r 212r 2

2

11r 2
G

10.001 expF15r 223r 2
2

11r 2
G J

3expF0.15r 120.5r 1
2

11r 1
20.5r 21G . ~11!

To compute the exact valuêd(r 21)& for these models,
we used its definition

^d~r 21!&5
*C i

2~r2 ,r1!d~r 21!dr1 dr2

*C i
2~r2 ,r1!dr1 dr2

5
*C i

2~r2 ,r2!dr2

*C i
2~r2 ,r1!dr1 dr2

. ~12!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The simple radial integral in the numerator was computed
numerical integration on a grid, while the denominator w
estimated by means of Eq.~3! using g(r2 ,r1)5A3B3

3exp@22Ar122Br2#/p2.
The two distributions sampled as a function ofr from

C2 andC3 turned out to possess a behavior quite similar
C1 . Therefore, we avoid showing all of them and refer
Fig. 1 as a template for such distributions. Due to th
smoothness, we fitted them using Eq.~9! over the range
0.3–10 bohr constraining the Pade´–Jastrow form to have the
exact cusp condition, i.e.,20.5, 21.0, and21.0, for the
threeC i , respectively. To test the correctness of the cho
fitting range, we slightly modified the lower limit withou
finding statistically meaningful differences. Then, the fittedv
was used to estimate bothV~0! and the denominator in Eq
~7! by means of numerical integration. The computed resu
shown aŝ d(r 21)&Pade8 , are presented in Table I togeth
with the ‘‘exact’’ values computed using Eq.~12!.

During the simulations we also computed the mean v
ues ^G(r 21 ,g)&, whereG(r 21 ,g)5Ng exp@2r21

2 /g# is a
normalized Gaussian function, forg50.01, 0.0033, 0.002
and 0.001. This technique was proposed by Kennyet al.30

and successively applied in Refs. 9 and 11. The^G(r 21 ,g)&
values were extrapolated tog50 by fitting them with the
simple functionaAg1b, the extrapolation law deduced i
Ref. 11 using model systems. The fitting was quite accu
for all three cases, and the results forb5^G(r 21,0)& are
also shown in Table I.

Comparing ^d(r 21)&Pade8 with the exact results, it
strikes a very good agreement between these two set
values, the relative error being 1% at most for all the mod
It must be pointed out that this level of relative accuracy
sufficient to thoroughly compare with the experimental da
It is also noted that the application to other model syste
gave a similar or better relative accuracy, therefore show
the wide applicability of the method.

As already pointed out,8,9 the extrapolated̂G(r 21,0)&
values are also in good agreement with the exact res
Nevertheless, one should expect to obtain really inaccu

TABLE I. ^d(r 21)& expectation values for the three model systemsC1 ,
C2 , andC3 . The ‘‘exact’’ values are computed by Eq.~12!. ^d(r 21)&Pade8
are computed fitting Eq.~9! to the sampled distribution as explained in th
text. g is the width of the Gaussian used to compute^G(r 21 ,g)&.

^d(r 21)&exact ^d(r 21)&Pade8 g ^G(r 21 ,g)&

C1 0.0100 0.0216~1!
0.0033 0.0219~1!
0.0020 0.0222~2!
0.0010 0.0223~3!

0.022 602~7! 0.02229 0.0000 0.0228~3!
C2 0.0100 0.0979~2!

0.0033 0.1028~3!
0.0020 0.1043~4!
0.0010 0.1058~7!

0.109 81~1! 0.11052 0.0000 0.1095~7!
C3 0.0100 0.0842~2!

0.0033 0.0886~3!
0.0020 0.0901~4!
0.0010 0.0916~7!

0.093 99~1! 0.09382 0.0000 0.0950~7!
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approximations to the exact results using^G(r 21 ,g)& with
g smaller than some threshold value. This simple idea
based on the incorrect sampling of the density close tr
50 shown in Fig. 1, so the good agreement found in this a
previous works calls for an explanation. This is easily o
tained superimposingG(r 21 ,g)r 21

2 to the sampled
V(r 21), i.e., comparing the behavior of the two factors th
form the function whose integrals must be estimated. It tu
out thatG(r 21 ,g)r 21

2 for g>0.001 has its largest value
whereV(r 21) still behaves correctly, therefore allowing
correct estimate of the integrals. Tests carried out us
smaller values ofg gave much worse results than the on
reported, so we believe it is safer to limit the values of th
parameter to the range 0.001–0.01 in order to obtain a m
ingful extrapolation. Although this may look problematic
some way due to the aforementioned difficulties, from t
results in Table I^G(r 21,0)& appears to be a good firs
estimate of the exact̂d(r 21)&. In conclusion, we sugges
Monte Carlo practitioners always carry out both estimatio
i.e., extrapolatinĝG(r 21 ,g)& and fitting the sampledV, as
a way to safely estimatêd(r 21)&.

As far as diffusion Monte Carlo and the exact sampli
of C0

2 are concerned, the application of these methods
straightforward, and no more complications are expec
than in the VMC case.

IV. THE e¿LiH SYSTEM

Having verified the accuracy of the proposed method
computing Dirac’s delta mean values, we applied it to t
calculation of the annihilation rateG2g of e1LiH for various
internuclear distancesR.

Although this system has already been carefully stud
employing both QMC methods11,31 and explicitly corre-
lated Gaussian~ECG! functions,6,7,32 a description ofG2g

as a function of the molecular geometry is still lackin
Up to now, there are onlŷd(r 21)&5^d(r 11)&1^d(r 21)&
1^d(r 31)&1^d(r 41)& results atR53.015 bohr@0.0240~8!
from DMC simulations11 and 0.024 992 form ECG calcula
tions 6#, at the estimated equilibrium distanceR53.348 bohr
~0.027 252!,7 and the nonadiabatic results of Mitroy an
Ryzhikh, 0.034 016 and 0.032 588.32 These last values wer
obtained using ECG in connection, respectively, with the s
chastic variational minimization~SVM! and the frozen-core
SVM ~FCSVM! methods, and are roughly 15%–20% larg
than the ECG6,7 and DMC11 clamped-nuclei ones. This un
expected result led Strasburger6 to consider the possibility of
the flattening of the potential energy curve of e1LiH with
respect to the LiH one, a feature that may allow t
positronic molecule to visit the large internuclear distan
region where the Dirac’s delta mean value is expected to
larger. However, Mitroy and Ryzhikh32 pointed out that
simple ECGs may not represent the best basis function
describe vibrational nuclear motion, and that their vibratio
averaged nuclear distances are probably too large.

In a previous work,31 we computed the complete curv
using the DMC technique, showing that the flattening is
deed present, and that a strong redshift of the vibratio
spectrum with respect to LiH must be expected. Unfor
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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nately, due to the high computational cost of our highly c
related trial wave functions, at that time we did not comp
the behavior of̂ d& as a function ofR. In this work we still
adopt the Born–Oppenheimer~BO! approximation, so we
predict the annihilation rate for each vibrational state of
system and compare our values with the nonadiabatic re
of Mitroy and Ryzhikh.32

In order to study the effect of the molecular geometry
the annihilation rate without using the computationally e
pensive wave function used in Ref. 11, we decided to emp
a model potential approach to eliminate the ‘‘core’’ electro
of the Li1 fragment. We believe such an approach to
physically well grounded, as explained by the following su
porting reasons. First, the ECG calculations carried out
Strasburger6,7 on the e1LiH system show that the annihila
tion takes place primarily with the two electrons that may
attributed to the H2 fragment. Second, the frozen core a
proximation developed by Mitroy and Ryzhikh4 has been
found to describe accurately the annihilation process
e1Li, e1Be, LiPs, and e1He3S when compared with the
corresponding all-electron calculations.

In order to reduce the number of active electrons,
used for e1LiH the model Hamiltonian

Hmod52
1

2
@¹1

21¹2
21¹1

2 #1Vmod
e ~r1!1Vmod

e ~r2!2
1

r H1

2
1

r H2
1

1

r 12
1

1

r H1
2

1

r 11
2

1

r 21
1Vmod

1 ~r1!.

~13!

Here, ther i j are interparticle distances, 1 and 2 being t
electrons,1 the positron, andH the hydrogen nucleus
Moreover, the Bardsley’s model potential33

Vmod
e ~r i !5

21110 exp@22.202r iLi#

r iLi
, ~14!

wherer iLi is the distance between thei th electron and the Li
nucleus, has been used to represent the 1s2 Li1 core elec-
trons. To model the interaction of the positron with the fr
zen Li1 fragment, we simply added to the repulsive Co
lomb potential of the nucleus the potential of the two froz
core electrons as described by an STO21s orbital with Z
53, obtaining

Vmod
1 ~r1!5

3

r Li1
16 exp@26r Li1#

22
12exp@26r Li1#

r Li1
, ~15!

wherer Li1 is the Li–positron distance.
To test the accuracy of this model potential, we co

puted the energy for the ground state of the three syst
Li, Li 2, and LiPs. The energy values are, respective
20.1953~2! hartree, 20.2191~3! hartree, and20.4485~3!
hartree. They give an electron affinity of 0.0238~4! hartree, a
positron affinity~PA! of 0.2294~4! hartree, and a Ps bindin
energy~BE! of 0.0032~4! hartree. While the electron affinity
turns out to be in fair agreement with the experimental val
namely 0.023 hartree,34 both PA and BE are roughly 0.00
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hartree smaller than the best estimate.4 These discrepancie
might be due to the absence of polarization effects of
core electrons due to the two active electrons and the p
tron, and to a relatively inaccurate representation of thes2

electron density by means of a single STO21s function.
Nevertheless, since we are primarily interested in obtainin
semiquantitative description of the changes inG2g for this
system, we believe the approximations introduced in
model Hamiltonian to be small enough to allow for a corre
prediction of the trend for this important observable.

In order to accurately describe the wave function of t
three active particles at the VMC level, we employed a tr
wave function form similar to the one used in Ref. 11, b
slightly modified to include the polarization of the electro
and positron density of the PsH fragment due to the L1

potential. Specifically, the analytical form in Eq.~7! of Ref.
11 has been multiplied by a Pade´–Jastrow factor dependin
on thez coordinate of each particle: thez axis was chosen a
the LiH bond axis, the H nucleus being located at the ori
and the Li on the negativez axis. The wave function param
eters were fully optimized for every nuclear distanceR mini-
mizing the variance of the local energy over a fixed sam
of configurations.35,36 This procedure is already well de
scribed in the literature,13 so we will skip unnecessary de
tails. The ensemble of walkers used in the optimization w
generated by DMC simulations in order to bias the walke
distribution towards the exact density. Usually, four or fi
optimization steps were carried out for eachR.

We started the optimization process of the wave funct
at R520.11 At the end of the optimization procedure,R was
decreased and the wave function reoptimized for the n
distance. This procedure gives the chance to monitor
changes of the wave function withR, but might increase the
possibility of remaining stuck in a local minimum in th
parameter space during the optimization.

Having optimized at VMC level the approximate wav
functions for various distances, these were employed in l
DMC simulations to project the remaining excited-state co
tributions and to compute more accurate mixed expecta
values. For all the simulations, a time step of 0.005 hartre21

was used, together with a population of 9000 walkers. Th
two simulation parameters were found adequate to make
tistically negligible both the time-step bias and the popu
tion effect in the DMC simulations.

The DMC results for the energy and for the^d(r 21)& of
this model system are shown in Table II. There, the ene
values represent the ground-state energy of the model Ha
tonian Eq.~13!, ^d(r 21)&Pade8 are the total collision prob-
abilities estimated using the electron–positron distributi
i.e., ^d(r 11)&1^d(r 21)&, while ^G(r 21,0)& are the ex-
trapolated Gaussian values. Here, the electron–positron
tributions were fitted with the function in Eq.~9!, constrain-
ing its cusp to be20.51cusp(CT).

The energy values obtained in Ref. 31, after having s
tracted the repulsion 1/R between the H nucleus and the Li1

core and the total energy of the Li1 fragment~27.279 913
hartree3! to estimate the leptonic energy of the PsH moie
are shown in Fig. 2 together with the DMC results obtain
in this work.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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For R>4, the results from the model system follo
closely the more accurate all-electron FN-DMC valu
showing that the model potential correctly describes the
larization of PsH due to the interaction with Li1. For shorter
distances the approximation of considering Li1 frozen is no
longer accurate, so that a discrepancy between the two
of results is expected. It is also important to remember t
the Bardsley’s potential was tailored only to describe
atom in its ground-and valence excited states, not to desc
bonds correctly in molecules.

Figure 3 shows the two computed^d(r 21)& values as a
function of the internuclear distanceR, together with the
ECG results of Strasburger6,7 and the DMC result of Ref. 11
The latter results can be used to evaluate the total accu
of our computed collision probabilities.

From Fig. 3 it is clear that both thêd(r 21)&Pade8 and
the ^G(r 21,0)& are in good agreement, the second differi
from the first by at most two standard deviations. This allo
us to believe that we are accurately estimating the mi
distribution mean value obtained by the standard DMC te
nique. Improved results could be obtained only by sampl
C0

2.
As far as the total accuracy is concerned, atR53.015

bohr both all-electron ECG6,7 and DMC results11 appear
to be smaller than the model ones by roughly 7%. Inste
on going towards largeR the mean value seems to correc
converge to the very accurate ECG value, nam
^d(r 21)&PsH50.048 74,3 and to the new DMC 0.0486 est
mate carried out in this work using the electron–positr
distribution. From this comparison, one could expect our

TABLE II. Lepton energies,̂ d(r 21)&Pade8 , and ^G(r 21,0)& mean values
for the e1LiH model system. All quantities in atomic units.

R ^E& ^d(r 21)&Pade8 ^G(r 21,0)&

2.0 21.164 37~9! 0.018 84 0.0182~2!
2.5 21.159 36~7! 0.021 78 0.0210~2!
3.0 21.131 96~6! 0.026 84 0.0256~2!
3.5 21.097 98~5! 0.030 00 0.0288~2!
4.0 21.064 85~5! 0.033 34 0.0324~2!
6.0 20.969 85~4! 0.041 66 0.0402~2!
8.0 20.919 95~3! 0.045 44 0.0436~3!
10.0 20.891 60~3! 0.046 66 0.0448~3!
15.0 20.856 34~2! 0.047 54 0.0458~3!
20.0 20.839 32~2! 0.047 94 0.0468~3!
` 20.789 18~1! 0.048 60 0.0484~3!

FIG. 2. Energy of the PsH moiety computed from Eq.~13! and from the
e1LiH results of Ref. 31 as explained in the text.
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timation to slightly degrade going towards smallR, without
becoming embarrassingly inaccurate to create concerns a
the usefulness of this model system.

The overall trend of the collision probability shows a n
decrease going towards shortR, a feature already suggeste
by Mitroy and Ryzhikh.32 This can be easily understood re
membering that the Li1 model potential repels the positron
while attracting the two electrons. It is not easy to infer a
possible analytical model to describe these joined effe
although for largeR one could propose a limiting 1/R2 form
due to the polarization of the two distributions by the elect
field of Li1. We show in the Appendix that this reasoning
indeed correct for any observable by means of first-or
perturbation theory. ‘‘Experimental’’ evidence that this is th
case is given by the fairly good fitting of thêd& results at
R510, 15, and 20 bohr with the simple form 0.048
1b/R2, where b520.204 48.

Various other mean values were computed during
DMC simulations in order to obtain some physical insight
the electron and positron density behavior. Figure 4 rep
the mean value of thez coordinate for the two particles giv
ing information on the polarization of the two lepton den
ties. It is clear that the positronic distribution is polarized
the model potential in the direction opposite to the electro
one. Moreover, it appears to be more easily polarized t
the electronic one always showing larger^z& values. This fact
can be easily explained by noticing that the positron dis
bution is more diffuse than the electron one, so that it is m
strongly repelled by the electric field. Interestingly, atR52
and 2.5 bohr the electron distribution reverses its polari
tion, showing^z&.0. We believe this effect is due to th

FIG. 3. Computed̂d& results for e1LiH system at various internuclear dis
tances.

FIG. 4. Electron and positron mean value of thez coordinate as a function
of the internuclear distance.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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repulsive region of the Li1 core potential that pushes awa
the electrons for such small nuclear distances, therefore m
eling the exchange effect created by an antisymmetric w
function.

Figure 5 shows the average values for the electro
electron and electron–positron distances. While
electron–positron mean distance^r 21& increases monotoni
cally upon decreasingR, the electron–electron distanc
^r 22& shows a shallow maximum aroundR58 bohr and a
deep minimum aroundR52.5 bohr. We believe the maxi
mum is due to the competition between the positron and
Li1 model potential to bind an electron. More specifical
although polarized towards positivez, the positron still at-
tracts one of the two electrons to form the Ps subclus
increasing the distance from the second electron that is
to be polarized in the direction of the Li1 core. On going
towards smallerR, the positron is pushed far out the bon
region, losing its ability to polarize the electrons that are n
both strongly attracted by the model potential. This inter
tion leads them to move in the small volume between H a
Li1, therefore decreasing their mean distance. Then, foR
smaller than 2.5 bohr, the electron–core repulsion pushes
electrons out from the bond region, with the net effect
increasing their mean distance. This effect has also been
served by plotting the intracule electron distributions o
tained during the DMC simulations.

It is worth mentioning that similar conclusions can
drawn analysing the VMC results obtained as a by-prod
of the optimization stages.

Having studied the overall behavior of^d&, ^z&, and^r &,
we now turn to compute the vibrationally averaged annih
tion probabilities. To obtain these quantities, we interpola
our ^d& results by means of the analytical formD(R)
50.048622aR/(11bR1cR21dR3). The fitted parameters
are a51.059 45, b597.5779, c5237.9705, and d
512.2715. Then, the potential energy curve of e1LiH ob-
tained in Ref. 31 was fitted with the modified Morse pote
tial

VM~R!528.06991A$12exp@2B~R2C!#%22A

2D$12exp@2~R/F !#6%/~2R4!, ~16!

obtaining A50.034 44 hartree, B50.720 30 bohr21, C
53.3060 bohr,D521.1796 bohr23, and F55.882 17 bohr.
The last term in Eq.~16! has been introduced in order t

FIG. 5. Electron–electron and electron–positron mean distances as fun
of the internuclear distance.
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correctly represent the charge-induced dipole interaction
tween Li1 and PsH. The nuclear Schro¨dinger equation for
this potential was then solved using the grid method p
posed by Tobin and Hinze,37 and the numerical wave func
tions fn(R) were then used to compute vibrationally ave
aged mean values for zero total angular momentum. M
specifically, we computed

^O&n5
*dR fn

2~R!O~R!

*dR fn
2~R!

, ~17!

whereO(R) is D(R) or any other function ofR.
In Table III we show the results for̂E&n , ^d&n , and

^R&n computed over the first 16 bound vibrational states. T
^d&n values increase in an almost linear fashion going
wards largen, as expected by the steady increase of^R&n due
to the vibrational excitation. Comparinĝd&050.0295 with
the value ofD(R) at the equilibrium distance of our fitte
potential, namely 0.0291 at 3.353 bohr, it appears that
ground level vibrational motion only slightly increases t
probability of collision between the electrons and the po
tron with respect to the one at the equilibrium distance. T
finding is in line with the small difference between the eq
librium distance and the average nuclear distanceR0

53.42 bohr. We relate these outcomes to the almost lin
behavior ofD(R), and to the shape ofR2f0

2(R) in the region
around the potential minimum, where it resembles a Gau
ian. Here, we stress that the shorter equilibrium distance
tained in this work~3.353 bohr!, with respect to the one
obtained in Ref. 31~3.458 bohr!, is just a side effect of the
fitting process and of the analytical form in Eq.~16!. In turn,
this means that the energies for the vibrational states co
be, and indeed are, slightly different from the ones publish
in Ref. 31, which we believe to be more accurate.

Although our vibrationally averaged result forn50
^d&050.0295 appears to be roughly 8% larger than the E
result ~0.027 252! at the equilibrium distance 3.348 bohr7

suggesting a fairly large effect of the nuclear motion, w
believe this outcome is primarily due to the 7% larger co
sion probabilities computed using our model system. Th

ion

TABLE III. Vibrational state energŷ E&n , averaged̂ d(r 21)&n and ^R&n

values for the e1LiH model system. All quantities in atomic units.

n ^E&n ^d&n ^R&n

0 28.105 0.0295 3.423
1 28.102 0.0305 3.571
2 28.098 0.0315 3.732
3 28.095 0.0325 3.906
4 28.092 0.0334 4.094
5 28.089 0.0344 4.294
6 28.087 0.0352 4.503
7 28.085 0.0361 4.718
8 28.083 0.0369 4.938
9 28.081 0.0376 5.166
10 28.079 0.0383 5.408
11 28.077 0.0390 5.675
12 28.076 0.0397 5.985
13 28.074 0.0405 6.356
14 28.073 0.0414 6.803
15 28.072 0.0421 7.243
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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two evidences seem to rule out Strasburger’s suggestion6 of a
large increase of the collision probability due to the quant
nuclear motion for then50 state. They indicate that ap
proximating the averaged collision probability for the vibr
tional ground state simply by using its value at the equil
rium distance could be a fairly accurate procedu
Moreover, these conclusions agree with Mitroy a
Ryzhikh’s32 warnings that both the SVM and FCSVM re
sults, although proving the overall stability of e1LiH, are not
well converged to the exact ones. For instance, their^R&0

values, respectively, 4.182 and 3.964 bohr, are larger than
minimum of the ECG and DMC potential curves by mo
than 0.5 bohr. This discrepancy cannot be accounted fo
the zero-point motion of the positron complex. These lar
distances between the two fragments Li1 and PsH in the
nonadiabatic treatment imply a reduced distortion of the l
ton densities of PsH with respect to the one at the Bo
Oppenheimer equilibrium, and therefore too large an ann
lation rate. However, it is interesting to notice that bo
FCSVM ~0.032 588! and SVM ~0.034 016!32 collision prob-
abilities are really close to our Born–Oppenheimer one
R54.0 bohr. In our view, this agreement stresses, again,
importance of the local electric field in defining the collisio
probability and the overall accuracy of the SVM approach
describing the relative densities in a positronic complex.

As far as the behavior of̂d(R)&n is concerned, the
steady increase on going towards largen indicates that the
annihilation rate does depend on the quantum vibratio
state of the molecule. Although the trend of these res
could be specific to the e1LiH system and perhaps of othe
polar molecules as well, it strongly indicates that any the
formulated to describe ‘‘on the fly’’ annihilation of e1 due to
Feshbach resonances must include this effect in order t
beyond ‘‘order of magnitude comparison’’38 and to predict
accurately the annihilation rate. In our view, this opens a n
avenue of exploration in positron physical chemistry wh
the understanding of the vibrational motion effect on po
tron annihilation by molecular systems is of prime impo
tance.

V. CONCLUSIONS

In this work we have critically compared methods th
may be useful to compute the annihilation rate in positro
systems in the framework of the QMC methods. Moreov
we have presented a simple, but nevertheless solid and a
rate, method based only on the interparticle distribution sa
pling. After having tested it using model systems, we e
ployed the method to computêd(r 21)& for e1LiH for
several internuclear distances. These results allowed u
discuss many interesting features of this positronic comp
and to predict that the annihilation probability increases up
increasing the vibrational quantum numbern. We notice that
a similar behavior of̂ d(r 21)& may be expected also fo
e1LiF due to the polarization of the positronic density of t
PsF fragment by the Li1 core. The situation could be quit
different for the e1BeO case where the positron density
expected to be centered on Be at large nuclear distances~the
two fragments e1Be and O have lower total energy than Be1

and PsO39!, and to move on the O side of the molecule wh
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the distance decreases. This effect is due to the elec
transfer from Be to O that creates the large molecular dip
moment. From our experience on these systems we ex
^d(r 21)& for e1Be to be smaller than the one for the pol
molecule, so the vibrationally excited states close to the
sociation threshold may have smaller annihilation rates t
the ground vibrational state.

It is also interesting to speculate on the behavior of
annihilation rate versus the vibrational quantum number
other simple systems like e1Li2 and e1Be2. Here, the sym-
metry of the systems can play an important role in defin
the annihilation rate. For instance, decreasing the nuc
distance one may expect to find the positron localized
tween the two atomic fragments due to its ability to polar
the two atomic electron densities: in this situation the an
hilation rate could be quite different from the atomic on
Although it is easy to infer the existence of a bound state
these complexes at large nuclear distances employing
basic valence bond resonance idea

e1A11A2↔A11e1A2 , ~18!

it still remains to demonstrate the stability of these syste
for nuclear distances close to the equilibrium geometry of
neutral parent molecules.

As a rule of thumb to predict the stability of a nonpol
molecule, one can use the adiabatic ionization poten
~AIP! as proposed by Mitroyet al.40 For theX 1Sg

1 ground

state of Li2 the experimental AIP is 0.189 hartree,41 slightly
lower than the atomic one, 0.198 14 hartree.42 Also, for the
X 1Sg

1 ground state of Be2 , one might expect a similar low
ering of the AIP with respect to the atomic one, 0.3
hartree,42 so that a value of around 0.335 hartree could
regarded as a safe upper bound to the true AIP. Both th
values fall inside the upper and lower I.P. limits for positr
binding obtained by Mitroyet al.40 for one- and two-valence
electron atoms, therefore suggesting that the two comple
should be stable. We understand that this model is jus
rough approximation for our molecular systems.43 Neverthe-
less, a positron bound to an atom or a molecule is alw
characterized by a quite diffuse density. This allows one
neglect some of the real features of the electron density c
to the nuclei as a first approximation, and focus only on
asymptotic properties of the electron cloud that are correla
to the I.P. and to the polarizability.

As far as Be2 is concerned, the AIP larger than the P
binding energy~0.25 hartree! suggests a mechanism bas
on the electron cloud polarization as responsible for the bi
ing. Moreover, the lowering of the AIP with respect to th
atomic one, and the large polarizability of this molecu
~roughly twice the atomic one! seem to indicate its ability to
form a stronger bond with the positron than the Be at
alone.4 Conversely, Li2 has an AIP smaller than the Ps bin
ing energy, suggesting that the polarization of the Ps clu
may be held responsible for the positron binding. Howev
Li is close to the lower stability threshold of the positron
atom complexes, and we do not feel confident in propos
the stability of the molecular complex with respect to t
Ps1Li2

1 dissociation pathway.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Right now, QMC methods are the best-suited compu
tional techniques to carry out such a study since six-
eight-electron systems are too large to be studied with EC
unless the frozen core approximation is used. With the a
tion to the QMC ‘‘bag of tricks’’ of a robust method fo
computing annihilation rates, such a study could beco
routine in molecular physical chemistry, allowing the exp
ration of many interesting features of these ‘‘exotic’’ com
pounds.

Moreover, many more other technically oriented app
cations could be devised. Positronium annihilation in po
mers and membranes, positron annihilation in silicon na
cluster, nanodevices, fullerenes, and carbon nanotubes
just a few that could be quite easily interpreted with the h
of such a method.

Our hope is that this work will help this kind of appl
cation to blossom and to lead to a better understanding o
basic interaction schemes that a positron has with ordin
matter.
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APPENDIX: FIRST-ORDER PERTURBATION THEORY
OF EXPECTATION VALUE

In this Appendix we show that the correction to the e
pectation value of every observableO for PsH interacting
with the Li1 core follows the limiting analytical formR22

for large R. This is indeed a general result for positron
atom systems immersed in a weak electric field. From p
turbation theory one can write the first-order corrected w
function for the ground state as

C0
~1!5C0

~0!1(
iÞ0

*C i
0VC0

~0!dR

E0
~0!2Ei

~0! C i
~0!

5C0
~0!1(

iÞ0
ci

~0!C i
~0! , ~A1!

where C i
(0) are the eigenstates of the unperturbed Ham

tonian~i.e., the PsH!, Ei
(0) its eigenvalues, andV the pertur-

bation potential. The expectation value of the observablO
can be computed using

^O&5
ctOc

ctIc
, ~A2!

where Oj i 5*C j
(0)OC i

(0) dR, while c5$1,c1
(0) ,c2

(0) ,...%. If
the perturbation potential is small with respect to the to
energy, thenci

(0)!1 andctIc511( iÞ0(ci
(0))2.1. This fact

allows the introduction of a further approximation into E
~A2!,
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^O&.ctOc5^O&0012(
iÞ0

ci
~0!^O&0i1 (

i , j Þ0
cj

~0!ci
~0!^O& j i

.^O&0012(
iÞ0

ci
~0!^O&0i , ~A3!

showing that the first-order change in the expectation va
^O& is linearly dependent on theci

(0)’s.
For our specific case, namely PsH interacting with t

Coulomb potential of Li1 at distanceR, for R→` the per-
turbing interaction potential can be written as

V5(
k

qk

RqkLi
.(

k
qkS 1

R
2

zk

R2D , ~A4!

where the molecular geometry is as in the main text, wh
qk are the leptonic charges. This approximation is equa
consider the electron and positron densities constant
plane parallel to thexy plane. Introducing this approximatio
in the integrals in Eq.~A1!, one gets

E C i
~0!VC0

~0! dR.(
k

qk

1

R E C i
~0!C0

~0! dR

1(
k

qkE C i
~0!

zk

R2 C0
~0! dR

5
(kqk*C i

~0!zkC0
~0! dR

R2 . ~A5!

This result shows that theci in Eqs. ~A2! and ~A3! are
proportional to 1/R2, therefore proving that this is also th
analytical form of the leading correction to the unperturb
ground-state expectation valuesO00.
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