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Improved diffusion Monte Carlo for bosonic systems using time-step

extrapolation “on the fly”
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A diffusion Monte Carlo algorithm employing “on the fly” extrapolation with respect to the time
step is implemented and demonstrated simulating realistic systems. Significant advantages are
obtained when using on the fly extrapolation, leading to reduced systematic and statistical errors.
The sound theoretical basis of extrapolation on the fly is discussed and compared to justifications for
the a posteriori extrapolation. © 2007 American Institute of Physics. [DOI: 10.1063/1.2647227]

I. INTRODUCTION

Diffusion Monte Carlo (DMC) is a valuable computa-
tional tool in the study of (0 K) bosonic systems allowing
“exact” ground state properties to be computed.l DMC nor-
mally consists of two main parts, importance sampling (IS),
with points diffusing in configuration space guided by a trial
wave function (i), and branching, which changes number
of configurations (walkers) according to a computed weight.
Whereas IS greatly reduces the statistical error, the branching
ensures that ground state properties are sampled in the limits
t—o and 7— 0 (where 7 is the time step in the simulation
and ¢ is the length of the imaginary time). With the trial wave
functzion introduced, the Schrodinger equation takes the
form
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where f(x,0)=ybr, E;(x)=r(x)"'Hip(x) is the local en-
ergy, H is the N-dimensional Hamiltonian, F(x)
= (x)"'V if(x) is the quantum force (QMF), and D is a
diagonal diffusion matrix. L, acting on f(x,7), is the Fokker-
Planck (Schmoluchowski) operator whose stationary solution
is 4(x)? and is responsible for the importance sampling dur-
ing a DMC simulation. In obtaining a numerical scheme to
sample Eq. (1), a common approach is to start from the for-
mal solution of Eq. (1) and let the exponential operator,
exp(—m(L+E,)), determine the structure of the stochastic dif-
ferential equations (SDEs) to be solved.** An alternative
starting point is to consider the following set of stochastic
equations:5
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where X is a vector of dimension N representing the position
of all particles in the system (a walker), W, is a Brownian
motion in RV, and I, is a random variate that depends on the
realization of W,. Solving Eq. (2) does provide a solution to
Eq. (1) as can be proven using the Feynman-Kac and
Ito6 formulas’ Note that Eq. (2) represents an
(N+1)-dimensional Itd equation that can be approximated
using a weak numerical scheme.” This way of rephrasing the
DMC algorithm is exactly equivalent to the one based on the
Baker-Campbell-Hausdorff formula.® If branching is done at
each time step 7 (7=t,,,;—1,), then an initial condition 7,=0
is imposed and the weight w=exp(-I,,,) is used to kill/
duplicate walkers in the population. In this respect, a recent
work of Hakansson et al.’ compared second order numerical
schemes in the time step 7, either consistent with an It6-
Taylor expansion5 of Eq. (2) or based on exponential formu-
las, that could be used to solve Eq. (2). There, the explicit
second order (E2) and the predictor corrector (PC2) schemes,
both based on the Itd6-Taylor expansion, were found to have
smaller time step bias and longer range of convergence com-
pared to other second order schemes proposed in the
literature.” This finding allowed us to propose these schemes
as suitable algorithms to solve the Schmoluchowski equation
in the DMC method, thus simulating more efficiently
bosonic systems at 0 K. In this respect, it is perhaps worth
pointing out that the application of similar approaches to
fermionic systems is hampered by few theoretical difficul-
ties, mainly associated with nonanalyticities in In(i;) such as
the divergence of the quantum force on a nodal surface and
the nonanalytical behavior due to the presence of a cusp. As
for the latter, no problem appears to be present when one
limits himself to the calculation of the expectation value of
the local energy using a i that exactly satisfies the cusp
conditions. Even so, the convergence of the sampled density
in a region around a nonanalytical point does not follow the
polynomial order with respect to the time step predicted us-
ing theoretical considerations.”

In order to improve the performance of quantum Monte
Carlo simulations avoiding the necessity of using small time
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steps to obtain expectation values with a small discretization
error, at least two approaches are available. On one hand, one
could employ a time-independent algorithm such as Green’s
function MC proposed by Kalos et al® and recently revisited
by Schmidt et al’ Alternatively, and it is the path we will
follow in this work, one may attempt to further improve the
order of the discretization error (time-step bias), considering
numerical schemes of order higher than two derived via the
exponential operatorlo’” or via an Itd-Taylor expansion.5 In
latter two cases, however, this will require the evaluation of
derivatives of quantum force/local energy (or potential en-
ergy if no importance sampling is done), with the net effect
of increasing the complexity of the code, and perhaps the
cost of the simulations as well.

In this respect, an attractive alternative is to consider
extrapolation methods such as the Richardson-Romberg ex-
trapolation, where two or more simulation results (done with
time steps of different lengths) are linearly combined so that
the lowest order error cancels.'> There are, however, two
issues in applying such extrapolation, and these are ad-
dressed in this paper. First, there is a computational overload
connected with obtaining a small statistical error if simula-
tion results are extrapolated a posteriori, i.e., combining in-
dependent simulation results. This originates from the fact
that, for a given computational effort, the shortest time-step
simulation will be the least precise and also have the largest
prefactor in the extrapolation [cf. Eq. (3)]. So, the statistical
error for the computed result may be significantly scaled up
by the extrapolation. Besides, only an empirical foundation
appears to be currently available for extrapolating a poste-
riori DMC results (including branching). Instead, the ex-
trapolation of expectation values computed from an inte-
grated SDE is mathematically motivated by a global error
expansion,13 which can be applied to our specific instance,
DMC simulations. To show that this is exactly the case, we
specialize our discussion to the extrapolation of second order
schemes and start by considering an initial distribution of
walkers at time ¢, fulfilling the accuracy requirement
|err0r, |< C7,C>0, where error, refers to the error for any
expectatlon value computed over "the walker distribution. A
central component in demonstrating the order 77 (y>2) of
extrapolated result is proving the existence of an
error  expansion |err0r, —{ey(tyr)) PHes(ty )T+
+ey (1) TS Clt,0) 77, where e; and C are real num-
bers independent of time step 7. This is what is done in Refs.
12 and 13 considering the continuous Itd process given in
our case by the (N+1)-dimensional equation [Eq. (2)]. No-
tice that, in this way, the error expansion need not consider
the discontinuity that occurs when branching is employed at
time ¢, because the calculation of expectation values could
be made with the proper discretized form of exp(-I,,;).
Thus, if the integration scheme is formally second order
(e.g., E2 and PC2), the distribution at time f,,; would still
satisfy the error expansion in Refs. 12 and 13, hence allow-
ing for a Richardson-Romberg extrapolation with respect to
7of both X,,,; and I,,,,. It is now necessary to stress that the
application of the branching procedure after having extrapo-
lated X, and /,,; does not introduce further complications
since it induces no change of order in [error, _|.
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As a consequence of the above discussion, the aim of
this work is to illustrate how the problems with an a poste-
riori extrapolation can be circumvented by implementing
what we call extrapolation “on the fly” with respect to the
time step. Here, the discussion is limited only to the case of
two solutions (both with second order time-step error) start-
ing from the same configuration Y, and propagated for the
interval 7, while driven by the same Brownian motion (W,).
To extrapolate to third order on the fly, a single time step 7is

computed by first generating random vectors (SW and W)
that are normally distributed with variance 7/2 and mean

zero and computing AW=46W+ SW. The walker initial posi-
tion is then propagated in two ways, one using AW and the

other in a two-step process using 6W and SW. The branching
weight and expectation values are then computed using the
stochastic variates

witye) = 1/3{4WT/2(tn+l) Wit} (3)
A)y= E W3,iA3,i/ 2 w3, (4)

where subscript denotes the order of discretization error, su-
perscript the time step used, and the sums in Eq. (4) extend
over all simulated configurations. Before the next time step,
final (z,,;) walker positions are extrapolated to third order
[Eq. (3)] and finally the branching is performed. In Eq. (3),
both processes are highly correlated and this may signifi-
cantly reduce the statistical error when compared with an a
posteriori extrapolation, as illustrated in the following. Fur-
thermore, by extrapolating before the branching step we
make sure that the mathematical foundations for the extrapo-
lated results are valid (see Ref. 12 for error expansion of
expectation values computed with higher order SDE integra-
tor).

In this work, we apply the extrapolation on the fly to
solve high dimensional problems using DMC. This scheme
has never been applied to DMC simulations before and the
efficiency gain that may be obtained in comparison with a
posteriori extrapolation was never evaluated; to illustrate the
performance of the algorithm, examples from cluster calcu-
lations with [Eq. (1)] or without importance sampling are
used. In the latter case, the direct sampling of the
Schrodinger equation,

- 'aﬁ:—’t) =- %VTD Y gx.0) + V) hx.0), ®)

is performed without a trial wave function guiding the dis-
tribution. This latter case is of interest in situations when
accurate i are difficult to find."" All results presented are
calculated without the Metropolis acceptance/rejection step.
This has the advantage that the dependence on 7is known for
all calculated expectation values and one can deduce when
discretization error (dependent on 7) is less than the desired
standard error. A discussion on the relative performance of
schemes including the Metropolis acceptance/rejection step
was given in Ref. 7.

As a last comment in this Introduction, we note that it
has been shown previously that a posteriori extrapolation
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FIG. 1. Expectation value of the interaction potential (V) (K) as a function
of the time step (a.u.) for a VMC simulation of MgHe,,. The Metropolis
result with standard error (+0.02) (dashed line) represents the limiting value
for 7—0 that should be obtained by all simulation algorithms. The continu-
ous lines are quadratic (E2) or cubic (E3) fits to the numerical results.

can reduce discretization error in path integral quantum
Monte Carlo simulations'* and DMC.” Thus, one of the aims
of this report is, instead, to investigate the effectiveness of
the on the fly extrapolation in the framework of DMC simu-
lations, as well as to evaluate its efficiency when compared
with a posteriori extrapolation. In this respect, we also notice
that one dimensional examples of extrapolating on the fly
SDE simulations were already provided in Refs. 5 and 15,
where the on the fly method implemented here (i.e., using
different solutions driven by the same W,) can be found as a
coded example.]5 However, the efficiency gain that could be
obtained in realistic simulations with respect to a posteriori
extrapolation has never been observed or commented upon.

Il. METHODS, RESULTS, AND DISCUSSION

In this work, second order schemes and extrapolation to
third order are considered, but the methodology is general
and it should be obvious how extrapolation to an order
higher than three may be carried out following the proposed
scheme using a higher order formula.'?

A. Importance sampled methods

The main ingredient for the extrapolation is an efficient
second order numerical scheme and we suggest to start from
the numerical schemes, E2 or PC2, which have proven to
have second order convergence for a wide range of time
steps.7 In this work, we used the E2 scheme and a trial wave
function for MgHe,, with a form taken from Ref. 16 but with
parameters slightly modified to generate a less smooth local
energy. This increases the time-step error helping to clarify
the difference between numerical schemes; it also mimics the
expected error increase obtained in larger systems due to less
accurate .

To show the effect of on the fly extrapolation on the
integration of the Schmoluchowski equation [i.e., Eq. (1)
with no branching] for the above system, the potential energy
expectation value computed using variational Monte Carlo
(VMC) simulations is shown in Fig. 1 and compared with the
exact Metropolis result for the system MgHe,,. In this case,
all weights ws(t,,,) are identically equal to 1, and the ex-
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FIG. 2. Expectation value of the local energy (E;) (K) as a function of the
time step (a.u.) for DMC simulations of MgHe,,. The continuous lines are
quadratic (E2) and cubic (E3) fits to the numerical results. The single data
point E3b has six QMFs per time step (see text).

trapolation [cf. Eq. (3)] is applied to the potential energy and
the walker coordinates (as discussed below). Clearly, the ex-
plicit third order (E3) extrapolation on the fly using the E2
scheme does provide third order convergence and gives a
significant improvement, as compared with the E2 result.

Figure 2, instead, shows the convergence properties of
the local energy expectation value computed as a function of
time step obtained using importance sampled DMC simula-
tions on the same MgHe,, cluster. In this respect, the E2
scheme requires two QMF calculations/time step (the major
computational bottleneck); thus the third order extrapolation
of the weights requires six QMF calculations/time step if we
follow Ref. 5. However, this strategy would give walker po-
sitions accurate only to second order; even so, the improve-
ment obtained by extrapolating the weight may still be sub-
stantial. In this work, the final walker configuration is
extrapolated to third order and stored as the initial position
for the next time step (E3 scheme); this adds another QMF
calculation stored as initial QMF in the next time step. With
seven QMFs, third order convergence is obtained (see E3 in
Fig. 2); this is also the case with six QMFs, even though a
larger prefactor is obtained, as it is illustrated by the data
point E3b in Fig. 2. Given the substantial improvement, in
our opinion, the seventh QMF calculation is well worth the
extra effort. Note that a time step roughly ten times longer
can be used in E3 as compared with E2, translating to an
efficiency gain of =2.8 due to a faster decorrelation of the
data.

To discuss the relative efficiency of the on the fly ex-
trapolation with respect to the a posteriori one, we start by
mentioning that the standard errors o(7) in E2 and E3 simu-
lations with equal number of configurations are (empirically)
found to be almost identical. Note also that approximately
the double number of blocks will be needed to make o7,
equal to o% From this, the extra effort needed in a third order
a posteriori extrapolation can be derived and compared to an
E3 simulation. Consider now the statistical error propagation
in an a posteriori extrapolation
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FIG. 3. Expectation value of the total energy (E) (cm™") of Ne, as a function
of the time step (a.u.) for the T and T3 DMC algorithms. The continuous
lines are quadratic (T) or cubic (T3) fits to the numerical results.

16 1

Oextr = 30%/2 + 50-3 (6)
If the computer resources were distributed wisely for it, it is
deduced that we should use four times more blocks of E2
7/2 simulations to make o, equal to ogz. If instead the
number of blocks in the two E2 simulations is similar, there
should be 11 or 3 times more blocks in both E2 simulations,
as opposed to an E3 simulation to make o, =0p;. Finally,
accounting for the number of force evaluations in the two
approaches, an efficiency gain of 1.4-2.1 is deduced for the
E3 simulations. Furthermore, it is seen in Fig. 2 that E2
simulations were possible only if 7<400 a.u., thus limiting a
posteriori extrapolation to a smaller range of time steps than
can be used on the fly.

B. Simulations without importance sampling

In sampling Eq. (5), the weight is computed using a SDE
equivalent of the Trotter (T) formula,’

Y, =Y, + AW, (7)

W1 = eXp(= 72{V(Y 1) + V(Y,)}), (8)

this scheme having formally a second order discretization
error.” We note that, in simulating Eq. (7) using two solutions
with time step 7 and 7/2 on the fly, the final position of the
walkers will be exactly the same; as a consequence, only
three potential values/time step are needed. In Fig. 3 the
energy expectation value for a Ne; cluster is shown. In these
simulations, population bias was circumvented with the use
of a sufficiently large population of 30 000 walkers." Tt is
seen that the Trotter (T) scheme follows second order con-
vergence and that the third order “extrapolation on the fly”
(T3) follows third order convergence behavior. A time step of
800 a.u. in T3 the simulation gives an equally well con-
verged result as a T time step of 100 a.u. Whereas in the T3
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simulation there are three potential energy calculations in
each time step, only one is done in the T simulation; this
translates into 2.7 times less computational effort for the T3
scheme to reach the same standard error. We have also veri-
fied that similar gains are present when simulating molecular
complexes such as H*(H,0),."”

lll. CONCLUSIONS

In this work, the efficiency gain obtained using a third
order extrapolation “on the fly” (E3 and T3) is quantified
with numerical examples. A substantial gain provided by ex-
trapolated schemes, as compared to both underlying (second
order) schemes and to a posteriori extrapolation, is con-
firmed. The extrapolation methodology used does provide a
general and efficient class of algorithms and will be valuable
not only for the specific DMC methods tested here. The re-
lated reptation algorithm18 is a method where the extrapola-
tion on the fly is directly applicable. Furthermore, whenever
a direct computation of the path integral Monte Carlo
(PIMC) density matrix is of interest [see Eq. (4.1) in Ref.
19], the stochastic process [Eq. (7)] can be replaced with a
Brownian bridge and the density matrix obtained using ex-
trapolation on the fly. Similarly, the PIMC approach (see
Appendix A in Ref. 20), where a trial density matrix is used,
can benefit from the use of extrapolation on the fly.
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