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In order to overcome the difficulty of optimizing molecular geometry using quantum Monte Carlo
methods, we introduce various approximations to the exact force expectation value. We follow
Pulay’s suggestiofiMol. Phys. 17, 153 (1969] to correct the Hellmann—Feynman estimator by
introducing the contributions due to the changes in the wave function with respect to the nuclear
positions. When used in conjunction with energy-optimized explicitly correlated trial wave
functions for H and LiH, these approximations appear to yield accurate forces using both the
variational and diffusion Monte Carlo methods. Also, the accuracy of the second-order estimate of
the Hellmann—Feynman force estimator was investigated employing our energy-optimized trial
wave functions, and an erratic behavior was uncovered for some of the studied bond lengths. The
additional computational cost required to compute the corrections to the Hellmann—Feynman
estimator was found to be only a small fraction of the cost for a simple mean energy calculation. The
same approach could be exploited also in computing the derivative of other energy-dependent
quantum-mechanical observables. 2003 American Institute of Physics.
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I. INTRODUCTION computed precision of differences between two similar mean
values, as well as the calculation of expectation values whose
In recent years, the quantum Monte Cai@MC) meth- variance is not bounded.
ods P"’?"e been show_ns to be a powerful tool fqr solving the The Hellmann—Feynman theordidFT) provides a very
Schralinger equatiori=2 Up to now, QMC techniques have . .
simple and compact expression for evaluating the energy

been successfully applied to the calculation of ground-staté dient*s H in th h f the HET f
energies and energy-related properties of a variety of atomdradient. However, in the past, the use of the or

molecules, and clusters, providing some of the most accurafg®mputing forces in QMC was discouraged because of the
calculations to date. Despite these remarkable results, tHécontrolled statistical fluctuations associated with its bare
calculation of other important physical properties, such agorce estimator. A few attempts to circumvent this difficulty
equilibrium geometries, potential energy surfaces, and vibrawere carried out by means of the correlated sampling
tional frequencies, has not yet been satisfactorily addressqatocedure ! where the energy difference between two dis-
in this framework. The calculation of such quantities requiresinct system geometries is directly computed in a single
the accurate evaluation of the derivative of the energy withsimulation. Unfortunately, the accuracy and precision of the
respect to a parametée.g., the nuclear positions in the case correlated sampling degrades rapidly upon increase of the
of the internuclear forcgswhich is known to be very chal- jitfarence between the two geometries. This difficulty is re-

lenging in QMC. The root of the difliculty lies in the sto- duced if the trial wave function for all the geometries differ-

chastic nature of the method itself, always producing an ex- . o ) ,
ent from the reference one is reoptimized, and a “warp

pectation value with a statistical error. This degrades the ) o
coordinate transformation is us&d However, the computa-

tional cost needed to computdadimensional gradient is, at
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atomic numberZ of the atoms in the molecule is hard to of W with respect to the nuclear positions act only on the
estimate. part of the trial wave function that explicitly depends Bn
Very recently, a general and effective solution to thisi.e., the atomic basis function centers and the correlation fac-
problem has been proposed by Assaraf and CaffAneho  tor if any electron-nuclear term is present. The actiorVf
have shown how to remove the pathological part responsiblen the parameters that only indirectly couple with the nuclear
for the infinite variance of the Hellmann—Feynman estimatormpositions(e.g., the coefficients of the molecular orbijais
by using a renormalized operator. In our view, this advancerewritten in Eq. (5) by exploiting the chain rule. The
ment represents an important step toward accurate force calE)\\c/dc; terms are the partial derivatives of the mean
culations in QMC for systems containing more than two at-energy with respect to the set of the variational parameters
oms, since it allows for the simultaneous computation of allc={c;}, while thedc;/JR are the partial derivatives of these
the gradient components in a single run, and without thgarameters with respect to the nuclear coordines
burden to optimizeD +1 wave functions. By virtue of Egs.(1) and (3), the total force has been
This advantage notwithstanding, it should be pointed ouseparated into three well-defined contributions. Following
that the renormalized Hellmann—Feynman estimator has thEgs. (1)—(5), it is easy to recognize that the HFT formula
drawbacks of not being a zero variance method, and of rgEq. (2)] provides only an approximation to the exact ana-
quiring a computational effort that scales linearly with thelytic result. Therefore, as far as approximate wave functions
atomic number to reach a chosen statistical accufacy. are concerned, use of E(R) could result in poor estimates
Moreover, the HFT holds only for the exact eigenfunc-of the energy gradient unlesE; is exceedingly accurate.
tion of the Hamiltonian operator, or if the special require- Results using the simple renormalized HFT estimator, i.e.,
ment of havingall the parameters optimized minimizing the not including<F>\q’,'\"CC, were given by Assaraf and Caffarel
total energy is met by the approximate wave functiese  for H,, LiH, Li,, and G'? at the experimental equilibrium
Sec. |l for a discussionIn order to illustrate this point and distances. At théF)/¥< level the computed forces clearly
to introduce our notation, we briefly review the full expres- showed a bias, that we interpret as due to some deficiency of
sion of the force vector in the variational Monte Carlo the employed wave functions. To partially account for these
(VMC) method, where the approximate wave functidr  shortcomings, Assaraf and Caffarel employed the diffusion
rather than the exact eigenfunctidp, is used. Following Monte Carlo(DMC) method together with the second-order
Pulay’s work®® the exact derivative of the VMC energy ver- estimate(SOE) approximation’
susR (the nuclear positionscan be expressed as

SOE__ DMC _ VMC
<F>¥g$ <F>MM$‘F<F>¥MC (1) <F>HFT__2<F>HFT <F>HFT* (6)
,C !
h to correct the electronic density and to evaluate forces in the
where framework of fixed nodéFN) DMC. Although the computed
wie_ (| VRV[V L) SOE results improved substantially, this procedure, relying
(F)nrr =— —<\If W) ) on an almost complete error cancellation, is strongly depen-
TET

dent on the quality of the employed trial wave function,

is the usual HFT estimator, an(F)y's depends on the sometimes overcorrecting the VMC resufts.

variation of ¥+ with respect to the nuclear positions and At this point, one might argue that use of very accurate

variational parameters. This term can be exactly decomposatial wave functions or densities should be expected to pro-

into two terms vide accurate, although not exact, results. Therefore, the
(F)VMC (F)VMC+<F>\C’MC, 3) more accurately the trial wave function approximates the ex-

<F>VMC

+2(E)vmc
and

By ¢ HE)vmc

E VMC _
< > i JR {9Ci

act one, the closer the agreement between the exact and the
which read HFT estimator should be. At first glance, this expectation
seems to be reasonable, but, to our knowledge, it has never
‘I’T> been subjected to a systematic investigation within the QMC
framework in order to clarify what accuracy can be expected
2 from a given quality of the trial wave function. In this re-
(V| ¥y) S S S .
pect it is mandatory to stress that the optimization of a trial
<5‘1’T > wave function in QMC(i.e., the procedure used to select the
— |V wave function parameters in order to better approximate an
IR , (4) eigenfunction is a procedure subject to stochastic noise and
(¥+|¥q) to the presence of multiple local minima in the parameter
space. This is true especially when one chooses to minimize
the variance of the local energyV;/W¥; instead of the
energy, as clearly shown in Ref. 16. There, the authors found
(5)  that iteratively optimizing the variance of the local energy
gave erratic results even for as small a system as bied
Here, (E)ymc is the energy expectation value for the trial proposed various robust estimators of the quality of a model
wave function,Vi is the gradient with respect to the nuclear wave function as a possible cure for this. Although subse-
coordinatesR, and H is the usual Born—Oppenheimer quent application by one of tlsof these new estimators to
Hamiltonian for the system. In E¢4), the partial derivatives more common electronic structure problems showed consis-
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tently better resultsi.e., lower energythan the optimization equality that holds only for the exact or for a fully energy-
of the variance of the local energy, a significant stochastioptimized wave function, we obtaiﬁF)é’f"cc=O, meaning
noise was still present. We expect that this finding may alsehat Eq.(1) and Eq.(2) give the same result.
influence the computed force values, for which the accuracy  Unfortunately, obtaining a fully energy-optimized wave
of the trial wave function seems to be an important issuefunction represents a complicated and expensive task for all
Therefore, we tried to eliminate the stochastic noise as muchut the simplest systems, especially when explicitly corre-
as possible, directly optimizing the mean energy using longated wave functions are concerned. As a direct consequence,
variational rung® this fact forces us either to optimize a reduced set of param-
In this paper, our main aim is to address the issue of hoveters or to explicitly compute the correction in Eg). This
accurately one can compute the forces by means of a diffeis commonly carried out in standa@b initio methods by
ent approximate QMC approach, stressing how this knowlmeans of the coupled perturbed Hartree—Fock procedure that
edge is important with respect to many possible QMC appliprovides the derivatives of the with respect to the nuclear
cations. In our view, whereas the work of Assaraf andcoordinates. This task is not straightforward in QMC, so that
Caffarel efficiently solved the problem of the unboundeda different route must be followed.
variance of the force estimator, the two major sources of |n the present work, various levels of approximation are
inaccuracy, i.e., théF)y“ and(F)YM° have not been sat- brought to bear on this task with the aim of determining
isfactorily dealt with. As to the(F)y™ contribution[Eq.  which one delivers enough accuracy and computational effi-
(5)], this can be eliminated by energy optimizing th@a-  ciency to represent a practical scheme for evaluating accurate

rameters, so that the partial derivatifé&E)yycl/dc; have  forces in QMC.

values close to zero. TheF)y"® term can be formulated Before proposing different approximate schemes for

analytically and computed accurately in a computational efevaluating Eq.(1), it is necessary to introduce the general
ficient way. In this paper, we demonstrate that merging enanalytical form of the wave functions used. In order to pro-
ergy optimization with the exact computation OF)y"'“  vide a useful benchmark for further calculations, we choose
leads to very accurate force values with only a fractionako use the traditional atom-centered wave functions buitt as
increase of the total simulation time. and B electron orbital determinants multiplied by the sym-
The outline of the paper is as follows: In Sec. I, we metric Jastrow factor proposed by Schmidt and
introduce the theoretical and methodological details re'evarMOskowitz}g'zo Whereas the Starting molecular orbitals are
for the present study. Section Il is devoted to presenting angdptained by means of a standard SCF procedure, the Jastrow
diSCUSSing the numerical results obtained fqrdﬂd LiH as parameters are obtained by Newton_Raphson energy
test systems. Finally, Sec. IV contains our conclusions anghinimization*® This model wave function represents the
some prospect for future developments. starting point for our investigation of forces. The crudest
approximation of force$VMC-HFT) is made by computing
the expectation value of EQR) in VMC, i.e., computing the
mean value of the Hellmann—Feynman estimator. As a sec-
It is well known, while the HFT holds for an exhaus- ond approximation, we discard tt{ﬁ)XMC term in Eq.(3)
tively energy-optimized wave functiofie., a wave function ~approximating the force as a sum of HFT &fit)y"'" terms
whose variational parameters have bedhoptimized by  within VMC (VMC-TOT). Apart from the complication of
minimizing the energy expectation valuyghe HFT is not  writing down the explicit form of the equatior$this term is
exact for QMC trial functions obtained by the common vari- straightforward to compute. Moreover, since many of the
ance minimization scheme. This can be easily demonstrategliantities needed for its computation are already necessary
at the VMC level by considering the analytic energy gradi-for standard energy calculation, the increase in the computa-
ent, Eq.(1). As already mentioned, and well known in the tional cost should be rather limited. The choice of discarding
field of ab initio calcula’[ions,(F)é’f"cC must be added to the effect of the dependency of the molecular orbital coeffi-
(F)MC to account for the dependence of the trial wave func<ients on the nuclear positigmote we energy optimize the
tion on the nuclear coordinates. For sake of convenience, thigarameters of the Jastrow terim based on the fact that they
term was split into two terms in E@4) considering a wave should be already close to their optimal values, although ob-
function which contains some parameters that depend dtained in a standard SCF technique. This idea is supported by
rectly on the nuclear coordinatés.g., an atom center basis the small energy improvement obtained by Filippi and
set or an electron-nucleus Jastrow fagtnd other param- Fahy?? in reoptimizing the orbitals after multiplying the de-
eters that only depend indirectly. terminants by a Jastrow factor, and by the computational
Although this choice is very natural and convenient inevidence obtained by two of tisanalytically computing the
treating molecular systems, in principle, there are no restricd(E)yuc /dc; . However, this approximation is not manda-
tions on the choice of the functional form of the trial wave tory and can be relaxed, optimizing tkh& by means of the
function. Taking advantage of this freedom, we may alsdNewton—Raphson meth&dso that all their partial deriva-
write a trial wave function that does not depend on thetives of the energy are zero. Then, the procedure is formally
nuclear positions directly at all, or, even better, where theexact.
atomic basis centers would be considered as variational pa- In order to remove some of the inaccuracy in the force
rameters. As a consequence, the téfiy " would be now  values due to the limited flexibility of the analytical form of
included in(F)MC . Settingd(E)yyc/dci=0 for eachi, an  the chosen¥r, we also compute FN-DMC force estimates

IIl. THEORY AND METHODS
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using our VMC wave function as guiding function. Calcula- perimental bond length. These are 1.400 bohr forard
tion of the force within the FN-DMC framework is more 3.015 bohr for LiH. These bond distances were specifically
cumbersome than in the VMC case due to the necessity afhosen to investigate the region around the minimum energy
computing the derivatives of the exact fixed-node wave funcconfiguration. The determinants were built starting from re-
tion &, with respect to the nuclear coordinafésThis de-  stricted SCF wave functions of the DOZZ2P) quality for H,
pendency comes from both the nuclear position and theLiH). To begin our investigation, we optimized for every
changes in the nodal surfaces of the wave function. Althoughyyclear distance a Jastrow factor foy &hd LiH, composed
a formally exact scheme to estimate this quantity has beepy 14 and 30 terms, respectively. These two factors contain
recently proposedf, it seems to be plagued by large statisti- for each atom the same terms used in the 9- and 17-term
cal noise. So, to avoid this problem, we approximate sucfexpansions for a single atom in Ref. 19. The Jastrow part of
derivatives as proposed by Barnettal,” writing the wave functions corresponding to each molecular geom-
etry were optimized following the procedure described in
(7)  Ref.18.This method relies on the use of the Newton second-
JR Vo order approximation to minimize the VMC energy expecta-

The resulting FN-DMC force estimator is therefore obtainedt'?n va||3ue with re]:s_p:ect toa ‘;_*t‘ostfp set of vaLlatlon?)I para:_n- d
by differentiating the mixed estimatof®y/H|V¢), and clers. because of ILs generalily, this approach can be applie

reads to the determinant parameters as well as the parameters be-
longing to the Jastrow factor. We emphasize that energy op-

(F)PMC=(F)PME+ (F)OMC (8)  timizing the Jastrow parameters reduces the dependency of
the forces on the variation of the wave function parameters,

b oV I0R
ogq)o( r/aR)

where since a subset of their partial derivatives is then equal to
bMC (®o| VRV 1) zero. Also, energy-optimized trial wave functions seem to
(FYhrr=— (Do|Wr) ' ©) yield more accurate properties than variance-optimized ones.
omT This idea is suggested both from theoretical anaf{sisnd
and empirical numerical evidencé$-?°The tables of all the op-
timized trial wave function parameters are available from the
Oy(dV1/R)/I V1 |H| W
<F>EI’,MC:—< o W /IR 1| H| W) authors upon request.
(Do) In the following, we will name JAST the trial wave func-
Dol (gW-/ tion obtained employing this optimization strategy. As a
(Po|(9¥1/dR)) : S .
+HE)yg————. (10 starting guess for the optimization procedure, we used a unit
(Do) Jastrow factor, i.e., with zeros as initial parameter values.

Similarly to the VMC case, we name DMC-HFT the force Once optimized, the resulting wave functions were used to
estimate obtained by means of H§), and DMC-TOT the compute both(F)er and (F)yer+(F)y averages in VMC
one computed using also EG.0). Notice that in Eq(8) we f';m_d_FN-DMC. In order to av0|d_ the problem re_lgted to the
did not include the contributing coming from the change ofinfinite variance of the HFT estimator, we modified ER)
the VMC wave function variational parameters with the mo-2nd Ed.(9) as suggested by Assaraf and Caffafel.
lecular geometry. One should bear in mind that a similar
term wogld be present even if the exact qugntum—mechanicqlll_ RESULTS AND DISCUSSION
expectation value{®y|H|¥,) were used instead of the
mixed estimator, due to the changes in the nodal location if VMC and FN-DMC force estimates forare collected
any is present. This term is complicated to compute and isn Table | and shown in Fig. 1. Table | also reports the cor-
expected to be negligible for DMC force calculations as inresponding VMC and FN-DMC energy values, accurate
the VMC case. On the other hand, the teiff), is expected force estimates obtained from Ref. 30, and correlation energy
to be vital in order to obtain reliable force estimates. percentages. ThéF)g,.. force values were obtained by fit-
Following the route we outlined previously, we investi- ting with a second-order polynomial the highly accurate
gate the accuracy of the four approximations in predictingforces computed in Ref. 30 in the range 1.30—1.50 bohr. The
the forces for the molecules,tand LiH within the VMC and  fitted polynomial was found to differ from the fitted values
FN-DMC frameworks. We can accurately compute the enby less than 0.0001 hartree/bohr, so indicating the global
ergy expectation values of these systems for different moaccuracy of the values shown in Table I. The correlation
lecular geometries, thus obtaining accurate potential energgnergy percentages were obtained using the Hartree—Fock
surfaces(PES. Moreover, these systems possess two combimit taken from Ref. 31, and the FN-DMC energies com-
pletely different charge distribution.e., H, is nonpolar, puted in this work. These last ones are to be considered
while LiH is almost completely ionic at the equilibrium dis- statistically exact, since $has a ground state with no nodes
tance, and highly accurate force values are available forand we carefully checked the time-step bias to be smaller
H,%° so that a thorough comparison is possible. Thereforethan the statistical error.
these systems are ideal candidates for our investigation. Our optimized wave functions were found to recover a
For each molecule, five different bond lengths aroundconsiderable fraction of the correlation energy at a varia-
the experimental equilibrium distance were consideredtional level, approximately 92%. Given this high level of
namely 95%, 97.5%, 100%, 102.5%, and 105% of the extotal energy accuracy, let us focus our attention on the VMC
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TABLE |. VMC and FN-DMC expectation values of the forces and energies foov¢r a JAST optimized
function. All the VMC and DMC simulations were carried out sampling the same number of total configura-
tions. (F) ot indicates(F) yer+ (F)w - {F)ecacfrom Ref. 30. CE; is the correlation energy percentage. Forces
are in hartree/bohr, energies are in hartree, distance in bohr.

R 1.470 1.435 1.400 1.365 1.330
(EyvME —1.170 102) —1.171 072) —1.171 432) —1.171 282) —1.170522)
CE, 91.4 92.2 92.1 93.2 92.7
(E)bMC —1.173 642) —1.174 252) —1.174 443) -1.174 172 —1.173 442)
(F)yyMe —0.014 026) —0.026 425) —0.036 855) —0.048 725) —0.066 2@5)

Fyme 0.042 232) 0.043 722) 0.040 813) 0.038 271) 0.040 622)

\

(F)yMe 0.028 216) 0.017 295) 0.003 9%6) —0.010 445) —0.025 585)
(F)R¥E 0.003 81) —0.008 @1) —0.019 21) —0.032 11) —0.040 31)
F)bme 0.020 771) 0.021 511) 0.020 032) 0.018 921) 0.018 432)

V
(F)DMe 0.024 §1) 0.013 §1) 0.000 §1) —0.013 21) —0.021 g1)
(F)exact 0.022 851) 0.012 0@1) —0.000 401) —0.014 381) —0.029 921)

estimates first. It is clear that, even for our highly accurateguted force with respect to the nuclear distance, as seen in
wave functions, the difference betwe@R)\\¥c and(F)Yax  Fig. 1. This suggests that tH& )Yy estimator is able, at

is of the same order of magnitude as the force average itselleast partially, to correct for small shortcomings of the wave
The conditions for the HFT are clearly violated. It is inter- functions.

esting to note that, regardless of the molecular geometry, we Turning now to the FN-DMC forces, it clearly appears
find for this system(F)y to be approximately constant, thatthe HFT estimates, although significantly improved with
0.041 hartree/bohr. As a consequence (ff VM$ values are respect to their VMC counterparts, still show some draw-
shifted upwards with respect to théF)\\Ys by similar  backs due to not accounting for the changes in the wave
amounts. This shift has a profound impact on the calculatiorfiunction. Similarly to the VMC case, adding the teffR)

of the equilibrium geometry as shown in Fig. 1. Here, thesignificantly changes the force with respect to the HFT esti-
intersection of the two fitted lines with tH&)=0 axis pro- mate. We also note th&E )2V appears to be approximately
vides an estimate for the equilibrium geometry. This yieldsconstant similarly to the VMC case, regardless of the mo-
1.5067) bohr for (F)M¢ and 1.398) bohr for (F)yaw,  lecular geometry. Although this value is approximately half
differing, respectively, by 7% and 0.5% from the experimen-the value we encountered discussing the VMC averages
tal bond length. Also, the value obtained frofR)¥> is  (roughly 0.02 hartree/bohr versus 0.041 hartree/pathis
clearly in contrast with the VMC PES behavi@ee Fig. 2,  term causes significant change. The Hellmann—Feynman es-
whose minimum, as obtained by quadratic fitting, is 1(292 timates have, once again, lower values than their total coun-
bohr. Conversely, the TOT estimator accurately agrees witkerparts. The internuclear equilibrium distance predicted by
the fitted PES result, giving an estimate of the equilibriumthe HFT estimator is quite far from the PES value even in
distance in statistical agreement with it. In addition, the useDMC. These are, respectively, 1.489and 1.4043) bohr,

of (F)YNS seems to have the important effect of reducing thethe last one being obtained by a second-order polynomial fit
statistical error of the computed equilibrium distance, as caof the DMC energies. Conversely, the TOT force estimator
be seen comparing its standard deviation for VMC-HFT,provides the more accurate result of 1.89&ohr, which is
0.007 bohr, and for VMC-TOT, 0.002 bohr. This outcome isalso close to that obtained by fittif@ )Y [1.3932) boht].

due to a less noisy, i.e., more linear, behavior of the com-

-1.170
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FIG. 1. Exact(see the text VMC, and DMC force estimates using JAST FIG. 2. VMC and DMC energies using JAST wave functions fgr Buan-
wave functions for K Quantities in a.u. Statistical errofsot shown are tities in a.u. Statistical error¢not shown are smaller than the plotted
smaller than the plotted symbol. symbols.
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TABLE Il. VMC and FN-DMC expectation values of the forces and energies for LiH over a JAST optimized
function. All the VMC and DMC simulations were carried out sampling the same number of total configura-
tions. (F)or indicates(F)yer+(F)y . CEy is the correlation energy percentage. Forces are in hartree/bohr,
energies are in hartree, distance in bohr.

R 3.165 75 3.090 37 3.0150 2.939 625 2.864 25
(EyVMC —8.062 348) —8.062 988) —8.063 488) —8.062 816) —8.062 526)
CEy, 91.0 91.35 93.1 91.1 92.0
(E)PMmC —8.069 7%7) —8.070 149) —8.070 276) —8.070 0Q7) —8.069 0311)
(F)yyMe 0.023 847) 0.013 447) 0.009 @1) 0.004 877) —0.003 35%8)
(Fyume —0.01583100  —0.009 897) —-0.011 08100  —0.011 746) —0.011 0313)
(Fyyde 0.008 0010) 0.0035610)  —0.002 08100  —0.006 879) —0.014 3816)
(F)pMC 0.015 8113) 0.008 6318) 0.004 310) —0.000 3713 —0.007 3219
(FyoMe —0.007 365) —0.003 946) —0.004 644) —0.004 934) —0.004 208)
(F)DMe 0.008 4514) 0.004 6918) —0.0002414)  —0.0053114)  —0.0115221)

So, while the bond length estimate from DMC-HFT force is Table I, the first usually being half of the second, although
off by 4% from the exact value, the DMC-TOT one is sta- simulations sampling the same number of configurations
tistically exact, and in excellent agreement with the PESwvere employed.
minimum. Our results for LiH are summarized in Table Il and pic-
Comparing our results with théF)g,. makes evident torially shown in Fig. 3. Here, the correlation energy percent-
the large improvement of the TOT values with respect to theages were computed using Hartree—Fock results from Ref.
HFT ones for both VMC and DMC over the entire bond 32. Our JAST optimized wave functions recovered more
length range. Interestingly, at any bond length we found thehan 91% of the correlation energy on the average. The use
differences between théF)Yu~ and the corresponding of (F)Yax instead of(F)/¥~ as force estimator provides
(F)2NC averages ranging from 0.003 15 to 0.0036 hartreexery different results, in close similarity to the, dase. How-
bohr, hence an order of magnitude smaller than the correever,(F)y'C considerably varies on going from the longest
tion (F)2MC. This finding, together with the valuable im- to the shortest internuclear distance. For all the geometries
provement in the VMC force estimates due to the addition ofconsidered, the HFT estimates show higher values than the
the term(F)}I’,'\"C to the HFT estimator, suggests the possibil-total ones. Once more, this difference is responsible for very
ity of accurately computing forces without using the FN- different values of the internuclear equilibrium distance, as
DMC method, relying on the simpler VMC. This choice shown in Fig. 3. Whereas the equilibrium distance predicted
would allow the faster decorrelation between differentby the HFT formulg2.90Q16) bohr] underestimates by 4%
samples that one obtains in VMC to be exploited. This isthe one obtained by fitting the VMC PHS.01526) bohr]
given by the possibility of using larger time steps in a VMC shown in Fig. 4, a value in better agreement with this one is
simulation than in a DMC one, although still using an exactprovided by the TOT estimat$8.0436) bohr], that is off by
Metropolis scheme. Thus, VMC provides forces with greateronly 1%.
statistical accuracy than DMC when performing runs of the  Notice that the statistical error of the LiH equilibrium
same length. This is clearly seen comparing the standardistances, 0.016 bohr for the VMC-HFT estimate and 0.006
deviations of the VMC-TOT and the DMC-TOT results in bohr for the VMC-TOT one, are higher than those obtained
for H,, respectively, 0.007 and 0.002 bohr, owing to a wider
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- a e -0. . e -1
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§ ooof O e e
£ 0.005 | x -7 e T .
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.-""" .
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FIG. 3. VMC and FN-DMC force estimates using JAST wave functions for

LiH. Quantities in a.u. Statistical errofsot shown are smaller than the FIG. 4. VMC and FN-DMC LiH potential energy surfaces. Quantities in
plotted symbols. a.u. Statistical errorgnot shown are smaller than the plotted symbols.
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dispersion of the LiH force averagésee Fig. 3. This dis- TABLE Ill. VMC and FN-DMC expectation values of the forces and ener-

persion presumably relates to the stochastic noise inherent fifs for H and LiH over DET optimized function. All the VMC and DMC
simulations were carried out sampling the same number of total configura-

the wave function optimization, as well as to the orbital basigions, (F),; indicates(F)yer+ (F)y . CEy

set incompleteness. However, similarly to the previous SySeentage. Quantities in a.u.

tem, the correctiofF )y"'© appears to considerably decrease

is the correlation energy per-

the dispersion of the force values, therefore allowing for a Hz (R=1.400 bohy LiH (R=3.0150 bohr
more statistically precise estimate of the equilibrium dis- (E)"™° —1.173 5%1) —8.064 7%5)
tance. In Table Il and in Fig. 3, we also show the correspond- CE"/E’;MC 96.7 94.1
ing FN-DMC estimates, for which remarks similar to those (B}, ~1.1744%9) ~8.07011)
- (F)e —0.001 978) 0.004 928)
for the VMC case could be made. More specifically, the FyuMe 0.003 261) —0.00694)
(F)PMC decreases by a substantial amount dRgher esti-  (gye 0.001 298) ~0.00194)
mate, concurrently reducing their dispersion. This last effect (F)p¥e —0.0015%2) 0.002G2)
can be seen either from Fig. 3, or from the statistical error of <F>u§$z 0.001 582) —0.002 208)
the computed equilibrium distances. These are 2Z93®hr (P 0.000 12) —0.00022)
(F)peE -0.001 @2) —0.00092)

for the HFT case, and 3.0&9 bohr for the TOT one. This
latter is in much better agreement than the HFT one with the
minimum of the DMC PES$3.0416) bohr; see Fig. #ithan

the HFT one. Note that, in the case of DMC, fitting the forceconverged to the Hartree—Fock limit. As expected, optimiz-
values has provided a result with the same statistical accyng the determinant yields a better agreement between the
racy of that obtained by the PES fittiigbout 0.006 bohr  vMC-HFT and VMC-TOT averages with respect to that ob-
From this point of view, use of the force values instead of thegajned for the JAST results. For,Hhe difference between
energy ones might seem to make no difference in predictinghese estimates is found to be 0.008hartree/bohr, ap-
the equilibrium geometry. However, as far as geometry optiproximately 1/10 of the previous valusee Table | for a
mization is concerned, the calculation of the force vector iscomparisom while for LiH this difference [0.00694)
much more advantageous than that of the sole energy expegartree/bohis 1/2(see Table . A similar behavior is found
tation value, since it provides the direction toward the mini-a|so for the DMC estimates, the correction to HFT foy H
mum energy configuration. This is a clear advantage in theLjH) being 1/13(1/2) of the DMC-JAST one. However,
case of a multidimensional PES for which a systematic eXdespite the considerable gain, the HFT and the TOT esti-
ploration of all the degrees of freedom is computationallymates cannot be said to be statistically equivalent. Even in
expensive, if not mpossmle, to carry out. this case, the residual difference suggests that the HFT ap-
_ Atthis point it is important to stress that for both Bind  proaches do not represent a satisfactory measure of the en-
LiH, the VMC-TOT and FN-DMC-TOT equilibrium distance ergy gradient. More interestingly, the DET-VMC-TOT and
results agree with experiments equally well, the difference]AST-VMC-TOT forces at the equilibrium distance appear to
being no more than a few times their statistical error. Againpe in good agreement, especially in the case of LiH, where
these results suggest that geometry optimization using simhe optimization of the atomic basis set should play a minor
ply the VMC-TOT method will provide as high accuracy and role in defining their values. Adding to these considerations

greater efficiency than DMC-TOT. the computational cost required to address the optimization
As a final test of oufF)¥r + (F)y® approximation, it of the determinant, we conclude that one should not expect

would be interesting to check whether it may yield eventhe HFT estimator to be useful within the VMC and the
more satisfactory results when more accurate wave functior®MC frameworks for computing forces. On the contrary, its
were used. In order to carry out such a test, we extended tHEOT counterpart does not require the trial wave function to
Newton’s optimization method to deal also with the determi-be exhaustively optimized, and it can be used efficiently to
nant parameters, i.e., optimizing the linear coefficients of theredict force averages in agreement with the PES behavior
molecular orbitals and the exponents of the atomic basis setand to calculate accurately the internuclear equilibrium dis-
For sake of clarity, in the following we will name DET the tance. This data is also supported by the accurate agreement
optimization procedure wheral the wave function param- between the VMC-TOT and DMC-TOT equilibrium distance
eters, except the atomic orbital centers, were fully energgestimates.
optimized. Since the optimization of the determinant param-  Having probed the overall performance of the VMC-
eters was found to be quite expensive, we restricted our calFOT and DMC-TOT approximations, the last point that re-
culations to the experimental equilibrium geometry for bothmains to be addressed regards the comparison with the SOE
molecules. Our energy and force results are collected ifiEq. (6)] in computing force values. This approach was pro-
Table III. posed by Assaraf and Caffalein order to improve the HFT
For both the molecules, the reoptimization of the deter-estimate, and indeed they found th&} >°F always corrected
minant resulted in a small gain in the correlation energy perthe VMC and DMC values in the right direction. However,
centages4.6% for H,, and 1.0% for LiH with respect to the they published results only for the experimental equilibrium
results shown in Tables | and Il. In the case of the hydrogemlistance, so that the ability of the SOE to predict this quan-
molecule, the improvement in the correlation energy percenttity accurately could not be thoroughly assessed. Also, our
age is larger due to the small size of the DZ basis set used wave functions for both KHand LiH, recovering more corre-
the calculation. Conversely, the LiH TZP basis set is nearlylation energy than the ones employed in Ref. 12, should rep-
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TABLE IV. SOE expectation values of the forces fop bind LiH using JAST optimized functions. Quantities
in a.u.A is the difference with F)°MC taken from Table | and Table I.

R (H,) 1.470 1.435 1.400 1.365 1.330
(FypeE 0.02161) 0.01041) 0.00161) —0.01551) —0.01441)
A —0.00291) —0.00311) +0.00081) —0.00231) —0.00741)
R (LiH) 3.16575 3.090 37 3.0150 2.939 625 2.864 25
F)SeE 0.00812) 0.00382) —0.00041) —0.00562) —0.01131)
HFT
A —0.00032) —0.00093) 0.00021) —0.00032) +0.00021)

resent a better starting point. Our results of (ﬁeagTE for  that this calculation might be computationally expensive or
both H, and LiH are collected in Table IV for the JAST wave cumbersome because of the mathematical expression of the

functions, and in Table IIl for the DET wave functions at the derivatives involved, either requiring more CPU time or
equilibrium distance. Also, in Table IV we showA more simulation steps. In contrast to this conclusion, how-

=(F)525—(F)P¥C in order to facilitate the comparison be- €Ver, we note that, for both force estimators the same statis-

tween the two estimates. As previously suggested in Ref. 14ical accuracy was achievegee Tables | and )l and thus
the SOE estimate noticeably improves the HFT force estithe calculation of the total averages did not require longer
mate, bringing it in closer agreement with thie)2uc one.  runs than those needed to compute the HFT values. Obvi-
Although this fact is true for both Hand LiH, one could ously the calculation of the total estimator is expected to
note that a better agreement between the two estimators iRcrease the computational time, because of the presence of
obtained in the LiH case. Moreover, for,lA shows an er- the term(F)y . However, performing variational calcula-
ratic behavior with an unexpected fall at 1.330 bohr, in cleations, we found this additional amount to be small enough
contrast with the smoother behavior of the DMC-TOT esti-(about 10% of the total timeto guarantee reasonable com-
mate. In our view, this finding highlights the strong depen-Putational costs.
dency of the(F)>2F on the quality of#'1. The erratic be-
havior is also evident from the large statistical error of the
equilibrium distance, 1.4Q) bohr, computed excluding the
aforementioned force value for the shorter distance. Con- In this work, various approximate estimates of the
versely, the equilibrium distance for LiH computed using thenuclear forces have been proposed and tested in the frame-
SOE results, 3.038) bohr, has a statistical error similar to work of the QMC methods. From our results og &hd LiH,
the DMC-TOT one. Somewhat ironically, the DET-SOE it emerges that computing=),er+(F)y at the VMC level,
force for H, shown in Table Il does not improve the agree- using aWV; whose Jastrow factor has been optimized by
ment with the DMC-TOT result, overshooting it at the ex- minimizing the energy, can be an accurate and viable ap-
perimental equilibrium distance. Als6F)SoF still differs by~ proach to obtain forces. Also, VMC-TOT seems to partially
more than 4 standard deviation from zero, i.e., the exactorrect for the inaccuracy oV, a feature that every ap-
value, for the LiH. proximate estimator should have. As a consequence, the
At this point, due to the large improvement in the quality computed equilibrium distances are in accurate agreement
of the trial wave function for the hydrogen molecule ob-with the experimental ones.
tained by optimizing the orbitals, one may argue that this  This finding seems to be somehow in mismatch with the
peculiar behavior should not be due to the DZ basis set, bukesults of Ref. 11, where larger differences between VMC
rather to an incomplete error cancellation in the SOE. Hereand exact equilibrium distances have been found for the first-
it is worth citing that a similar misbehavior of SOE was row dimers. Here, it is important to stress that the results
previously pointed out in the QMC literature for many dif- presented in Ref. 11 were computeihoutreoptimizing the
ferent physical properties. To name a few examples, we citesecondary geometry wave functions; therefore, a systematic
the calculation of (&(r)) for electroni@® and mixed error could be expected. Bearing in mind the greater effi-
electronic—positroni¢ systems, and the dipole moment cal- ciency of VMC with respect to DMC, we believe that the
culation of LiH by Lu2® All these findings can be rational- issue of the accuracy of VMC forces deserves further
ized invoking the results obtained by Sarsa, Schmidt, andttention.
Magro® Employing a formally exact variational path inte- If greater accuracy is needed, we found the DMC-TOT
gral procedure to compute expectation values for both modekell suited to tackle the task, giving, overall, an order of
and realistic systems, they found that SOE may give a difmagnitude more accurate results in our model systems. As
ference with the exact result similar to the VMC one. Thefar as the SOE is concerned, although it has been found to
magnitude of this difference seemed to depend strongly osubstantially improve the HFT force estimate, it shows a
the quality of the trial wave function used in the simulation. more erratic and noisy behavior than the TOT counterpart.
As to the computational cost, a question might be posedesides, its accuracy appears to be similar to the VMC-TOT
about the effort needed to compute the sl r+(F)y  one, but its cost is at least double due to the necessity of
rather than(F) -1 only. Indeed, some authors have implied running a DMC simulation.

IV. CONCLUSIONS
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In conclusion, let us remark that use of H@) is not  *D. M. Ceperley and M. H. Kalos, “Quantum Many-Body Problems,” in
exclusively restricted to the determination of force averages. Monte Carlo Methods in Statistical Physi€Springer, New York, 1979
Indeed, it can be used instead of the HFT to compute energy ! 183 o and G e 676(199
derivatives with respect to the nuclear ppsitions Whgneven;B: s:g:‘::::: ('\;A_',\'xoeroi’i‘?nd M'\,cglf; lfcﬁh??riials&&zoc?é.
these are needed. As examples of possible application Wey. mella, unpublished results. The optimization of the Jastrow factor for
cite the calculation of bond force constants, the Hessian ma-the three small systems He, Be, and LiH gave a more stable optimization,
trix of the energy, and the derivatives of the molecular dipole & smoother converging behavior, and a lower energy when the robust
moment, a quantity closely connected with the infrared ab- estimators proposed in Ref. 16 were used instead of the variance of the
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