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In order to overcome the difficulty of optimizing molecular geometry using quantum Monte Carlo
methods, we introduce various approximations to the exact force expectation value. We follow
Pulay’s suggestion@Mol. Phys.17, 153 ~1969!# to correct the Hellmann–Feynman estimator by
introducing the contributions due to the changes in the wave function with respect to the nuclear
positions. When used in conjunction with energy-optimized explicitly correlated trial wave
functions for H2 and LiH, these approximations appear to yield accurate forces using both the
variational and diffusion Monte Carlo methods. Also, the accuracy of the second-order estimate of
the Hellmann–Feynman force estimator was investigated employing our energy-optimized trial
wave functions, and an erratic behavior was uncovered for some of the studied bond lengths. The
additional computational cost required to compute the corrections to the Hellmann–Feynman
estimator was found to be only a small fraction of the cost for a simple mean energy calculation. The
same approach could be exploited also in computing the derivative of other energy-dependent
quantum-mechanical observables. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1562605#
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I. INTRODUCTION

In recent years, the quantum Monte Carlo~QMC! meth-
ods have been shown to be a powerful tool for solving
Schrödinger equation.1–3 Up to now, QMC techniques hav
been successfully applied to the calculation of ground-s
energies and energy-related properties of a variety of ato
molecules, and clusters, providing some of the most accu
calculations to date. Despite these remarkable results,
calculation of other important physical properties, such
equilibrium geometries, potential energy surfaces, and vib
tional frequencies, has not yet been satisfactorily addres
in this framework. The calculation of such quantities requi
the accurate evaluation of the derivative of the energy w
respect to a parameter~e.g., the nuclear positions in the ca
of the internuclear forces!, which is known to be very chal
lenging in QMC. The root of the difficulty lies in the sto
chastic nature of the method itself, always producing an
pectation value with a statistical error. This degrades
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computed precision of differences between two similar me
values, as well as the calculation of expectation values wh
variance is not bounded.

The Hellmann–Feynman theorem~HFT! provides a very
simple and compact expression for evaluating the ene
gradient.4,5 However, in the past, the use of the HFT f
computing forces in QMC was discouraged because of
uncontrolled statistical fluctuations associated with its b
force estimator. A few attempts to circumvent this difficul
were carried out by means of the correlated sampl
procedure,6–11 where the energy difference between two d
tinct system geometries is directly computed in a sin
simulation. Unfortunately, the accuracy and precision of
correlated sampling degrades rapidly upon increase of
difference between the two geometries. This difficulty is
duced if the trial wave function for all the geometries diffe
ent from the reference one is reoptimized, and a ‘‘war
coordinate transformation is used.9,11 However, the computa-
tional cost needed to compute aD-dimensional gradient is, a
least,D11 times the one for a single energy estimate, wh
the cost for the Hessian matrix scales asD(D11)/2. Obvi-
ously, this could become a serious drawback when study
systems containing more than two atoms. Moreover, the s
ing properties of the computational cost with respect to

at-
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atomic numberZ of the atoms in the molecule is hard
estimate.

Very recently, a general and effective solution to th
problem has been proposed by Assaraf and Caffarel,12 who
have shown how to remove the pathological part respons
for the infinite variance of the Hellmann–Feynman estima
by using a renormalized operator. In our view, this advan
ment represents an important step toward accurate force
culations in QMC for systems containing more than two
oms, since it allows for the simultaneous computation of
the gradient components in a single run, and without
burden to optimizeD11 wave functions.

This advantage notwithstanding, it should be pointed
that the renormalized Hellmann–Feynman estimator has
drawbacks of not being a zero variance method, and of
quiring a computational effort that scales linearly with t
atomic number to reach a chosen statistical accuracy.11

Moreover, the HFT holds only for the exact eigenfun
tion of the Hamiltonian operator, or if the special requir
ment of havingall the parameters optimized minimizing th
total energy is met by the approximate wave functions~see
Sec. II for a discussion!. In order to illustrate this point and
to introduce our notation, we briefly review the full expre
sion of the force vector in the variational Monte Car
~VMC! method, where the approximate wave functionCT

rather than the exact eigenfunctionF0 is used. Following
Pulay’s work,13 the exact derivative of the VMC energy ve
susR ~the nuclear positions! can be expressed as

^F&TOT
VMC5^F&HFT

VMC1^F&C,c
VMC , ~1!

where

^F&HFT
VMC52

^CTu¹RVuCT&

^CTuCT&
~2!

is the usual HFT estimator, and̂F&C,c
VMC depends on the

variation of CT with respect to the nuclear positions an
variational parameters. This term can be exactly decompo
into two terms

^F&C,c
VMC5^F&C

VMC1^F&c
VMC , ~3!

which read

^F&C
VMC522

K ]CT

]R
UHUCTL

^CTuCT&

12^E&VMC

K ]CT

]R
UCTL

^CTuCT&
, ~4!

and

^F&c
VMC52(

i

]ci

]R

]^E&VMC

]ci

. ~5!

Here, ^E&VMC is the energy expectation value for the tri
wave function,¹R is the gradient with respect to the nucle
coordinatesR, and H is the usual Born–Oppenheime
Hamiltonian for the system. In Eq.~4!, the partial derivatives
Downloaded 12 Apr 2003 to 163.1.35.98. Redistribution subject to AIP
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of CT with respect to the nuclear positions act only on t
part of the trial wave function that explicitly depends onR,
i.e., the atomic basis function centers and the correlation
tor if any electron-nuclear term is present. The action of¹R
on the parameters that only indirectly couple with the nucl
positions~e.g., the coefficients of the molecular orbitals! is
rewritten in Eq. ~5! by exploiting the chain rule. The
]^E&VMC /]ci terms are the partial derivatives of the me
energy with respect to the set of the variational parame
c[$ci%, while the]ci /]R are the partial derivatives of thes
parameters with respect to the nuclear coordinatesR.

By virtue of Eqs.~1! and ~3!, the total force has been
separated into three well-defined contributions. Followi
Eqs. ~1!–~5!, it is easy to recognize that the HFT formu
@Eq. ~2!# provides only an approximation to the exact an
lytic result. Therefore, as far as approximate wave functio
are concerned, use of Eq.~2! could result in poor estimate
of the energy gradient unlessCT is exceedingly accurate
Results using the simple renormalized HFT estimator, i
not including^F&C,c

VMC , were given by Assaraf and Caffare
for H2, LiH, Li 2, and C2

12 at the experimental equilibrium
distances. At thêF&HFT

VMC level the computed forces clearl
showed a bias, that we interpret as due to some deficienc
the employed wave functions. To partially account for the
shortcomings, Assaraf and Caffarel employed the diffus
Monte Carlo~DMC! method together with the second-ord
estimate~SOE! approximation14

^F&HFT
SOE.2^F&HFT

DMC2^F&HFT
VMC , ~6!

to correct the electronic density and to evaluate forces in
framework of fixed node~FN! DMC. Although the computed
SOE results improved substantially, this procedure, rely
on an almost complete error cancellation, is strongly dep
dent on the quality of the employed trial wave functio
sometimes overcorrecting the VMC results.15

At this point, one might argue that use of very accura
trial wave functions or densities should be expected to p
vide accurate, although not exact, results. Therefore,
more accurately the trial wave function approximates the
act one, the closer the agreement between the exact an
HFT estimator should be. At first glance, this expectat
seems to be reasonable, but, to our knowledge, it has n
been subjected to a systematic investigation within the Q
framework in order to clarify what accuracy can be expec
from a given quality of the trial wave function. In this re
spect it is mandatory to stress that the optimization of a t
wave function in QMC~i.e., the procedure used to select t
wave function parameters in order to better approximate
eigenfunction! is a procedure subject to stochastic noise a
to the presence of multiple local minima in the parame
space. This is true especially when one chooses to minim
the variance of the local energyHCT /CT instead of the
energy, as clearly shown in Ref. 16. There, the authors fo
that iteratively optimizing the variance of the local ener
gave erratic results even for as small a system as He3, and
proposed various robust estimators of the quality of a mo
wave function as a possible cure for this. Although sub
quent application by one of us17 of these new estimators t
more common electronic structure problems showed con
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7195J. Chem. Phys., Vol. 118, No. 16, 22 April 2003 Accurate forces in QMC
tently better results~i.e., lower energy! than the optimization
of the variance of the local energy, a significant stocha
noise was still present. We expect that this finding may a
influence the computed force values, for which the accur
of the trial wave function seems to be an important iss
Therefore, we tried to eliminate the stochastic noise as m
as possible, directly optimizing the mean energy using lo
variational runs.18

In this paper, our main aim is to address the issue of h
accurately one can compute the forces by means of a di
ent approximate QMC approach, stressing how this kno
edge is important with respect to many possible QMC ap
cations. In our view, whereas the work of Assaraf a
Caffarel efficiently solved the problem of the unbound
variance of the force estimator, the two major sources
inaccuracy, i.e., thêF&C

VMC and ^F&c
VMC have not been sat

isfactorily dealt with. As to thê F&c
VMC contribution @Eq.

~5!#, this can be eliminated by energy optimizing thec pa-
rameters, so that the partial derivatives@]^E&VMC#/]ci have
values close to zero. ThêF&C

VMC term can be formulated
analytically and computed accurately in a computational
ficient way. In this paper, we demonstrate that merging
ergy optimization with the exact computation of^F&C

VMC

leads to very accurate force values with only a fractio
increase of the total simulation time.

The outline of the paper is as follows: In Sec. II, w
introduce the theoretical and methodological details relev
for the present study. Section III is devoted to presenting
discussing the numerical results obtained for H2 and LiH as
test systems. Finally, Sec. IV contains our conclusions
some prospect for future developments.

II. THEORY AND METHODS

It is well known, while the HFT holds for an exhaus
tively energy-optimized wave function~i.e., a wave function
whose variational parameters have beenall optimized by
minimizing the energy expectation value!, the HFT is not
exact for QMC trial functions obtained by the common va
ance minimization scheme. This can be easily demonstr
at the VMC level by considering the analytic energy gra
ent, Eq.~1!. As already mentioned, and well known in th
field of ab initio calculations,^F&C,c

VMC must be added to
^F&HFT

VMC to account for the dependence of the trial wave fu
tion on the nuclear coordinates. For sake of convenience,
term was split into two terms in Eq.~4! considering a wave
function which contains some parameters that depend
rectly on the nuclear coordinates~e.g., an atom center bas
set or an electron-nucleus Jastrow factor! and other param-
eters that only depend indirectly.

Although this choice is very natural and convenient
treating molecular systems, in principle, there are no res
tions on the choice of the functional form of the trial wa
function. Taking advantage of this freedom, we may a
write a trial wave function that does not depend on
nuclear positions directly at all, or, even better, where
atomic basis centers would be considered as variational
rameters. As a consequence, the term^F&C

VMC would be now
included in^F&c

VMC . Setting]^E&VMC /]ci50 for eachi, an
Downloaded 12 Apr 2003 to 163.1.35.98. Redistribution subject to AIP
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equality that holds only for the exact or for a fully energ
optimized wave function, we obtain̂F&C,c

VMC50, meaning
that Eq.~1! and Eq.~2! give the same result.

Unfortunately, obtaining a fully energy-optimized wav
function represents a complicated and expensive task fo
but the simplest systems, especially when explicitly cor
lated wave functions are concerned. As a direct conseque
this fact forces us either to optimize a reduced set of par
eters or to explicitly compute the correction in Eq.~3!. This
is commonly carried out in standardab initio methods by
means of the coupled perturbed Hartree–Fock procedure
provides the derivatives of theci with respect to the nuclea
coordinates. This task is not straightforward in QMC, so t
a different route must be followed.

In the present work, various levels of approximation a
brought to bear on this task with the aim of determini
which one delivers enough accuracy and computational e
ciency to represent a practical scheme for evaluating accu
forces in QMC.

Before proposing different approximate schemes
evaluating Eq.~1!, it is necessary to introduce the gener
analytical form of the wave functions used. In order to pr
vide a useful benchmark for further calculations, we choo
to use the traditional atom-centered wave functions built aa
and b electron orbital determinants multiplied by the sym
metric Jastrow factor proposed by Schmidt a
Moskowitz.19,20 Whereas the starting molecular orbitals a
obtained by means of a standard SCF procedure, the Jas
parameters are obtained by Newton–Raphson ene
minimization.18 This model wave function represents th
starting point for our investigation of forces. The crude
approximation of forces~VMC-HFT! is made by computing
the expectation value of Eq.~2! in VMC, i.e., computing the
mean value of the Hellmann–Feynman estimator. As a s
ond approximation, we discard the^F&c

VMC term in Eq.~3!
approximating the force as a sum of HFT and^F&C

VMC terms
within VMC ~VMC-TOT!. Apart from the complication of
writing down the explicit form of the equations,21 this term is
straightforward to compute. Moreover, since many of t
quantities needed for its computation are already neces
for standard energy calculation, the increase in the comp
tional cost should be rather limited. The choice of discard
the effect of the dependency of the molecular orbital coe
cients on the nuclear position~note we energy optimize the
parameters of the Jastrow term! is based on the fact that the
should be already close to their optimal values, although
tained in a standard SCF technique. This idea is supporte
the small energy improvement obtained by Filippi a
Fahy22 in reoptimizing the orbitals after multiplying the de
terminants by a Jastrow factor, and by the computatio
evidence obtained by two of us21 analytically computing the
]^E&VMC /]ci . However, this approximation is not mand
tory and can be relaxed, optimizing thec’s by means of the
Newton–Raphson method21 so that all their partial deriva-
tives of the energy are zero. Then, the procedure is form
exact.

In order to remove some of the inaccuracy in the for
values due to the limited flexibility of the analytical form o
the chosenCT , we also compute FN-DMC force estimate
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7196 J. Chem. Phys., Vol. 118, No. 16, 22 April 2003 Casalegno, Mella, and Rappe
using our VMC wave function as guiding function. Calcul
tion of the force within the FN-DMC framework is mor
cumbersome than in the VMC case due to the necessit
computing the derivatives of the exact fixed-node wave fu
tion F0 with respect to the nuclear coordinates.23 This de-
pendency comes from both the nuclear position and
changes in the nodal surfaces of the wave function. Altho
a formally exact scheme to estimate this quantity has b
recently proposed,24 it seems to be plagued by large statis
cal noise. So, to avoid this problem, we approximate s
derivatives as proposed by Barnettet al.,25 writing

]F0

]R
>F0S ]CT /]R

CT
D . ~7!

The resulting FN-DMC force estimator is therefore obtain
by differentiating the mixed estimator̂F0uHuCT&, and
reads

^F&TOT
DMC>^F&HFT

DMC1^F&C
DMC , ~8!

where

^F&HFT
DMC52

^F0u¹RVuCT&

^F0uCT&
, ~9!

and

^F&C
DMC52

^F0~]CT /]R!/CTuHuCT&

^F0uCT&

1^E&0

^F0u~]CT /]R!&

^F0uCT&
. ~10!

Similarly to the VMC case, we name DMC-HFT the forc
estimate obtained by means of Eq.~9!, and DMC-TOT the
one computed using also Eq.~10!. Notice that in Eq.~8! we
did not include the contributing coming from the change
the VMC wave function variational parameters with the m
lecular geometry. One should bear in mind that a sim
term would be present even if the exact quantum-mechan
expectation valuê F0uHuC0& were used instead of th
mixed estimator, due to the changes in the nodal locatio
any is present. This term is complicated to compute an
expected to be negligible for DMC force calculations as
the VMC case. On the other hand, the term^F&C is expected
to be vital in order to obtain reliable force estimates.

Following the route we outlined previously, we inves
gate the accuracy of the four approximations in predict
the forces for the molecules H2 and LiH within the VMC and
FN-DMC frameworks. We can accurately compute the
ergy expectation values of these systems for different m
lecular geometries, thus obtaining accurate potential en
surfaces~PES!. Moreover, these systems possess two co
pletely different charge distributions~i.e., H2 is nonpolar,
while LiH is almost completely ionic at the equilibrium dis
tance!, and highly accurate force values are available
H2

30 so that a thorough comparison is possible. Therefo
these systems are ideal candidates for our investigation.

For each molecule, five different bond lengths arou
the experimental equilibrium distance were consider
namely 95%, 97.5%, 100%, 102.5%, and 105% of the
Downloaded 12 Apr 2003 to 163.1.35.98. Redistribution subject to AIP
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perimental bond length. These are 1.400 bohr for H2 and
3.015 bohr for LiH. These bond distances were specifica
chosen to investigate the region around the minimum ene
configuration. The determinants were built starting from
stricted SCF wave functions of the DZ~TZ2P! quality for H2

~LiH !. To begin our investigation, we optimized for eve
nuclear distance a Jastrow factor for H2 and LiH, composed
by 14 and 30 terms, respectively. These two factors con
for each atom the same terms used in the 9- and 17-t
expansions for a single atom in Ref. 19. The Jastrow par
the wave functions corresponding to each molecular ge
etry were optimized following the procedure described
Ref. 18. This method relies on the use of the Newton seco
order approximation to minimize the VMC energy expec
tion value with respect to a chosen set of variational para
eters. Because of its generality, this approach can be app
to the determinant parameters as well as the parameter
longing to the Jastrow factor. We emphasize that energy
timizing the Jastrow parameters reduces the dependenc
the forces on the variation of the wave function paramete
since a subset of their partial derivatives is then equa
zero. Also, energy-optimized trial wave functions seem
yield more accurate properties than variance-optimized o
This idea is suggested both from theoretical analysis26 and
empirical numerical evidences.27–29The tables of all the op-
timized trial wave function parameters are available from
authors upon request.

In the following, we will name JAST the trial wave func
tion obtained employing this optimization strategy. As
starting guess for the optimization procedure, we used a
Jastrow factor, i.e., with zeros as initial parameter valu
Once optimized, the resulting wave functions were used
compute botĥ F&HFT and ^F&HFT1^F&C averages in VMC
and FN-DMC. In order to avoid the problem related to t
infinite variance of the HFT estimator, we modified Eq.~2!
and Eq.~9! as suggested by Assaraf and Caffarel.12

III. RESULTS AND DISCUSSION

VMC and FN-DMC force estimates for H2 are collected
in Table I and shown in Fig. 1. Table I also reports the c
responding VMC and FN-DMC energy values, accura
force estimates obtained from Ref. 30, and correlation ene
percentages. ThêF&Exact force values were obtained by fit
ting with a second-order polynomial the highly accura
forces computed in Ref. 30 in the range 1.30–1.50 bohr.
fitted polynomial was found to differ from the fitted value
by less than 0.0001 hartree/bohr, so indicating the glo
accuracy of the values shown in Table I. The correlat
energy percentages were obtained using the Hartree–F
limit taken from Ref. 31, and the FN-DMC energies com
puted in this work. These last ones are to be conside
statistically exact, since H2 has a ground state with no node
and we carefully checked the time-step bias to be sma
than the statistical error.

Our optimized wave functions were found to recover
considerable fraction of the correlation energy at a va
tional level, approximately 92%. Given this high level
total energy accuracy, let us focus our attention on the VM
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 12 
TABLE I. VMC and FN-DMC expectation values of the forces and energies for H2 over a JAST optimized
function. All the VMC and DMC simulations were carried out sampling the same number of total confi
tions.^F&TOT indicateŝ F&HFT1^F&C . ^F&Exact from Ref. 30. CE% is the correlation energy percentage. Forc
are in hartree/bohr, energies are in hartree, distance in bohr.

R 1.470 1.435 1.400 1.365 1.330

^E&VMC 21.170 10~2! 21.171 07~2! 21.171 43~2! 21.171 28~2! 21.170 52~2!
CE% 91.4 92.2 92.1 93.2 92.7
^E&DMC 21.173 64~2! 21.174 25~2! 21.174 44~3! 21.174 17~2! 21.173 44~2!

^F&HFT
VMC 20.014 02~6! 20.026 42~5! 20.036 85~5! 20.048 72~5! 20.066 20~5!

^F&C
VMC 0.042 23~2! 0.043 72~2! 0.040 81~3! 0.038 27~1! 0.040 62~2!

^F&TOT
VMC 0.028 21~6! 0.017 29~5! 0.003 95~6! 20.010 44~5! 20.025 58~5!

^F&HFT
DMC 0.003 8~1! 20.008 0~1! 20.019 2~1! 20.032 1~1! 20.040 3~1!

^F&C
DMC 0.020 77~1! 0.021 51~1! 0.020 03~2! 0.018 92~1! 0.018 43~2!

^F&TOT
DMC 0.024 5~1! 0.013 5~1! 0.000 8~1! 20.013 2~1! 20.021 8~1!

^F&Exact 0.022 85~1! 0.012 00~1! 20.000 40~1! 20.014 38~1! 20.029 92~1!
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estimates first. It is clear that, even for our highly accur
wave functions, the difference between^F&HFT

VMC and^F&TOT
VMC

is of the same order of magnitude as the force average it
The conditions for the HFT are clearly violated. It is inte
esting to note that, regardless of the molecular geometry
find for this system^F&C to be approximately constan
0.041 hartree/bohr. As a consequence, the^F&TOT

VMC values are
shifted upwards with respect to thêF&HFT

VMC by similar
amounts. This shift has a profound impact on the calcula
of the equilibrium geometry as shown in Fig. 1. Here, t
intersection of the two fitted lines with thêF&50 axis pro-
vides an estimate for the equilibrium geometry. This yie
1.506~7! bohr for ^F&HFT

VMC and 1.393~2! bohr for ^F&TOT
VMC ,

differing, respectively, by 7% and 0.5% from the experime
tal bond length. Also, the value obtained from̂F&HFT

VMC is
clearly in contrast with the VMC PES behavior~see Fig. 2!,
whose minimum, as obtained by quadratic fitting, is 1.392~2!
bohr. Conversely, the TOT estimator accurately agrees w
the fitted PES result, giving an estimate of the equilibriu
distance in statistical agreement with it. In addition, the u
of ^F&TOT

VMC seems to have the important effect of reducing
statistical error of the computed equilibrium distance, as
be seen comparing its standard deviation for VMC-HF
0.007 bohr, and for VMC-TOT, 0.002 bohr. This outcome
due to a less noisy, i.e., more linear, behavior of the co

FIG. 1. Exact~see the text!, VMC, and DMC force estimates using JAS
wave functions for H2. Quantities in a.u. Statistical errors~not shown! are
smaller than the plotted symbol.
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puted force with respect to the nuclear distance, as see
Fig. 1. This suggests that thêF&TOT

VMC estimator is able, at
least partially, to correct for small shortcomings of the wa
functions.

Turning now to the FN-DMC forces, it clearly appea
that the HFT estimates, although significantly improved w
respect to their VMC counterparts, still show some dra
backs due to not accounting for the changes in the w
function. Similarly to the VMC case, adding the term^F&C

significantly changes the force with respect to the HFT e
mate. We also note that^F&C

DMC appears to be approximatel
constant similarly to the VMC case, regardless of the m
lecular geometry. Although this value is approximately h
the value we encountered discussing the VMC avera
~roughly 0.02 hartree/bohr versus 0.041 hartree/bohr!, this
term causes significant change. The Hellmann–Feynman
timates have, once again, lower values than their total co
terparts. The internuclear equilibrium distance predicted
the HFT estimator is quite far from the PES value even
DMC. These are, respectively, 1.459~3! and 1.404~3! bohr,
the last one being obtained by a second-order polynomia
of the DMC energies. Conversely, the TOT force estima
provides the more accurate result of 1.398~2! bohr, which is
also close to that obtained by fitting^F&TOT

VMC @1.393~2! bohr#.

FIG. 2. VMC and DMC energies using JAST wave functions for H2. Quan-
tities in a.u. Statistical errors~not shown! are smaller than the plotted
symbols.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE II. VMC and FN-DMC expectation values of the forces and energies for LiH over a JAST optim
function. All the VMC and DMC simulations were carried out sampling the same number of total confi
tions. ^F&TOT indicates^F&HFT1^F&C . CE% is the correlation energy percentage. Forces are in hartree/b
energies are in hartree, distance in bohr.

R 3.165 75 3.090 37 3.0150 2.939 625 2.864 25

^E&VMC 28.062 34~8! 28.062 98~8! 28.063 48~8! 28.062 81~6! 28.062 52~6!
CE% 91.0 91.35 93.1 91.1 92.0
^E&DMC 28.069 75~7! 28.070 14~9! 28.070 27~6! 28.070 00~7! 28.069 03~11!

^F&HFT
VMC 0.023 84~7! 0.013 44~7! 0.009 0~1! 0.004 87~7! 20.003 35~8!

^F&C
VMC 20.015 83~10! 20.009 89~7! 20.011 08~10! 20.011 74~6! 20.011 03~13!

^F&TOT
VMC 0.008 00~10! 0.003 56~10! 20.002 08~10! 20.006 87~9! 20.014 38~16!

^F&HFT
DMC 0.015 81~13! 0.008 63~18! 0.004 3~10! 20.000 37~13! 20.007 32~19!

^F&C
DMC 20.007 36~5! 20.003 94~6! 20.004 64~4! 20.004 93~4! 20.004 20~8!

^F&TOT
DMC 0.008 45~14! 0.004 69~18! 20.000 24~14! 20.005 31~14! 20.011 52~21!
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So, while the bond length estimate from DMC-HFT force
off by 4% from the exact value, the DMC-TOT one is st
tistically exact, and in excellent agreement with the P
minimum.

Comparing our results with thêF&Exact makes evident
the large improvement of the TOT values with respect to
HFT ones for both VMC and DMC over the entire bon
length range. Interestingly, at any bond length we found
differences between thêF&TOT

VMC and the corresponding
^F&TOT

DMC averages ranging from 0.003 15 to 0.0036 hartr
bohr, hence an order of magnitude smaller than the cor
tion ^F&C

DMC . This finding, together with the valuable im
provement in the VMC force estimates due to the addition
the term^F&C

VMC to the HFT estimator, suggests the possib
ity of accurately computing forces without using the F
DMC method, relying on the simpler VMC. This choic
would allow the faster decorrelation between differe
samples that one obtains in VMC to be exploited. This
given by the possibility of using larger time steps in a VM
simulation than in a DMC one, although still using an exa
Metropolis scheme. Thus, VMC provides forces with grea
statistical accuracy than DMC when performing runs of
same length. This is clearly seen comparing the stand
deviations of the VMC-TOT and the DMC-TOT results

FIG. 3. VMC and FN-DMC force estimates using JAST wave functions
LiH. Quantities in a.u. Statistical errors~not shown! are smaller than the
plotted symbols.
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Table I, the first usually being half of the second, althou
simulations sampling the same number of configuratio
were employed.

Our results for LiH are summarized in Table II and pi
torially shown in Fig. 3. Here, the correlation energy perce
ages were computed using Hartree–Fock results from R
32. Our JAST optimized wave functions recovered mo
than 91% of the correlation energy on the average. The
of ^F&TOT

VMC instead of^F&HFT
VMC as force estimator provide

very different results, in close similarity to the H2 case. How-
ever,^F&C

VMC considerably varies on going from the longe
to the shortest internuclear distance. For all the geomet
considered, the HFT estimates show higher values than
total ones. Once more, this difference is responsible for v
different values of the internuclear equilibrium distance,
shown in Fig. 3. Whereas the equilibrium distance predic
by the HFT formula@2.900~16! bohr# underestimates by 4%
the one obtained by fitting the VMC PES@3.015~26! bohr#
shown in Fig. 4, a value in better agreement with this one
provided by the TOT estimator@3.043~6! bohr#, that is off by
only 1%.

Notice that the statistical error of the LiH equilibrium
distances, 0.016 bohr for the VMC-HFT estimate and 0.0
bohr for the VMC-TOT one, are higher than those obtain
for H2, respectively, 0.007 and 0.002 bohr, owing to a wid

r
FIG. 4. VMC and FN-DMC LiH potential energy surfaces. Quantities
a.u. Statistical errors~not shown! are smaller than the plotted symbols.
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dispersion of the LiH force averages~see Fig. 3!. This dis-
persion presumably relates to the stochastic noise inhere
the wave function optimization, as well as to the orbital ba
set incompleteness. However, similarly to the previous s
tem, the correction̂F&C

VMC appears to considerably decrea
the dispersion of the force values, therefore allowing fo
more statistically precise estimate of the equilibrium d
tance. In Table II and in Fig. 3, we also show the correspo
ing FN-DMC estimates, for which remarks similar to tho
for the VMC case could be made. More specifically, t
^F&C

DMC decreases by a substantial amount the^F&HFT
DMC esti-

mate, concurrently reducing their dispersion. This last eff
can be seen either from Fig. 3, or from the statistical erro
the computed equilibrium distances. These are 2.958~7! bohr
for the HFT case, and 3.026~5! bohr for the TOT one. This
latter is in much better agreement than the HFT one with
minimum of the DMC PES@3.041~6! bohr; see Fig. 4# than
the HFT one. Note that, in the case of DMC, fitting the for
values has provided a result with the same statistical a
racy of that obtained by the PES fitting~about 0.006 bohr!.
From this point of view, use of the force values instead of
energy ones might seem to make no difference in predic
the equilibrium geometry. However, as far as geometry o
mization is concerned, the calculation of the force vecto
much more advantageous than that of the sole energy ex
tation value, since it provides the direction toward the mi
mum energy configuration. This is a clear advantage in
case of a multidimensional PES for which a systematic
ploration of all the degrees of freedom is computationa
expensive, if not impossible, to carry out.

At this point it is important to stress that for both H2 and
LiH, the VMC-TOT and FN-DMC-TOT equilibrium distance
results agree with experiments equally well, the differen
being no more than a few times their statistical error. Aga
these results suggest that geometry optimization using
ply the VMC-TOT method will provide as high accuracy an
greater efficiency than DMC-TOT.

As a final test of our̂F&HFT
VMC1^F&C

VMC approximation, it
would be interesting to check whether it may yield ev
more satisfactory results when more accurate wave funct
were used. In order to carry out such a test, we extended
Newton’s optimization method to deal also with the determ
nant parameters, i.e., optimizing the linear coefficients of
molecular orbitals and the exponents of the atomic basis s
For sake of clarity, in the following we will name DET th
optimization procedure whereall the wave function param
eters, except the atomic orbital centers, were fully ene
optimized. Since the optimization of the determinant para
eters was found to be quite expensive, we restricted our
culations to the experimental equilibrium geometry for bo
molecules. Our energy and force results are collected
Table III.

For both the molecules, the reoptimization of the det
minant resulted in a small gain in the correlation energy p
centages~4.6% for H2, and 1.0% for LiH! with respect to the
results shown in Tables I and II. In the case of the hydrog
molecule, the improvement in the correlation energy perce
age is larger due to the small size of the DZ basis set use
the calculation. Conversely, the LiH TZP basis set is nea
Downloaded 12 Apr 2003 to 163.1.35.98. Redistribution subject to AIP
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converged to the Hartree–Fock limit. As expected, optim
ing the determinant yields a better agreement between
VMC-HFT and VMC-TOT averages with respect to that o
tained for the JAST results. For H2 the difference between
these estimates is found to be 0.003 64~1! hartree/bohr, ap-
proximately 1/10 of the previous value~see Table I for a
comparison!, while for LiH this difference @0.0069~4!
hartree/bohr# is 1/2~see Table II!. A similar behavior is found
also for the DMC estimates, the correction to HFT for H2

~LiH ! being 1/13~1/2! of the DMC-JAST one. However
despite the considerable gain, the HFT and the TOT e
mates cannot be said to be statistically equivalent. Even
this case, the residual difference suggests that the HFT
proaches do not represent a satisfactory measure of the
ergy gradient. More interestingly, the DET-VMC-TOT an
JAST-VMC-TOT forces at the equilibrium distance appear
be in good agreement, especially in the case of LiH, wh
the optimization of the atomic basis set should play a mi
role in defining their values. Adding to these consideratio
the computational cost required to address the optimiza
of the determinant, we conclude that one should not exp
the HFT estimator to be useful within the VMC and th
DMC frameworks for computing forces. On the contrary,
TOT counterpart does not require the trial wave function
be exhaustively optimized, and it can be used efficiently
predict force averages in agreement with the PES beha
and to calculate accurately the internuclear equilibrium d
tance. This data is also supported by the accurate agree
between the VMC-TOT and DMC-TOT equilibrium distanc
estimates.

Having probed the overall performance of the VMC
TOT and DMC-TOT approximations, the last point that r
mains to be addressed regards the comparison with the
@Eq. ~6!# in computing force values. This approach was p
posed by Assaraf and Caffarel12 in order to improve the HFT
estimate, and indeed they found that^F&HFT

SOEalways corrected
the VMC and DMC values in the right direction. Howeve
they published results only for the experimental equilibriu
distance, so that the ability of the SOE to predict this qu
tity accurately could not be thoroughly assessed. Also,
wave functions for both H2 and LiH, recovering more corre
lation energy than the ones employed in Ref. 12, should r

TABLE III. VMC and FN-DMC expectation values of the forces and ene
gies for H2 and LiH over DET optimized function. All the VMC and DMC
simulations were carried out sampling the same number of total config
tions. ^F&TOT indicates^F&HFT1^F&C . CE% is the correlation energy per
centage. Quantities in a.u.

H2 (R51.400 bohr! LiH ( R53.0150 bohr!

^E&VMC 21.173 55~1! 28.064 75~5!
CE% 96.7 94.1
^E&DMC 21.174 49~3! 28.0701~1!

^F&HFT
VMC 20.001 97~8! 0.004 92~8!

^F&C
VMC 0.003 26~1! 20.0069~4!

^F&TOT
VMC 0.001 29~8! 20.0019~4!

^F&HFT
DMC 20.0015~2! 0.0020~2!

^F&C
DMC 0.001 58~2! 20.002 20~8!

^F&TOT
DMC 0.000 1~2! 20.0002~2!

^F&HFT
SOE 20.001 0~2! 20.0009~2!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE IV. SOE expectation values of the forces for H2 and LiH using JAST optimized functions. Quantitie
in a.u.D is the difference witĥ F&TOT

DMC taken from Table I and Table II.

R (H2) 1.470 1.435 1.400 1.365 1.330

^F&HFT
SOE 0.0216~1! 0.0104~1! 0.0016~1! 20.0155~1! 20.0144~1!

D 20.0029~1! 20.0031~1! 10.0008~1! 20.0023~1! 20.0074~1!

R ~LiH ! 3.165 75 3.090 37 3.0150 2.939 625 2.864 25

^F&HFT
SOE 0.0081~2! 0.0038~2! 20.0004~1! 20.0056~2! 20.0113~1!

D 20.0003~2! 20.0009~3! 0.0002~1! 20.0003~2! 10.0002~1!
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resent a better starting point. Our results of the^F&HFT
SOE for

both H2 and LiH are collected in Table IV for the JAST wav
functions, and in Table III for the DET wave functions at th
equilibrium distance. Also, in Table IV we showD
5^F&HFT

SOE2^F&TOT
DMC in order to facilitate the comparison be

tween the two estimates. As previously suggested in Ref.
the SOE estimate noticeably improves the HFT force e
mate, bringing it in closer agreement with the^F&TOT

DMC one.
Although this fact is true for both H2 and LiH, one could
note that a better agreement between the two estimato
obtained in the LiH case. Moreover, for H2 D shows an er-
ratic behavior with an unexpected fall at 1.330 bohr, in cl
contrast with the smoother behavior of the DMC-TOT es
mate. In our view, this finding highlights the strong depe
dency of the^F&HFT

SOE on the quality ofCT . The erratic be-
havior is also evident from the large statistical error of t
equilibrium distance, 1.40~1! bohr, computed excluding th
aforementioned force value for the shorter distance. C
versely, the equilibrium distance for LiH computed using t
SOE results, 3.032~6! bohr, has a statistical error similar t
the DMC-TOT one. Somewhat ironically, the DET-SO
force for H2 shown in Table III does not improve the agre
ment with the DMC-TOT result, overshooting it at the e
perimental equilibrium distance. Also,^F&HFT

SOE still differs by
more than 4 standard deviation from zero, i.e., the ex
value, for the LiH.

At this point, due to the large improvement in the qual
of the trial wave function for the hydrogen molecule o
tained by optimizing the orbitals, one may argue that t
peculiar behavior should not be due to the DZ basis set,
rather to an incomplete error cancellation in the SOE. He
it is worth citing that a similar misbehavior of SOE wa
previously pointed out in the QMC literature for many d
ferent physical properties. To name a few examples, we
the calculation of ^d(r )& for electronic33 and mixed
electronic–positronic34 systems, and the dipole moment ca
culation of LiH by Lu.36 All these findings can be rationa
ized invoking the results obtained by Sarsa, Schmidt,
Magro.35 Employing a formally exact variational path inte
gral procedure to compute expectation values for both mo
and realistic systems, they found that SOE may give a
ference with the exact result similar to the VMC one. T
magnitude of this difference seemed to depend strongly
the quality of the trial wave function used in the simulatio

As to the computational cost, a question might be po
about the effort needed to compute the sum^F&HFT1^F&C

rather than̂ F&HFT only. Indeed, some authors have implie
Apr 2003 to 163.1.35.98. Redistribution subject to AIP
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that this calculation might be computationally expensive
cumbersome because of the mathematical expression o
derivatives involved,37 either requiring more CPU time o
more simulation steps. In contrast to this conclusion, ho
ever, we note that, for both force estimators the same st
tical accuracy was achieved~see Tables I and II!, and thus
the calculation of the total averages did not require lon
runs than those needed to compute the HFT values. O
ously the calculation of the total estimator is expected
increase the computational time, because of the presenc
the term ^F&C . However, performing variational calcula
tions, we found this additional amount to be small enou
~about 10% of the total time! to guarantee reasonable com
putational costs.

IV. CONCLUSIONS

In this work, various approximate estimates of t
nuclear forces have been proposed and tested in the fra
work of the QMC methods. From our results on H2 and LiH,
it emerges that computinĝF&HFT1^F&C at the VMC level,
using a CT whose Jastrow factor has been optimized
minimizing the energy, can be an accurate and viable
proach to obtain forces. Also, VMC-TOT seems to partia
correct for the inaccuracy ofCT, a feature that every ap
proximate estimator should have. As a consequence,
computed equilibrium distances are in accurate agreem
with the experimental ones.

This finding seems to be somehow in mismatch with
results of Ref. 11, where larger differences between VM
and exact equilibrium distances have been found for the fi
row dimers. Here, it is important to stress that the resu
presented in Ref. 11 were computedwithoutreoptimizing the
secondary geometry wave functions; therefore, a system
error could be expected. Bearing in mind the greater e
ciency of VMC with respect to DMC, we believe that th
issue of the accuracy of VMC forces deserves furth
attention.

If greater accuracy is needed, we found the DMC-TO
well suited to tackle the task, giving, overall, an order
magnitude more accurate results in our model systems
far as the SOE is concerned, although it has been foun
substantially improve the HFT force estimate, it shows
more erratic and noisy behavior than the TOT counterp
Besides, its accuracy appears to be similar to the VMC-T
one, but its cost is at least double due to the necessit
running a DMC simulation.
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In conclusion, let us remark that use of Eq.~1! is not
exclusively restricted to the determination of force averag
Indeed, it can be used instead of the HFT to compute en
derivatives with respect to the nuclear positions whene
these are needed. As examples of possible application
cite the calculation of bond force constants, the Hessian
trix of the energy, and the derivatives of the molecular dip
moment, a quantity closely connected with the infrared
sorption intensity.
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