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Stability of four-unit-charge systems: A quantum Monte Carlo study
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The family of four-particle systemdv{*m*M ~m™) has been studied by means of Monte Carlo techniques.
Nonadiabatic explicitly correlated wave functions for different values of the mass Natin have been
obtained using a variational Monte Carlo optimization method. These wave functions have been used in
diffusion Monte Carlo simulations ofM *m*M ~m™) to compute exact ground-state energies. Our results
enlarge the stability range of the mass ratio for these and for similar less symmetric systems and address the
problem of the stability of the hydrogen-antihydrogen system. For the special case of the dipositronium
molecule M =m) we report the ground-state energy, consistent with previous accurate calculations, and
average values of various observabl[&x1050-294@7)05901-5

PACS numbgs): 36.10—k, 02.70.Lq

I. INTRODUCTION (M*M*m~m™) was given by Richar@4]. His proof relies
on the already established stability of the ground state of the
In the last few years attention has been paid to the stabilPipositronium systenPs, [5,6,9-11,13,1} i.e., two elec-
ity problem of thred 1-3] and four[4—15] unit-charge sys- trons and two positrons, and on the fact that the binding
tems. Accurate results for the energy and other expectatiognergy (BE) is a concave function om/M. In the same
values have been computed using a nonadiabatic descriptioBaper Richard extended the stability domain to less symmet-
These results helped to clarify the structure of these systentie systems like 1 “m™M~m™), exploiting symmetry argu-
and to understand matter-antimatter annihilation. Investigaments about the kinetic part of the Hamiltonian. These sys-
tions in this field are also concerned with the mass deperiems remain stable as long as 076<1.43, o being the
dence of the complex mechanism driving the matter to buildnass ratioM/m: this range was obtained using an estimate
large aggregates of particles instead of splitting into smallepf the binding energy of the Dipositronium molecule. A nu-
pieces[2,4,14. merical study on the stability of the same family of systems
In molecular physics stability is usually defined in the (M*M*m™m~) had been previously given by Lee, Vash-
framework of the Born-Oppenheimer approximation, ex-ista, and Kalig12] using diffusion Monte Carlo simulations.
ploiting the small ratio between electronic and nuclearThese results were used to discuss the effective mass ratio
masses. This possibility is lost if the mass ratio is close tdetween an electron pair and a hole pair in some materials.
one, and in such a case it is necessary to adopt a nonadiabakier the same systems, Frolov and Snjitd]| discussed the
description of the motion of the particles. Furthermore, exCharge-mass-permutation invariance, proposing interpolation
plicitly correlated wave functions are required to obtain ac-formulas for their ground-state mean energy as a function of
curate values of the observables. The matrix elements béhe mass ratiovi/m: these allow us an approximate compu-
tween explicitly correlated wave functions are not easy tdation of the bound-state spectra for the whole family.
compute for systems containing more than three particles, In this paper we present a numerical study of the stability
unless one resorts to use Gaussian type basis se®$ the class of systems having the fortd{m*M m™).
[5,6,10,11,13,11 Since a correlated Gaussian does not re-Our main goal is to extend the stability range previously
produce the cusp conditions, i.e., the behavior of the exadletermined by Richar@4] by optimization of approximate
wave function at small interparticle distances, very large banonadiabatic wave functions by a variational Monte Carlo
sis sets must be employed, and also a careful and computtechnique and subsequent diffusion Monte Carlo simulations.
tionally expensive optimization of the nonlinear parametersSince simple scaling arguments based on the variational
of the trial wave function is required in order to obtain an principle allow one to prove that the stability of the systems
accurate description. havingm=1 and anyM implies the stability of the family of
Few papers have been published on four-particle systensystems with the same mass ratis- M/m, we restrict our
owing to the difficulty of studing these systems both theo-computations to the casa=1 without any loss of general-
retically and numerically[4-15. Recently an analytical ity.
proof of the stability of hydrogenlike molecules

II. TRIAL WAVE-FUNCTION FORM
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*Electronic address: moro@rs0.csrsrc.mi.cnr.it notes a negatively charged one.
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The Hamiltonian operator for these systems has the fornand

2 2 2 2 . =@ Pigab
H=—% %+%+%+% +V(R), (1) Piab=€ ' ®
In the above equationg andk; are vectors of parameters
whereV(R) is the Coulomb interaction potential for theith term of the linear expansion. This analytical form
has the correct spin and space symmetry and allows the trial
1 1 1 1 1 1 wave function to mimic the correct behavior of the exact
V(R)=+ Tab + f1o f1a T1p Toa Top (2 \wave function at the coalescence point for equal and oppo-

site sign charges. Satisfying the cusp condition usually ac-

between the four-unit-charge particldg, and m are the celerates the convergengg7] of the linear expansion and
masses of the particles, aml is a point in configuration reduces its length for a given accuracy. This is useful in
space. order to reduce the effort needed to optimize the nonlinear

The breakup of these systems in a three-particle clustggarameters, usually a quite heavy task. Since the trial wave
plus a free particle is not possible because the Coulomb afunction depends only on the interparticle distances, the
traction between the two fragments binds them together. Thimmean value of the center-of-mass kinetic energy for a given
means that the energy dissociation threshold for this class dihear combination is always zero. This means that the com-
systems, whem=1, is given by[4] puted energy is only the internal energy of the systems, and

there is no need to subtract the contribution of the overall

3) motion of the system in space.

En(M)=—7—7
corresponding to the splitting in the two speciéd (M ) Ill. MONTE CARLO SIMULATION
and (m*m~). The alternative breakup inM*m~™) and The chosen form for the trial wave function makes it im-
(M~m™") has a higher threshold energy of M/1+ M). possible to compute analytically the matrix elements of the
To approximate the nonadiabatic ground-state wave funcHamiltonian operator of the system and a numerical method
tion for these systems we propose to use a linear combinanust be used to obtain the energy mean value for a given
tion of explicitly correlated functiong16] trial wave function. The variational Monte Carlo method

(VMC) [18] is well suited for this goal since it requires only

¥ _i o 4 the evaluation of the wave function, its gradient, and its La-
T & G ) placian. Since this and others Monte Carlo methods are well
described 18] in the literature, we only summarize the main
where points and equations.
VMC computes expectation values employing the steady-
®i(Rk; ,pp) = A{Ogypp i 1a~ ki 10~k F2a"ki 20 state distributiorf = W2 that can be obtained simulating the
Xf(rlZvrabrpi)(aé:o 818 _ 5) Fokker-Planck differential equatidri8]
| . . ; . - If(R,t)
n this equationA is the antisymmetrization operator, _ =— > DVXR1)
Osym is an operator used to fix the symmetry of the state, ot i=12a,b
(1);3 and @3;3 are the spin eigenfunctions with quantum
numberS=0 andM4=0 for the particles of equal charge. In + E D,V,-f(R,1)F(R), (10
the spin free formulation of quantum mechanics, &j.can i=12ab

be written as a linear combination of spatial terms with par-
ticle indices exchanged, i.e., where

Np Fi(R)=Viln[¥1(R)?] 11
Oi(Rk;,pi) = 2 7>J.Syme*ki,1f1a*ki,2f1b*ki,3f2a*ki,4f2b _ L -
i=1 is called the quantum force amy=(2m;) ™~ is the diffusion
NY ' 6 coefficient for a given particle. The simulation is realized
(F12.Tab.Pi), ©6) using the Langevin equation

where ;Y™ are the exchange operators generated by acting
with A andOg,,, on the spatial part of Ed5) and collecting
all the terms with the same spin function.

The termf(rq,,ra5,P;i) IS the correlation factor used to
describe the repulsion between particles having the sa
charge and has the analytical form

ri=ri+Di7F(R)+x, (12)

where y is a three-dimensional Gaussian random variable
with zero mean and/m; variance. This equation is used to
M&elect an attempted displacement for each particle, but since
this is a discretization of the corresponding Fokker-Planck
@) equation the mean values obtained from the steady-state dis-
tribution have an error dependent on the value of the time
where step  and are correct only in the zero time step limit. To
avoid an extrapolation the attempted displacement is ac-
pi1—=e Pid (8)  cepted with probability

f(rio,rap.pi)=€" Pi,1Pi,127 Pi,2Pi,ab,
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[ T(R=R,n¥(R")? The formal solution shows that the only long term surviv-
P(R—R’)=min| 1, ; 7|, (13  ing contribution is due to the ground state of the system. This
T(R—R',n)¥Y+(R) : .
can be used to estimate the energy by means of the mixed
where T(R—R’,7) is the transition matrix for the particles estimator
to move fromR toR'. _The_ transition matrix corresponding JHR,%)E;pe(R)AR
to the Langevin equation is E(o)= (20)
Jf(R,©)dR
T(R—R',7)= H %ﬁe*{[r(*ri*DirFi(R)12/4Dif}_ The wave function optimized using the minimization of
i=1.2ab (4Di7) the variance of the local energy was used to guide the walk

(14 of the configurations in the space, to reduce the fluctuation of
. ) the population simulating the birth-death process described
The mean energy is computed using by [E, — Ejoc(R)]f(R,t), and to compute the energy value by
) means of the mixed estimator.
< >_ f\I}T(R)EIoc(R)dR (15)
JYLR)AR IV. VARIATIONAL AND DIFFUSION MONTE CARLO
RESULTS

where - .
To test the capabilities of our analytical ansatz to cor-

HW(R;) rectly describe Coulomb clusters., .the dipositron_ium moI—.
(16)  ecule has been chosen as a nontrivial test case, since for this
system there are several accurate nonadiabatic results, com-
uted using explicitly correlated Gaussian basis sets
5,6,10,11,13,14 to compare with. As total symmetry op-
erator we assumed

To optimize the linear and nonlinear parameters in th
trial wave function we minimized the functional

zZ
o°

3 oW [Epoe(R}) — E/]?
w(Er)= SNeoniyy) ; 17) 2 P14+ E(+,-), (21)
j=1 Vi =1

{R;} being a set of fixed configurations sampled frang where £(+,—) is one of the exchange operators between
All the weightsw; were set equal to one, whilE, is an  particles having the same mass and opposite charges. As
approximation of the true value of the energy for the systemshown by Kinghorn and Poshudtg] this operator is not the
This method has been described in detail by Umrigar, Wil-complete symmetry operator for the ground state of the Di-
son, and Wilkins[19] and by Mushinski and Nightingale Positronium molecule. Using their theory for the permutation
[20] and has been proved to be much more stable than thie&ymmetry of Dipositronium it is possible to prove that our
optimization of the energy. right-hand term in Eq(6), using the approximate EQ1), is

The mean energy values of the optimized trial wave func-a mixture of states having,, B;, andE symmetry A; being
tions are upper bounds to the exact value. In order to obtaithe correct ground-state symmetry. This means that the finite
the exact ground-state energy, the diffusion quantum Montéxpansion in Eq(4) could have different mean properties for
Carlo method(DMC) [21,18 is employed to simulate the particles with the same mass and equal charge.

time-dependent Schdinger equatioTDSE) as a diffusion A two-term trial wave function was optimized using a
equation having source and sink terms. In the DMC simulafixed sample of 4000 configurations for dipositronium. The
tion the TDSE, in imaginary time, has the form starting set of parameters was forced to have the full correct

symmetry under the exchange between two particles of equal
charge, but constraints were not imposed during the optimi-

- > DVARD+ > DV f(RHF(R) zation. In every two to three steps of the optimization pro-
i=12a,b i=1,2a,b . .
cess the fixed sample was updated using a VMC run, useful
If(R,1) also to monitor the behavior of the optimization process.
HE B RIF(R )=~ ——, (18 The dipositronium molecule VMC mean energy and its

binding energy, defined a&,,,(0)—E(o), obtained using
the optimized two-term expansion, are shown in Table | and
Fig. 1, together with the results for the systems having mass

S . . : _ratio =<2.2. Comparing our variational value for the di-
This is simulated varying the population of the configura positronium  energy,— 0.509 67(1) hartree, with the best

i ing the simulation. The f | solution of the TDSEF"> .
tions during the simulation e formal solution of the TDS variational value—0.516 002 1 hartree obtained by Frolov

in imaginary time can be written using the eigenfunctions . T
&, of tﬁe HZmiItonian ie 9 g and Smith[14], we note that our short expansion is able to
! T recover more than 98% of the internal energy and that this

where the only difference with the Fokker-Planck equation
used in VMC, is the additional terfiE, — E;,.(R)]f(R,t).

o trial wave function is roughly equivalent to a 16 term explic-
F(Rt)=coWrdhoe E0ENL S W he EimENt, itly corr.elat.ed Gaussian wave funcfuc[ﬁ]_. To assess thg
i=1 contamination from excited states with different symmetries

(199  we calculated some expectation values for dipositronium by
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TABLE |. VMC energy and binding energ{BE) using a two-  wave function obtained for the system with the nearest mass
term linear expansion. Standard deviations of the mean values afatio available. The resulting wave functions show the ten-

given in parentheses. dency of the systems to separate into the two subsystems
(M*M7™) and (m*m™) on increasing the particle mass ratio.
7 Energy (hartree BE (hartre¢ This behavior was confirmed also by plotting the interpar-
1.0 —0.509 671) 0.009 671) ticle distributions obtained during a VMC simulation. Due to
11 ~0.536 973) 0.011 973) this fact we were not a_ble to optimize trial wave fuqct|ons
1.2 —0.559 614) 0.009 614) for the two syste_ms withr=2.1 and 2_.2: the_varlatlonal
13 —0.582 6%4) 0.007 654) resulf[s repo_rte.d in Table | were optame_d using the wave
14 —0.605 794) 0.005 794) fmugggc;r;tigpnmmed foro=2.0, but including the correct
16 —0.652 033 0.002 0%3) The DMC simulations were performed using these trial
1.7 ~0674813) —0.000 183) wave functions to project out the remaining components of
1.8 —0.699.343) —0.000 663) the excited states for these systems. The dipositronium mol-
L9 —0.724012) —0.000 992) ecule is an optimal test case to check the ability of our DMC
2.0 —0.748 982) —0.001 022) code to compute the energy of the systems although the
21 —0.772221) —0.002 781) guiding function does not possess the correct total symmetry.
2.2 —0.793 302) —0.006 702) The resulting values for the energy are shown in Table Il

and Fig. 1. The DMC result for dipositronium molecule and

) . . . for systems havingr<2 were obtained using a time step of
means of a VMC simulation, using the two-terms trial waveq 0o5 hartree®. The accuracy of the energy values was

function. These results, reported in Table Il together \_/vith the-hecked using different time steps for the dipositronium mol-
accurate results from Reft5,15,6, and[13] as comparison, gcyje and for other systems. We estimate that for all the
clearly show this contamination. To eliminate the problem, 5 es presented the difference to the exact eigenvalue of the
the full symmetry operator set of dipositronium must beyyamijionian for a given mass ratio is less than the statistical

used, at. least if short_ linear expansions are employed _toe'rror associated with the computed value. Ber 2.1 and
gether with VMC techniques. DMC does not suffer from this ; 5 5 complete extrapolation te=0 was carried out to avoid

problem, being capable of projecting out all the components, qtematic errors due to the inaccuracy of the trial wave
of the excited states. As our work is mainly concerned withg ), ction.

the study of the dissociation threshold &1 m*M "m™),

DMC is our preferred method, giving the “exact” ground- V. DISCUSSION
state energy.
From Eq.(2) of Ref.[10] the two-photon annihilation rate In this work we have computed the ground-state energy
I',, for dipositronium can be written as for the family of systems I "m*M™m~) (m=1) for
1<¢=<2.2, using both VMC and DMC simulations. The
F2y=47mca51( 8(r,_))=201.234 9618 least accurate variational result is for the dipositronium mol-
ecule, an easily explained outcome as the symmetry operator
X10%(S(r.-)))ys~H, (220 does not contain the full symmetry for the ground state.
Our DMC simulations, using different time steps, show
where (8(r4-))=3(8(r1a)) +(8(r1p)) +(8(r2a))  that the time step bias is negligible for the given statistical
+(8(rp))}. Using mean values fdré(r,._)) from Table Il accuracy, i.e., it is smaller than the standard deviation of the

we obtainl',,=4.5(2)x 10° s71, a value in fair agreement mean value of the energy. Our DMC energy value for the
with the results given by Frolov, Kryuchkov, and Smit0]  dipositronium molecule;- 0.516 06(7) hartree, is in optimal
4.441x10° s7', and by Rebane and Zotey13] of agreement with both the best variational estimate
4.17x10° s L. —0.516 002 1 hartrefl4], and the old DMC calculation by
The variational results for the systems having mass ratidee, Vashista, and Kalia of-0.515(1) hartred12]. Re-
o<2 were obtained starting each optimization from thecently El-Gogaryet al. [8] have published a much lower

TABLE Il. VMC mean values of various physical properties for the dipositronium systenatomic

units).

This work Ref.[13] Ref.[5] Refs.[15] and[6]
(F1a) 3.7645) 4.428 4.483
(r1={(r ap) 6.0099) 5.916 6.025
(1) =(r2a) 5.0937) 4.428 4.483
(r3a) 17.598) 27.72 29.01 28.88
(ray=(r2,) 45.52) 43.61 46.17 45.91
(r2.y=(r2) 36.91) 27.72 29.01 28.88
8(ro_) 0.02229) 0.020 65 0.021 85 0.021 95

8(r12) = (1 2p) 0.000 646) 0.000 68 0.000 634 7 0.000 638
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For the dipositronium systemM=1) T,+T,=(T/2),

I ..
© =_
E ° o DMC o | but for the virial theorenT E and

o VMC + (aE(M)) CE(D)
M |, 2

15

(24)

10 |+ + &

* © where E(1) is the energy for the ground state of the Di-
Sk © 7] positronium system. Using the best variational estimate for
this quantity the derivative of the energy-s0.258 001 har-
O oo @ o tree amu !, larger in modulus than the derivative of the
threshold energy Eq3) for the same mass value-0.25
hartree ama?). This means that the slope of the binding
S 7] energy for the dipositronium system is positive, explaining
1 ] 1 I 1 1 1 its increase foro=1.
1 12 14 16 18 2 22 The monotonous decrease of the binding energy for
M/m 0=1.3 can be explained by the reduction of the instanta-
neous dipole moment of the fragmemd { M ) on increas-
FIG. 1. Variational and diffusion Monte Carlo binding energy. ing the mass. As a consequence its ability to polarize the
lighter (m*m™) system decreases.
E=—0.521 05 hartree. Quantum Monte Caf@MVC) meth- Using simple symmetry arguments related to the varia-
ods are able to get the exact energy for nodeless systems likienal approach, Richard4] proved that the systems
the dipositronium, so this is a puzzling result. Neither our(M *m™M ~m™) are stable in the range Gstr<1.4. Our
two-term trial wave function, nor the much simpler one by VMC results show that using a simple ansatz for the approxi-
Lee, Vashista, and Kalial2] present nodal surfaces that mated wave function it is possible to extend this range to
might give an upper limit to the exact energy value, so both
calculations should give the exact energy within the statisti- 0.625<0oymc=1.6. (25
cal accuracy. We are performing more accurate VMC and
DMC calculations on this system trying to settle this prob-
lem: preliminary result$22] are still in agreement with the

BE (mhartree)

Using the DMC results of Table Il this range can be
further extended to

present one and with the results by Lee, Vashista, and Kalia 0.476<0pyc=<2.1. (26)
[12], so the results by El-Gogargt al. [8] should be re-
garded with some caution. Our numerical results for the total energy of this symmet-

The DMC results show a small increase of the value ofric family of four-body Coulombic clusters can be exploited
the binding energy for the mass ratios 1.1 and 1.2 comparetd obtain information about the stability of less symmetric
with the dipositronium system, followed by a decrease for asystems. For the more general familpn{m; m;m;) it is

larger mass ratio. possible to define two new quantitig$|
The small increase forr<1.3 can be rationalized invok-
ing the Hellmann-Feynman theorem. Putting: 1 in Eq. (1) 2 i+ 1
we obtain A mg my’
JE(M) 1 2 1 1
= (T (T, @3 5 m m D
TABLE Ill. DMC energy and binding energyBE). Standard ~ Where, without loss of generality, we imposg,=m, and
deviations of the mean values are given in parentheses. my=m,. In his work Richard[4] proved that if the ratio
A/S is within the range of stability of the systems
o Energy(hartreé BE (hartreg (M*m*M~m™), the variational principle implies the stabil-
ity for the general four-body Coulombic cluster. If we
1.0 —0.516 067) 0.016 067) choose my=m;=m,=m and m,=M, ie.,
11 —0.541 565) 0.016 5€5) (M*m*™m~m™), then one can write the ratio betwearand
1.2 —0.566 435) 0.016 435) S as
13 —0.590 385) 0.015 385)
1.4 —0.613 4@4) 0.013 4@4) A 2M
1.6 —0.659 445) 0.009 445) ST miM (28)
1.7 —0.682 044) 0.007 044)
1.8 —0.704 874) 0.004 874) Since this is always less than 2, the stability for this sys-
1.9 —0.728 3@4) 0.003 3@4) tem is assured for any value of the masses. A well studied
2.0 —0.751 404) 0.001 404) example of this family of systems is the positronium hydride
21 —0.775 694) 0.000 694) which is known to be weakly bound. Another example of the
29 —0.799 995) -0.000 015) applicability of our results is the possibility to show that the

class of systems having the fornm{mg,m;m;) where
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m,>m; andm, =m; is stable against the dissociation in neous dipole moment of{ “M ~) decreases and this might

two neutral subsystems for all the values of the mags lead to the dissociation of the composed three- and four-

This proves the correctness of Richard’s guess about the stparticle systems. These results are not in agreement with the

bility of this particular class of clustergt], connecting the assertion made by Abdel-Raouf and Ladik] in the

hydrogen molecule to the positronium hydriderif=1. hydrogen-antihydrogen system, but it is worth noting that
The valueoc=1836 corresponds to the hypothetical mol- they failed to recognize the correct dissociation threshold,

ecule composed of an hydrogen atom and an antihydrogeassuming a dissociation into two subsysterivs ™) and

atom. Few papers have been devoted to studying this intetM “m™) instead of ¥ *M ™) and (m™m™).

esting system using both numerical metho3-25,

within_ the Born—Qppenheime_r approxjmation, and analytical VI. CONCLUSIONS

techniques[7] without resolving the issue of whether the

system is bound or not. Our numerical values show a reduc- We have performed very accurate numerical calculations

tion of the binding energy with increasing mass ratio foron the family of systemsNl*m*M ~m™). Using VMC and

(M*m*M~m™), and our extrapolated DMC simulations for DMC methods we extend the stability range of these sys-

mass ratio equal to 2.2 give results in agreement with théems, showing also that Monte Carlo techniques are well

energy value for the dissociation threshold. An analysis ofuited for the investigation of these exotic systems, as they

the distribution of the configurations representing this systentlo not pose restrictions on the mass values, potential form

during the simulation shows the tendency toward the dissoand trial wave function. Our study strongly suggests that the

ciation of the cluster. Although not definitive, both thesehydrogen-antihydrogen system is not bound.

evidences strongly support the idea that the hydrogen-

antihydrogen system is not bound, i.e., it does not exist as a

bound stationary state, as suggested by Richdid This ACKNOWLEDGMENTS
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