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Abstract. The Landweber method is a simple and flexible iterative regularization algorithm,
whose projected variant provides nonnegative image reconstructions. Since the method is usually very
slow, we apply circulant preconditioners, exploiting the shift invariance of many deblurring problems,
in order to accelerate the convergence. This way reasonable reconstructions can be obtained within
a few iterations; the method becomes competitive and more robust than other approaches that,
although faster, sometimes lead to lower accuracy. Some theoretical analysis of convergence is given,
together with numerical validations.
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1. Introduction. Image deblurring is the process of correcting degradations
from a detected image. In the first analysis [4], the process of image formation is de-
scribed by a Fredholm operator of the first kind; in many applications the blurring sys-
tem is assumed to be space-invariant, so that the mathematical model is the following:

(1.1) g(x, y) =

∫
R2

K(x− θ, y − ξ) f∗(θ, ξ) dθdξ + ω(x, y),

where f∗ is the (true) input object, K is the space-invariant integral kernel of the
operator, also called the point spread function (PSF), ω is the noise which arises in
the process, and g is the observed data.

The image restoration problem is the inversion of (1.1): Given the observed data
g, we want to recover (an approximation of) the true data f∗. Its discrete version
requires one to invert a linear system, typically of very large size and very sensitive
to data error, due to the ill-posed nature of the continuous problem [16].

Space invariance leads to strong algebraic structures in the system matrix; de-
pending on the boundary conditions enforced in the discretization, we find circulant,
Toeplitz, or even more complicated structures related to sine/cosine transforms (see
[33] for details). Exploiting structures in the inversion algorithm is necessary to face
computational issues.

The problem of noise sensitivity is usually addressed by using regularization meth-
ods, where a suitable (sometimes more than one) parameter controls the degree of
bias in the computed solutions. There are several techniques in literature (such as
Tikhonov [16] or truncated SVD [22]), but in large-scale problems the main choice is
given by iterative regularization algorithms, where the parameter is represented by the
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PRECONDITIONED LANDWEBER METHOD 1431

number of iterations: The method works if an early stop prevents the reconstruction
of noisy components in the approximated solution [14, 4].

The simplest iterative technique in this class is the Landweber method [27], pro-
posed in 1951 but in agreement with an older work of Cimmino (see the historical
overview in [2]); besides its easy implementation, this method presents very good
regularization and robustness features. An early and very comprehensive analysis of
the method is contained in [34]; a wide variety of even more recent applications can
be found in [3, 6, 5, 29, 38]. In section 6 we report further details from the related
literature.

In many real problems, the use of a priori information is basic for obtaining
a substantial improvement in reconstructions; an important instance in imaging is
taking into account nonnegativity constraints. In the past years more attention has
been paid to faster Krylov methods such as conjugate gradient applied to normal
equations (CGLS) [18] or GMRES [8], but, unfortunately, these methods do not
provide nonnegative iterates, independently of the initial guess.

Although the recent literature has proposed specific approaches to enforce sign
constraints (see, e.g., [21]), the Landweber method allows for a straightforward ex-
tension in order to do so, leading to the projected Landweber method [12]. On the
other hand, its main disadvantage is that convergence may be very slow in practical
applications (see the bibliographic notes in section 6).

In this paper we aim to overcome this disadvantage of the Landweber method
by proposing an acceleration technique specifically designed for the space-invariant
setting. Following a general idea introduced in [34, 31], we study the effect on this
method of structure-based preconditioning techniques recently investigated for conju-
gate gradient iterations [20, 15]. We prove that such preconditioners can improve the
convergence speed of the Landweber method (10 to 20 iterations are often sufficient
to obtain a reasonable reconstruction), preserving its regularization capabilities; this
way the method becomes more competitive with respect to other algorithms from a
computational point of view. The same considerations could be extended to other
preconditioning proposals [19, 24].

We stress that the removal of computational disadvantages allows us to emphasize
the advantages of Landweber in comparison to other iterative methods:

• simplicity (we are able to give a formal proof of convergence and regularization
behavior for the nonprojected version);

• flexibility (sign or even other constraints are easily incorporated; there are sev-
eral parameters at our disposal, so a fine-tuning can be performed according
to time/accuracy demands);

• robustness (little sensitivity to the inaccurate choice of parameters).

It is worth mentioning that the Landweber idea has applications in nonlinear
inverse problems, too; in this context, it has been successfully applied to many real
problems due to its robustness and strong regularization capabilities (see the survey
in [13] and the references therein).

The paper is organized as follows. In section 2 we introduce the Landweber
method, the circulant preconditioning technique (section 2.1), and a first convergence
analysis in the simplest case of periodic boundary conditions (section 2.2). In section 3
we use this analysis to discuss the choice of parameters which define the preconditioned
method. In section 4 we show how a convergence analysis can be performed without
the simplifying assumptions made in [34], by developing the case study of Dirichlet
boundary conditions. Numerical results are presented in section 5, and final remarks
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1432 P. BRIANZI, F. DI BENEDETTO, AND C. ESTATICO

are given in section 6. Technical details on convergence for suitable parameter values
are given in the appendix.

2. Landweber method and preconditioning. The discretization of (1.1),
with image size n = (n1, n2), reads as g = Af∗ + ω , where g, f∗, ω represent the
column-ordered vectors of the corresponding quantities and the matrix A discretizes
the kernel K [4].

In order to enforce the same finite length N = n1n2 to all of the vectors g, f∗, ω,
appropriate “boundary conditions” must be applied; for an exhaustive survey of pos-
sible choices, see [33]. This way A is a square N × N matrix having a multilevel
structure depending on the specific choice; for instance, A is a block Toeplitz ma-
trix with Toeplitz blocks in the case of zero (Dirichlet) boundary conditions, and A
is a block circulant matrix with circulant blocks if periodic boundary conditions are
assumed.

In the discrete setting, given the blurred and noisy image g, we want to recover a
suitable approximation f of the true image f∗, by computing a regularized solution of
the least squares problem min ‖Af − g‖2 [4]. Since the continuous problem is known
to be ill-posed, the matrix A has ill-determined rank, since its smallest singular values
accumulate to zero as N increases.

In this paper we deal with the Landweber method [27], which is the following iter-
ative method for solving the normal equation A∗Af = A∗g . Let f0 be an arbitrarily
chosen initial guess; as we will see later, a recommended choice is f0 ≡ 0. Compute,
for k = 0, 1, 2, . . . , the iterate

(2.1) fk+1 = fk + τ(A∗g −A∗Afk) ,

where τ is a fixed value which should belong to (0, 2/‖A∗A‖) in order to ensure the
convergence along every direction.

The Landweber method (2.1) can be studied in several ways. It corresponds
to the method of successive approximations for the computation of a fixed point
of the operator G(f) = f + τ(A∗g − A∗Af). Moreover, it is the simplest method
which returns the minimum point of the convex operator H(f) = 1

2‖Af − g‖2
2, since

A∗g−A∗Afk = −∇H(fk) is the steepest descent direction. By induction, it is simple
to verify that

fk+1 = τ

k∑
i=0

(I − τA∗A)iA∗g + (I − τA∗A)k+1f0 .

The Landweber algorithm belongs to the class of Krylov methods [4]. If we
consider the fixed initial guess f0 ≡ 0, the iteration can be written as fk+1 =
Qk,τ (A

∗A)A∗g , where Qk,τ is the polynomial of degree k defined as Qk,τ (t) = τPk(τt),
with

(2.2) Pk(s) =

k∑
i=0

(1 − s)i =

k∑
i=0

(
k + 1
i + 1

)
(−s)i =

1 − (1 − s)k+1

s

if s �= 0, and Pk(0) = k + 1.
The method is linear since the polynomial Qk,τ does not depend on g. We re-

mark that, if t ∈ (0, 2/τ) � (0, ‖A∗A‖] , then Qk,τ (t) −→ t−1 (k −→ +∞) , and,
if t ∈ [0, 2/τ) � [0, ‖A∗A‖] , then |tQk,τ (t)| =

∣∣1 − (1 − tτ)k
∣∣ ≤ 1 . These two lat-

ter properties of Qk,τ state that the Landweber method is a continuous regular-
ization algorithm, where the number of iterations k plays the role of regularization
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parameter [14, Theorem 6.1]. Basically, the first iterations of the method filter out
the components of data mainly corrupted by noise; hence, an early stop of the de-
blurring process improves the stability and gives a good noise filtering. Notice that
Qk,τ (t) ≥ Q1,τ (‖A∗A‖) = τ(2 − τ‖A∗A‖) > 0 for all t ∈ [0, ‖A∗A‖] , which can be
useful to improve the numerical stability.

A wide analysis of the convergence properties of the method was first carried out
more than thirty years ago [34]. Indeed, by exploiting its simple formulation, the
behavior of the iterations along each eigendirection can be successfully assessed.

Here, in order to briefly study the regularization properties of the algorithm,
we analyze the convergence of Qk,τ (t) in a (right) neighborhood of 0. The function
Qk,τ (t) is a polynomial of degree k such that

(2.3) Qk,τ (0) = τ(k + 1) , Q′
k,τ (0) = −(1/2)τ2(k + 1)k .

By continuity arguments, the values of Qk,τ (t) are bounded by τ(k + 1) in a right
neighborhood of 0.

The “level” of regularization of the kth iteration is summarized by the values
Qk,τ (0) = O(k) and Q′

k,τ (0) = O(k2), with Q′
k,τ (0) < 0 for k ≥ 1. At the kth

iteration, the approximation of the largest eigenvalues of the Moore–Penrose gen-
eralized inverse of A, that is, the approximation of the reciprocal of the smallest
nonnull eigenvalues of A∗A, is bounded by τ(k + 1) and decreasing at a rate O(k2).
Furthermore, the kth iteration of the Landweber algorithm has basically the same
regularization effects of the Tikhonov regularization method with regularization pa-
rameter α = (τ(k + 1))−1 > 0 , where fα = (A∗A + αI)−1A∗g is the Tikhonov’s
α-regularized solution of the normal equations [14].

The Landweber method is a linear regularization algorithm, which allows a mod-
ification denoted as the projected Landweber method , which is very useful to solve
inverse problems where some specific constraints on the solution play an important
role. For example, the nonnegative constraint f∗ ≥ 0 is very common in image deblur-
ring, whereas many classical regularization methods do not ensure any sign property
for computed reconstructions.

The projected variant consists of the following simple modification of (2.1):

(2.4) fk+1 = P+[fk + τ(A∗g −A∗Afk)] ,

where P+ is the projection onto the nonnegative cone. This leads to a nonlinear algo-
rithm, for which the theoretical understanding is not complete [12]; it is proved that
the iterates converge, for exact data, to a minimizer of ‖Af − g‖2 among nonnegative
vectors.

Other important observed properties are just conjectures at this moment: We
have numerical evidence of semiconvergence for noisy data, and the natural initial
guess f0 = 0 seems to provide the convergence of fk to the least squares nonnegative
solution having minimal norm [31].

Because of this absence of effective mathematical tools for investigating the con-
vergence, the projected version of the method will not be considered in the following
theoretical analysis. Besides, the numerical experiments of section 5 will concern both
the projected and the nonprojected variants.

It is interesting to make a comparison with the widely used CGLS method [18].
The CGLS method is a nonlinear regularization algorithm, and its kth iteration is
fk+1 = Pk,g(A

∗A)A∗g , provided that f0 ≡ 0 as before. Here Pk,g = Pk,g(t) is a
polynomial of degree k which depends on the input data g. The value Pk,g(0), which
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1434 P. BRIANZI, F. DI BENEDETTO, AND C. ESTATICO

mainly controls the level of regularization at the kth iteration, is usually much greater
than k+1 [18]. This implies that the CGLS method is faster than the Landweber one.
This is confirmed by recalling that the CGLS method is an optimal Krylov method
in the sense that the error at any iteration is minimized among all of the Krylov
polynomials. On the other hand, in the absence of a reliable stopping rule, the fast
convergence speed of the CGLS method may be a negative fact in image deblurring,
since it can give rise to a fast amplification of the components of the restored image
fk which are related to the noise on input data [17].

We can summarize that the regularization of the Landweber method is high,
whereas the convergence speed is low. In the following, our aim is to improve its
convergence speed without losing its very favorable regularization capabilities.

2.1. Circulant regularizing preconditioners. As already noticed, the dis-
crete image deblurring system A∗Af = A∗g has ill-determined rank, since the contin-
uous problem is ill-posed. The Landweber scheme is a suitable algorithm for solving
that system, since it is a very effective regularization method. The negative fact is
that the method is often quite slow; in several applications, such as astronomical
image deblurring, thousands of iterations could be necessary.

Here we improve the convergence speed by means of preconditioning techniques.
Basically, in order to speed up the convergence of any iterative method, a precondi-
tioner is often an approximation of the, possibly generalized, inverse of the system
matrix.

Following [34], the N ×N linear system A∗Af = A∗g is replaced by an algebraic
equivalent system

(2.5) DA∗Af = DA∗g ,

where the N ×N matrix D is the preconditioner which approximates the generalized
inverse of A∗A. This way the preconditioned version of the method reads as follows:

(2.6) fk+1 = P+[τDA∗g + (I − τM)fk] ,

where M := DA∗A is the preconditioned matrix [31].
We stress that the least squares problem underlying (2.5) has been changed by

inserting the preconditioner; therefore, the iteration (2.6) does not necessarily con-
verge to the same limit of (2.4), with exact data. In the case of real data, as ob-
served in [31, page 449], we cannot even expect in principle the same behavior of the
nonpreconditioned method.

From now on we will consider for the theoretical discussion just the nonprojected
variant, for which the operator P+ does not appear on the right-hand side of (2.6).
In this case fk+1 linearly depends on fk, whence we obtain the closed formula for the
case f0 = 0

(2.7) fk = GkA
∗g , Gk := τPk−1(τM)D ,

Pk(t) being the polynomial introduced in (2.2). The new limitation for τ becomes
0 < τ < 2/‖DA∗A‖.

If B denotes an approximation of the matrix A, we construct the preconditioner
D by computing D = (B∗B)†, where the symbol † denotes the Moore–Penrose gen-
eralized inverse.

Since for space-invariant problems A has a two-level Toeplitz-like structure, we
look for B inside the matrix algebra C of block circulant matrices with circulant
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blocks (BCCB). The BCCB matrices are very useful in the Toeplitz context since
they provide fast diagonalization and matrix-vector multiplication within O(N logN)
operations, via two-dimensional fast Fourier transform (FFT). From now on, we con-
sider the T. Chan optimal approximation B = Bopt of the system matrix A; that is,
Bopt solves the following minimization problem [10]:

(2.8) Bopt = arg min
X∈C

‖A−X‖F ,

where ‖ · ‖F is the Frobenius norm ‖G‖2
F =

∑
i,j |(G)i,j |2.

Since Bopt is the best approximation of A in the space C of the BCCB matrices,
with respect to the Frobenius norm, it “inherits” the spectral distribution of A. This
means that, if A has ill-determined rank, the same will hold for Bopt. The solution
of the preconditioned system DA∗Af = DA∗g, with D = (B∗

optBopt)
†, leads to worse

numerical results due to amplification of the components related to the noise of g.
Differing from Bopt, any useful preconditioner for deblurring should approximate its
system matrix only in the subspace less sensitive to data errors.

According to [20], this so-called signal subspace corresponds to the largest singular
values of A, in the sense that it is spanned by the associated singular vectors. On the
other hand, the noise subspace is related to the smallest singular values and represents
the components where the direct reconstruction is more contaminated by data errors.

In the Toeplitz deblurring context, the problem of locating these two fundamental
subspaces was first studied by Hanke, Nagy, and Plemmons [20]. Having fixed a small
real value α > 0 called the truncation parameter, the signal space can be roughly
identified by the eigendirections corresponding to the eigenvalues of Bopt greater than
α. If the parameter is well chosen, we can believe that the noise space falls into
the directions related to the eigenvalues of Bopt with an absolute value smaller than
α. Therefore the authors proposed in [20] to set equal to 1 all of these eigenvalues;
in that way, the convergence speed increases in the signal space only, without fast
amplification of the noisy components.

On these grounds, now we extend the approach of [20], by providing a family of
different filtering procedures. Given a BCCB matrix G, let λ1(G), λ2(G), . . . , λN (G)
denote its eigenvalues with respect to the fixed base of eigenvectors collected into
the columns of the two-dimensional unitary Fourier matrix. If α > 0 is a truncation
parameter, we define the regularizing BCCB preconditioner D = Dα as the matrix
whose eigenvalues λ1(Dα), λ2(Dα), . . . , λN (Dα) are such that

(2.9) λi(Dα) = Fα

(
λi(B

∗
optBopt)

)
,

where the function Fα : R+ −→ R+ is one of the eight filters of Table 2.1. Notice
that the central column prescribes the eigenvalues along the noise space, and the last
one is referred to the signal space.

The filter I comes from the Tikhonov regularization [4], and the filter III is that
of Hanke, Nagy, and Plemmons [20]. The filter IV was introduced by Tyrtyshnikov,
Yeremin, and Zamarashkin in [37], and VIII is the Showalter filter for asymptotic
regularization [14]. For the polynomial filter V, we consider an integer p > 0.

It is worth noticing two important properties common to all of these filters:
• if the truncation parameter α is small enough, then λi(Dα) approximates the

reciprocal of λi(B
∗
optBopt) on the signal space;

• since Fα is a bounded function in all eight cases, the eigenvalues of Dα have
a uniform upper bound independent of the dimension.
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Table 2.1

Regularizing functions for the optimal-based preconditioners.

Fα(t) 0 ≤ t < α t ≥ α

I (t + α)−1 (t + α)−1

II 0 t−1

III 1 t−1

IV α−1 t−1

V α−(p+1)tp t−1

VI α−α+1
α t

1
α t−1

VII α−1e
t−α
αt t−1

VIII
∫ 1/α
0 e−tsds

∫ 1/α
0 e−tsds

Further properties of these filters, together with a wide numerical comparison,
can be found in [15].

It is worth mentioning that the role played here by Bopt can be replaced by other
popular basic preconditioners, such as those of Strang or R. Chan type; see [30]. We
restrict our investigation to Bopt just because this was the original choice made in
[20], but we expect similar results in the other cases.

2.2. A simplified convergence analysis: Periodic boundary conditions.
The theoretical analysis of preconditioned iterations is in general a complicated task,
due to the incomplete knowledge of how the singular vectors of the blurring matrix A
and of the preconditioner D are related. We will try to give partial results in section 4,
with special emphasis to the case where A is Toeplitz; by now we want to carry on
just a preliminary analysis, in order to give useful insights about the role played by
the different parameters at our disposal.

For this reason, in the present section we overcome the main difficulty by consid-
ering the following simplifying assumption, which will be removed later:

Both A∗A and D are circulant matrices.

It is understood that this assumption is restrictive, but it corresponds to the prac-
tical application of periodic boundary conditions in the discretization of the continuous
space-invariant blurring model, as described in [4, 23, 33]. This is very common in
some imaging contexts where the boundary effect is negligible, e.g., in astronomical
observations of isolated sources.

With this choice, A can be regarded as the classical Strang [35] circulant approx-
imation of the PSF matrix. In order to avoid a trivial situation, we assume that D is
obtained from the T. Chan approximation of the Toeplitz pattern of the PSF, deter-
mined before applying boundary conditions; therefore Bopt is no longer related to the
minimizer of (2.8), which in this case would reduce to A itself. As stated in the ap-
pendix (Lemma A.1), every λi(B

∗
optBopt) considered in (2.9) is a good approximation

of the corresponding eigenvalue of A∗A.
In light of the circulant structure, A∗A and D are diagonalized by a common

eigenvector basis specifically represented by the discrete Fourier transform F (here we
intend the two-dimensional transform, but we will use the same symbol independently
of the number of dimensions):

A∗A = FΛAF
∗ , D = FΛDF ∗ ,

ΛA = diag(λA
1 , . . . , λ

A
N ) , ΛD = diag(λD

1 , . . . , λD
N ) .
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In this case D satisfies the Strand condition for regularizing preconditioners (com-
pare [34, eq. (34)]), and therefore the sequence fk of preconditioned iterations pre-
serves the semiconvergence property [31, Proposition 3.1].

Under this strong assumption, convergence analysis of the preconditioned Landwe-
ber method becomes straightforward; we will obtain similar results to those of [34]
concerning the “response” of (continuous) iterations, but we will use the language of
numerical linear algebra since we are directly interested in the discrete case.

Both the preconditioned matrix M and the iteration matrix Gk, such that fk =
GkA

∗g, introduced in (2.7), can be diagonalized in the same way as A∗A and D:

M = DA∗A = FΛMF ∗ , ΛM = ΛDΛA = diag(λM
1 , . . . , λM

N ) , λM
j = λD

j λA
j ;

Gk = τPk−1(τM)D = FΛGk
F ∗ , ΛGk

= τPk−1(τΛM )ΛD = diag(λGk
1 , . . . , λGk

N ) .

Recalling the closed formula (2.2) for Pk−1(t), whenever λM
j �= 0 we have

(2.10) λGk
j = τPk−1(τλ

M
j )λD

j = τ
1 − (1 − τλM

j )k

τλM
j

λD
j =

1 − (1 − τλD
j λA

j )k

λA
j

.

Now we are ready to study the components of the kth Landweber approximation fk
and of the generalized solution f† along the Fourier directions v1, . . . , vN . On one
hand,

fk = GkA
∗g =⇒ F ∗fk = ΛGk

F ∗A∗g,

and therefore the jth Fourier component of fk is

v∗j fk = λGk
j γj , where γj = v∗jA

∗g,

in agreement with [34, eq. (59)]. On the other hand, we can use for f† the expression

f† = (A∗A)†A∗g =⇒ F ∗f† = Λ†
AF

∗A∗g,

whence

v∗j f
† =

{
γj/λ

A
j if λA

j > 0,

0 if λA
j = 0.

We obtain the following relation for the relative error on the components lying outside
the null space of A:

(2.11)
|v∗j fk − v∗j f

†|
|v∗j f†| =

|λGk
j − 1/λA

j |
1/|λA

j |
= |1 − τλD

j λA
j |k .

It is evident that the rate of decay for this error, as the iterations proceed, heavily
depends on the value of the parameter τ and on the distance of the preconditioned
eigenvalues λD

j λA
j from 1. As described in the previous subsection, this distance is

reduced just in the signal space, where λD
j approximates the reciprocal of the optimal

circulant preconditioner eigenvalue (which in turn is a good approximation of λA
j ).

It is worth noticing that (2.10) do not apply to the directions belonging to the
null space; instead, we may deduce from (2.3) the relation Pk−1(0) = k, which implies

(2.12) v∗j fk = τkλD
j γj ,
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so that this component is amplified as the iteration count k increases, unless λD
j is

very small.
A similar behavior can be generally observed along the noise space, since under

our assumptions these directions correspond to the indices such that λA
j < α, the

small threshold used to define the regularizing preconditioner. If this occurs, from the
inequalities

1 − iτλD
j α ≤ (1 − τλD

j λA
j )i ≤ 1,

we obtain the bounds

Pk−1(τλ
M
j ) =

k−1∑
i=0

(1 − τλD
j λA

j )i ∈
[
k

(
1 − k

2
τλD

j α

)
, k

]
;

substituting into the relation

v∗j fk = λGk
j γj = τPk−1(τλ

M
j )λD

j γj

gives

(2.13) τkλD
j |γj |

(
1 − k

2
τλD

j α

)
≤ |v∗j fk| ≤ τkλD

j |γj | .

The last relation also gives a dependence between the chosen threshold α and the
iteration count k, since both of them affect the lower bound for the amplification of
the undesired components.

The different role of the parameters k, τ, α and of the filter (which mainly involves
the magnitude of λD

j in the noise space) is now made explicit in (2.11), (2.12), and
(2.13); we are ready to present a full discussion in the next section.

3. Choice of parameters. The preconditioned Landweber method described so
far involves four parameters to choose: the relaxation parameter τ , the regularization
parameter k (iteration count), the filter parameter α, and finally the type of filtering
function Fα.

As already shown in (2.11), the parameter τ allows us to control the convergence
of the iterations towards the solution of the normal equations. More precisely, the
relative reconstruction error is the largest one (≈ 100%) along the components for
which the value of λD

j λA
j is close to 0 or 2τ−1, whereas it is the smallest one (≈ 0%)

when λD
j λA

j is close to τ−1. This implies that the convergence is always slow in the

noise space where λD
j λA

j is small, but an appropriate choice of τ enables us to “select”
the most important subspace of components to be first resolved in the reconstruction
process.

We recall that, by using a suitable filtering preconditioner D as explained in
section 2.1, the numbers λD

j λA
j giving the spectrum of DA∗A can be made clustered

at unity in the signal space and clustered at zero in the noise space; in that case,
the simplest choice τ ≡ 1 should provide good results in terms of convergence speed.
It is worth noticing that for some choices of the filter (as those labeled by I and
VIII in Table 2.1) the reciprocal function is only approximated, and therefore the
preconditioned spectrum has a slightly different distribution; in these cases another
value of τ could provide better results.

In any case, as we will see in section 4, the constant τ must be such that
τλM

j ∈ (0, 2), at least along the signal components. In the case of periodic boundary
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conditions, all of the filters listed in Table 2.1 ensure that the choice τ = 1 always
verifies the constraint above for α not too large; a proof is given in the appendix.
With other boundary conditions (for instance, Dirichlet conditions, which are used in
the experiments of section 5), the constraint can be violated by few outliers, but nu-
merical evidence suggests to us the conjecture that the corresponding eigendirections
lie in the noise subspace, and in practice, since we often compute few iterations, these
diverging components are still negligible with respect to all of the converging ones,
especially for large-scaled systems arising in real applications.

Choosing the number of iterations k can heavily affect the performance when a
method is not robust. If we underestimate k, we can provide restorations which are
not sufficiently accurate because the “signal” component (2.11) of the relative error
has not yet reached an acceptable value. If we overestimate k, we perform too many
iterations, and this way we do not improve the efficiency of the method; moreover, we
can obtain satisfactory restorations, provided that the unwanted components (related
to k through the expressions (2.12) and (2.13)) have not been amplified too much.

On the other hand, by the numerical experiments performed in section 5 on
simulated data (see, in particular, Figure 5.3), the restoration error is decreasing
first and increasing afterwards preserving the property of semiconvergence [4], and,
in general, the region of the minimum is large enough; this allows us to choose k
in a wide range of values without consequences on the restoration. Therefore we
propose to apply for general problems the most simple and efficient stopping rule for
estimating the optimal value of k, that is, the discrepancy principle; if we have an
estimate of the noise level ε = ‖ω‖ = ‖Af∗ − g‖, we stop the iterations when the
residual rk = ‖Afk − g‖ becomes less than ε.

In the case where such an estimate of the noise level ε is not at our disposal, [29]
gives a stopping criterion connected to the general behavior of the residual rk, which
rapidly decreases in a few iterations and then decreases much more slowly; it looks
“natural” to stop the iterations at the beginning of the flat region. The authors find
also that the performance of the method does not change significantly for different
values of the parameter k in this region (in their specific example, the range was
50 ≤ k ≤ 100).

Concerning the choice of α, we recall here the “recipe” of [20]. We consider the
discrete Fourier transform (DFT) of the right-hand side g, and we observe that there
is an index r at which the Fourier coefficients begin to stagnate; this corresponds
to the components where the random error starts to dominate the data vector g.
Then we consider the eigenvalues λi of B∗

optBopt, obtained again by means of a DFT
as discussed in section 2.1; we take as approximation of the filter parameter α the
magnitude of the eigenvalue λr.

In many cases this strategy is difficult to apply, due to a great uncertainty in
locating the index r; in a case of doubt, it is better to underestimate its value because
this is equivalent to taking a greater value of α in order to prevent the reconstruction
of noisy components.

The choice of the type of filtering function Fα depends on the features of the
problem and on the action we want to apply to the high frequency components in the
reconstruction. The filters presented in Table 2.1 can be classified in two categories:
“smooth” filters and “sharp” filters. For instance, the “smooth” filters I and VIII
have the same expression for all t, whereas the “sharp” filtering functions from II to
VII have some discontinuity in t = α.

The smooth filters give an approximation of the reciprocal function everywhere,
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so that the error in (2.11) is somehow reduced in the noise space, too; therefore they
allow us to modulate the restoration from high frequencies according to the problem.
On the other hand, the sharp filters do not try to invert on the noise space, and so they
do not introduce further improvement in the solution; hence they produce a sequence
that at first reduces the restoration error and after becomes stable, because for t ≤ α
the filter functions are slightly varying. This behavior is particularly desirable in the
case of a strongly ill-conditioned problem, since it makes the method more robust
with respect to a wrong choice of the “critical” parameters k and α.

As we can see in the numerical results of section 5, the nature of the problem may
suggest that we use one type of filter instead of another.

4. Convergence analysis: The Toeplitz case. If the assumption of a com-
mon eigenvector basis for A and D is dropped, the classical Strand approach does not
work, and convergence analysis of the preconditioned Landweber method becomes
more involved, if we look at the Fourier components. An alternative way to quantify
the acceleration and regularization behavior of iterations is to perform the analysis
with respect to the eigenvector basis of the preconditioned matrix M = DA∗A; this
choice needs no particular assumption on the structure of A∗A.

The argument is the classical one for stationary iterative methods; recalling that
the iterates satisfy the recurrence relation

(4.1) fk+1 = τDA∗g + (I − τM)fk ,

the generalized solution f† can be expressed in a fixed-point form:

(4.2) A∗Af† = A∗g ⇒ f† = τDA∗g + (I − τM)f† .

Subtracting (4.2) from (4.1), we obtain for the kth error a recurrence relation leading
to the closed formula

(4.3) fk − f† = (I − τM)k(f0 − f†) = −(I − τM)kf† ,

having assumed the standard choice for the initial guess, that is, f0 = 0.
Let M = VMΛMV −1

M be the eigenvalue decomposition of the preconditioned ma-
trix, where ΛM is real nonnegative because M is symmetrizable (i.e., similar to a
symmetric matrix) and semidefinite, but VM may be not unitary. If we define φk

j and

φ†
j as the jth components of fk and f†, respectively, along the eigenvector basis VM ,

by (4.3) we obtain

φk
j − φ†

j = −(1 − τλM
j )kφ†

j ,

λM
j being the generic eigenvalue of M ; this kth componentwise error tends to zero

provided that τλM
j ∈ (0, 2). From this characterization we can draw the following

general conclusions:
1. Along the directions where λM

j ≈ 1, the relative error on the associated

component of f† decreases in magnitude with a linear rate close to 1 − τ ; in
the case τ = 1, the reconstruction of such components is heavily accelerated.

2. Along the directions where λM
j is small enough, the associated component of

fk stays bounded as follows:

|φk
j | =

[
1 − (1 − τλM

j )k
]
|φ†

j | = τλM
j

k−1∑
l=0

(1 − τλM
j )l|φ†

j | ≤ τkλM
j |φ†

j | .
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Hence such components are poorly reconstructed, provided that the iterations
are stopped early; in particular, fk has no component along the null space
of M .

On the other hand, the spectral analysis carried out in [20, Theorem 6.1] for the
filter III (but extendable to several other choices) proves that the eigenvalues of M
have a unit cluster and accumulate to zero, without giving any insight about the
related eigenvectors; hence we are sure that statements in items 1 and 2 do not refer
to the empty set.

Anyway, our conclusions are of no practical relevance unless we give an answer to
some crucial questions:

• Are the directions considered in item 1 related to the signal space (here we
desire a fast reconstruction)?

• Are we sure that the noise space (where reconstruction is not wanted) falls
into the directions considered in item 2?

This delicate matter is crucial, as similarly pointed out in [26], and no exact knowledge
is at our disposal. In space-invariant deblurring problems, it is known that signal and
noise spaces can be described in terms of low and high frequencies (see, e.g., [20]), but
no direct relation between the frequency-related Fourier basis and the eigenvectors
of M is known in literature, except for the trivial case of common bases assumed in
section 2.2.

In the case where the blurring operator A is a Toeplitz matrix (this occurs when
Dirichlet boundary conditions are imposed to the PSF; see [4, 23, 33]), we take some
insight from an indirect relation known as equal distribution.

Definition 4.1 (see [39]). The eigenvectors of the sequence {Bn}, where Bn

is a n × n matrix, are distributed like the sequence of unitary vectors {q(n)
k }, where

q
(n)
k ∈ Cn for k = 1, . . . , n, if the discrepancies

r
(n)
k := ‖Bnq

(n)
k − 〈q(n)

k , Bnq
(n)
k 〉q(n)

k ‖2

are clustered around zero, in the sense that

∀ε > 0 : #
{
k ∈ {1, . . . , n} : |r(n)

k | > ε
}

= o(n) .

Since the discrepancies are a sort of measure of how much the {q(n)
k } behave

like the eigenvectors of Bn, our goal is now to show that the eigenvectors of M are
distributed like the Fourier vectors and therefore are frequency-related; this way we
have a partial positive answer to the questions addressed above.

Clearly, in order to apply Definition 4.1 we should think of M as the element
of a sequence of matrices indexed by their total size, which of course is the product
of the individual ones along the different directions. Thus we are not sure that the
sequence is well-defined for any positive integer n, and it is better to adopt the typical
multi-index notation of multilevel matrices (see, e.g., [36]), with a slight change in the
original Definition 4.1.

From now on, we put n = (n1, n2) ∈ N2 as the vector of individual dimensions,
in the sense that Mn is a (block) two-level matrix of total size N(n) := n1n2. By
the multi-indices i = (i1, i2) and j = (j1, j2) we label a single entry of Mn, located at
the inner i2, j2 position of the block having the indices i1, j1 at the outer level. The
indices il, jl at each level (l = 1, 2) range from 1 to the respective dimension nl.

The same notation applies to the preconditioners Dn and to the rectangular
Toeplitz blurring matrices Am,n ∈ RN(m)×N(n), too. This way we may consider a
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(double) sequence {Mn}n∈N2 and adjust the concept of equal distribution to our two-
level setting, according to the following new definition.

Definition 4.2. Consider a sequence {Bn}n∈N2 of two-level matrices as de-
scribed before and a sequence of unitary vectors{

q
(n)
k : n = (n1, n2) ∈ N2, k ∈ {1, . . . , n1} × {1, . . . , n2}

}
⊆ CN(n) .

We say that the eigenvectors of Bn are distributed like the sequence {q(n)
k } if the

discrepancies r
(n)
k as in Definition 4.1 satisfy

∀ε > 0 : #
{
k ∈ {1, . . . , n1} × {1, . . . , n2} : |r(n)

k | > ε
}

= o(N(n)) .

Our vectors q
(n)
k will be the two-dimensional Fourier vectors, indexed in such a

way that they correspond to the columns of the two-level Fourier matrix

F =

(
1

√
n1

exp

{
ı̂

2π(i1 − 1)(j1 − 1)

n1

})n1

i1,j1=1

(4.4)

⊗
(

1
√
n2

exp

{
ı̂

2π(i2 − 1)(j2 − 1)

n2

})n2

i2,j2=1

,

where ⊗ denotes the Kronecker (tensor) product and ı̂ is the imaginary unit.
Lemma 4.3. For a sequence {Tn(a)}n∈N2 of two-level Toeplitz matrices generated

[36] by the L2 bivariate function a(x), the eigenvectors are distributed like the Fourier
vectors, in the sense of Definition 4.2.

Proof. The same statement has been proved in [39] for the one-level case; the
proof was a direct consequence of the estimate

(4.5) ‖Tn(a) − Cn(a)‖2
F = o(n) ,

where Cn(a) is the optimal circulant preconditioner of Tn(a), denoted as Bopt in (2.8).
The last result has been extended to the two-level version

‖Tn(a) − Cn(a)‖2
F = o((N(n))

in the paper [36], so that the proof can be fully generalized by following the same
steps as in [39], without any substantial change.

The one-level equidistribution result has been further extended to L1 generating
functions in [40]; since the proof no longer uses (4.5), we cannot say that Lemma 4.3
holds if a ∈ L1, too. The result is probably true but is not of interest in image
deblurring, where generating functions are related to the PSFs and hence they have
a high degree of regularity.

In order to extend the equidistribution result to our matrices Mn = DnA
∗
m,nAm,n,

we must overcome two difficulties: the presence of the first factor Dn (this will not be
a great problem, since the Fourier vectors are exactly the eigenvectors of Dn) and the
loss of Toeplitz structure in forming the normal equation matrix product A∗

m,nAm,n.
The next lemma takes care of this second topic.

Lemma 4.4 (see [11]). Let {Am,n} be a sequence of two-level Toeplitz matrices
generated by a continuous bivariate function a(x). Then for every ε > 0 there exist
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two sequences {Rn}, {En} of N(n) × N(n) matrices and a constant s such that, for
m and n large enough,

A∗
m,nAm,n = Tn(f) + Rn + En ∀n,m ,

where f(x) = |a(x)|2, ‖En‖2 < ε, and each Rn is a low-rank matrix having the
following multilevel pattern:

Rn = (Ri1,j1)
n1
i1,j1=1, Ri1,j1 = (Ri,j)

n2
i2,j2=1,

where each element Ri,j is nonzero only if all of the indices i1, i2, j1, j2 take the first
or the last s values.

The continuity assumption for a(x) is stronger than the L2 hypothesis used in
Lemma 4.3 but again is not restrictive in the image deblurring context.

We end this section by proving the equal distribution for the eigenvectors of our
preconditioned matrices with respect to Fourier vectors.

Theorem 4.5. Under the same assumptions as in Lemma 4.4, the eigenvectors of
the matrices Mn are distributed like the Fourier vectors, in the sense of Definition 4.2.

Proof. First we will show that the equidistribution property holds for normal
system matrices A∗

m,nAm,n, too. Notice that for all B ∈ CN×N and for all q ∈ CN ,
as observed, e.g., in [39],

〈q,Bq〉 = arg min
λ∈C

‖Bq − λq‖2 ,

so that in order to prove an equidistribution result for the sequence {Bn} it suffices

to show an o(N(n)) bound for vectors of the form Bq
(n)
k − λq

(n)
k for any suitable λ in

place of the discrepancies r
(n)
k .

Now let λ := 〈q(n)
k , Tn(f)q

(n)
k 〉, where q

(n)
k is a Fourier vector and f is given by

Lemma 4.4. Then for every ε > 0 and m,n large enough

‖A∗
m,nAm,nq

(n)
k − λq

(n)
k ‖2 = ‖Tn(f)q

(n)
k + Rnq

(n)
k + Enq

(n)
k − λq

(n)
k ‖2

≤ r
(n)
k + ‖Rnq

(n)
k ‖2 + ‖En‖2‖q(n)

k ‖2 < ‖Rnq
(n)
k ‖2 + 2ε(4.6)

except for o(N(n)) multi-indices k, where we have denoted by r
(n)
k the discrepancy

referred to as the Toeplitz matrix Tn(f) and we have applied Lemmas 4.3 and 4.4.

In order to manage the product Rnq
(n)
k , we must take into account the sparsity

pattern of Rn given by Lemma 4.4 and the following general expression for the j =

(j1, j2)th entry of the Fourier vector q
(n)
k , deduced by (4.4):

(4.7) (q
(n)
k )j =

1√
N(n)

exp

{
2πı̂

[
(j1 − 1)(k1 − 1)

n1
+

(j2 − 1)(k2 − 1)

n2

]}
.

The structure of Rn implies that the product with the Fourier vector involves just the
first and the last s values of the indices j1 and j2; moreover, only such entries of the
product are nonzero. More precisely, by exploiting the usual multi-index notation we
obtain

‖Rnq
(n)
k ‖2

2 =
∑

i∈I1×I2

∣∣∣∣∣∣
∑

j∈I1×I2

Ri,j(q
(n)
k )j

∣∣∣∣∣∣
2

,
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where Il = {1, . . . , s} ∪ {nl − s + 1, . . . , nl}, l = 1, 2. Setting c := maxi,j |Ri,j | and
using the expression (4.7), we have the bound∣∣∣∣∣∣

∑
j∈I1×I2

Ri,j(q
(n)
k )j

∣∣∣∣∣∣ ≤ c
∑

j∈I1×I2

|(q(n)
k )j | =

c√
N(n)

#(I1 × I2) =
4cs2√
N(n)

,

whence

‖Rnq
(n)
k ‖2

2 ≤ #(I1 × I2)
16c2s4

N(n)
=

64c2s6

N(n)
,

which can be made less than ε provided that N(n) is large enough. Substituting into
(4.6) and observing that ε is arbitrarily small, we have proved the equal distribution
between the eigenvectors of A∗

m,nAm,n and the Fourier vectors.

Concerning the preconditioned matrices, it suffices to observe that for μ := λ ·λD
k

(4.8) ‖Mnq
(n)
k − μq

(n)
k ‖2 = ‖Dn[A∗

m,nAm,nq
(n)
k − λq

(n)
k ]‖2 ≤ ‖Dn‖2 ε

except for o(N(n)) values of k, where we have used the property that Fourier vectors
are also eigenvectors of Dn. Since ‖Dn‖2 equals the maximal eigenvalue of Dn, having
a uniform upper bound for regularizing preconditioners (see section 2.1), the inequality
(4.8) proves the equal distribution result for the matrices {Mn}.

5. Numerical results. In this section we provide some numerical experiments
illustrating the effectiveness of the preconditioned Landweber method, both in the
basic version and in the projected variant. In particular, the deblurring capabilities
of the method will be tested through both synthetic and widely used experimental
data. The analysis of section 3 is a useful starting point for the appropriate choice
of all of the parameters of the algorithm. Along this direction, the main aim of the
present section is to compare the results related to different settings. As already
shown (see section 2), our discrete model of image formation is the image blurring
with shift invariance, and it can be simply written as follows:

(5.1) g = Af∗ + ω,

where g is the blurred data, A is the multilevel Toeplitz matrix version of the PSF
associated to Dirichlet boundary conditions, f∗ is the input true object, and ω is the
noise which arises in the process. The deblurring problem is to recover a suitable
approximation f of the true object f∗, by means of the knowledge of g, A, and some
statistical information about the noise ω.

We consider two different test examples.
T1. In the first one, the true image f∗ is the 256× 256 brain section of Figure 5.1

(top left), and the convolution operator A is a Gaussian PSF with standard
deviation σ = 5 shown in Figure 5.1 (top right), with an estimated condition
number of 1.2 · 1020. In this first example, we compare the restorations cor-
responding to different levels of artificial Gaussian white noise ω, where the
relative data error ‖ω‖/‖Af∗‖ ranges from 3% to 30%, with ‖ · ‖ being the
vector 2-norm.

T2. In the second example, the object f∗ to be recovered is the 256×256 satellite
image of Figure 5.2 (top left), while the blurring operator and the blurred
data are experimental and plotted in Figure 5.2 (top right, bottom). These



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONED LANDWEBER METHOD 1445

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Fig. 5.1. Test set 1—True object, PSF, and synthetic blurred image with relative noise ≈ 8%.
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Fig. 5.2. Test set 2—True data, experimental PSF, and blurred image.
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test data have been developed by the U.S. Air Force Phillips Laboratory,
Lasers and Imaging Directorate, Kirtland Air Force Base, New Mexico, and
they are widely used in the literature [32]. This time A is just moderately
ill-conditioned (cond(A) ≈ 1.3 · 106), but the data image g is corrupted by a
noise of unknown distribution, corresponding to ‖ω‖/‖Af∗‖ ≈ 5%.
In addition, on the same true object f∗ and blurring operator A, we consider
another corrupted data g, developed by Bardsley and Nagy [1] and related
to a statistical model where the noise comes from both Poisson and Gaussian
distributions, plus a background contribution, so that the global noise level is
‖ω‖/‖Af∗‖ ≈ 1%. These two sets of data allow us to numerically compare the
features of the method with other techniques proposed in [1, 19, 21, 24, 28].

According to Table 2.1 of section 2.1, we test the following four filters Fα:
F1. Fα is the Tikhonov filter I;
F2. Fα is the low pass filter II;
F3. Fα is the Hanke, Nagy, and Plemmons filter III;
F4. Fα is the p-polynomial vanishing filter V, with p = 1.
The convergence parameter τ of the method is set to 1, providing a good compro-

mise between fast convergence and noise filtering for the preconditioned Landweber
method, as discussed in section 3.

We stress that the choice of the regularization parameter α is not a simple task, so
we attempt several values in order to select the best one. In test T2 we try to adopt
the strategy proposed by Hanke, Nagy, and Plemmons [20] recalled in section 3,
which is based on an appropriate estimate of the noise space, and we suggest some
improvements and remarks.

The number of iterations can be fairly well controlled by means of the discrepancy
principle, even though it can be underestimated with respect to the optimal one;
therefore we prefer to present the best achievable results within the first 200 iterations.

All of the experiments have been implemented in MATLAB 6.1 and performed
on an IBM PC, with a floating-point precision of 10−16.

5.1. Test 1 (synthetic data with different levels of noise). We test the
projected variant of the Landweber method, where each iteration fk is projected onto
the nonnegative cone (see end of section 2), using the four filters for α ranging from
0.005 to 0.1, and we take the best restoration among the first 200 iterations. Table 5.1

Table 5.1

Test 1—Best relative restoration errors and number of iterations for 3% and 8% noise.

Data 3% relative noise 8% relative noise
No prec. 0.1794 0.1855

200 200
α F1 F2 F3 F4 F1 F2 F3 F4

0.005 0.2028 0.1900 0.1898 0.1908 0.2107 0.1968 0.1967 0.2031
1 3 3 2 1 2 2 2

0.01 0.1890 0.1979 0.1969 0.1849 0.2016 0.2024 0.2018 0.1930
2 7 7 4 2 3 3 3

0.02 0.1854 0.2012 0.1847 0.1862 0.1925 0.2074 0.1967 0.1946
3 199 199 13 2 19 139 7

0.03 0.1823 0.2055 0.1798 0.1844 0.1907 0.2090 0.1886 0.1949
7 200 200 43 5 179 200 15

0.05 0.1782 0.2172 0.1796 0.1801 0.1896 0.2188 0.1867 0.1914
16 123 200 200 9 200 200 116

0.1 0.1752 0.2325 0.1794 0.1861 0.1881 0.2335 0.1858 0.1910
49 200 200 200 20 200 200 200
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shows the values of the minimal relative restoration error (RRE) ‖fk − f∗‖/‖f∗‖ and
the corresponding iteration number k. The left side of the table reports the results
with 3% of relative data error, the right side with 8%.

First of all, we point out that the nonpreconditioned Landweber method is really
slower than the preconditioned version. After 200 iterations, the RRE without pre-
conditioning gives the same accuracy provided by the Tikhonov filter F1 within at
most 20 iterations (see the columns F1 of Table 5.1 relative to the values α = 0.05 for
3% of noise and α = 0.1 for 8% of noise).

As expected, when the noise is higher the filtering parameter α has to be larger,
and the method has to be stopped earlier. Indeed, both α and k together play the
role of regularization parameter, as can be observed by comparing the results on the
left and right sides of the table. In particular, a good choice of α should be the
compromise between noise filtering and fast convergence.

Small values of α yield low noise filtering; in the first rows of the table, the noise
dominates on the restoration process, and the RREs are larger. If this is the case, it
is interesting to notice that the filter F4 outperforms the others, because the problem
stays ill-conditioned and F4 “cuts” very much on the noisy components. On the other
hand, too large values of α do not speed up the convergence, as shown by the latter
rows, especially for filters F3 and F4.

The best restorations for this example are given by the Tikhonov filter F1, pro-
vided that a good value of α has been chosen. The corresponding convergence his-
tories, that is, the values of all RREs versus the first 200 iterations, are shown in
Figure 5.3. In this graph, it is quite evident that small filtering parameters α pro-
vide fast convergence and low accuracy, while large filtering parameters α provide
high accuracy and low convergence speed. The graph of Figure 5.3 confirms how
the improvement provided by the preconditioned Landweber method is high with re-
spect to the nonpreconditioned case. Moreover, the shape of any semiconvergence
graph is very regular, without oscillations and fast changes of the concavity, even for
low values of the filtering parameter α (see also the analogous Figures 5.7 and 5.9
related to Test 2). This good behavior is not common in other preconditioned iter-
ative strategies which, although faster, may give much lower stability (see, e.g., [28,
Figure 3.2]).

0 20 40 60 80 100 120 140 160 180 200
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alpha=0.03
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Fig. 5.3. Test 1—RREs versus the first 200 iterations; noise 3%, filter F1.
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We remark that the low pass filter F2 always gives worse results. The reason
is that this filter neglects all of the eigenvalues lower than α; in this case, the cor-
responding components are completely lost, and the reconstruction is done without
those pieces of information. All of the other filters take into account such components,
although the restoration is slow therein, and hence the results are more accurate.

A comparison between projected and nonprojected versions is shown in Table 5.2,
related to filters F1 and F4. The left side concerns the Landweber method with pro-
jection on positives, while the right side concerns the method without projection.
Notice that the positivity constraint improves the results, since actually the projected
variant always leads to the minimal RREs and the maximal convergence speed. We
can say that the projection on positives acts as a regularizer, since it reduces the
instability due to the noise on the data. In addition, the higher regularizing prop-
erties of the projected variant allow us to adopt smaller values of the regularization
parameter α, which accelerates the method.

As graphical examples of restorations, the two images on the top of Figure 5.4
are the best restorations after 200 iterations of the nonpreconditioned Landweber
method, with projection onto positive values (left) and without projection (right),
for input data with 8% of relative noise. The images in the central row are the best
restorations with filter F1 and α = 0.03: 5 iterations with projection on positives on
the left and 3 iterations without projection on the right. The images at the bottom
are the best restorations with filter F4, again with α = 0.03: 15 iterations with
projection on positives on the left and 32 iterations without projection on the right.
The images of the projected version on the left are quite better than the images of
the classical Landweber method on the right, since the ringing effects are sensibly
reduced, especially on the background of the object. It is worth noticing that the
corresponding numerical values of the RREs in Table 5.2 are not so different and do
not allow one to completely evaluate these qualitative improvements.

Table 5.2

Test 1—Best relative restoration errors and number of iterations for filters F1 and F4.

With positivity Without positivity
Noise 3% 8% 30% 3% 8% 30%

No prec. 0.1794 0.1855 0.2185 0.1817 0.1928 0.2263
200 200 29 200 156 15

Filter F1 With positivity Without positivity
Noise 3% 8% 30% 3% 8% 30%

α = 0.01 0.1890 0.2016 0.1866 0.2091 0.2142 0.2083
2 2 2 1 1 1

α = 0.03 0.1823 0.1907 0.2276 0.1906 0.1977 0.2361
7 5 1 4 3 1

α = 0.1 0.1752 0.1881 0.2219 0.1763 0.1929 0.2268
49 20 3 69 16 2

Filter F4 With positivity Without positivity
Noise 3% 8% 30% 3% 8% 30%

α = 0.01 0.1849 0.1930 0.2642 0.1891 0.1964 0.2886
4 3 1 3 2 1

α = 0.03 0.1844 0.1949 0.2301 0.1851 0.1949 0.2395
43 15 2 48 32 2

α = 0.1 0.1861 0.1910 0.2240 0.1895 0.1956 0.2293
200 200 8 200 200 5
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Fig. 5.4. Test 1—Best reconstructions with α = 0.03, for relative noise 8%, within 200 itera-
tions. Left: With projection on positives. Right: Without projection.

5.2. Test 2 (experimental data). The experimental data of the blurred image
with about 5% of noise are now used here (see Figure 5.2). Table 5.3 shows the best
RREs ‖fk − f∗‖/‖f∗‖ and the corresponding iterations k, obtained by using the four
preconditioners and several thresholds α with the projected variant of the Landweber
method.

In this second test, we try to adopt the strategy proposed by Hanke, Nagy, and
Plemmons for the choice of the regularization parameter α. Basically, the Fourier
spectral components of the (“unregularized”) optimal preconditioner B∗B are com-
pared with the Fourier spectral components of the blurred and noisy image g, in order
to estimate the components of g where the noise dominates on the signal. We sum-
marize the procedure by the following three steps: (i) collect in decreasing order the
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Table 5.3

Test 2—Best relative restoration errors and number of iterations.

No prec. 0.4689
200

α F1 F2 F3 F4
0.01 0.5176 0.4837 0.4351 0.5347

2 200 200 3
0.02 0.4924 0.5449 0.4568 0.5132

5 200 200 17
0.03 0.4249 0.5581 0.4606 0.4146

19 200 200 200
0.04 0.3929 0.5752 0.4630 0.4340

37 200 200 200
0.05 0.3758 0.5911 0.4642 0.4496

62 200 200 200
0.06 0.3623 0.6171 0.4677 0.4626

99 200 200 200

eigenvalues (computed by two-dimensional FFT) of the circulant optimal precondi-
tioner B∗B; (ii) look at the Fourier components of the blurred image g with respect
to the same ordering of step (i), and choose the first index, say r, such that all of the
following harmonics have small widths of approximately constant size; (iii) λr(B

∗B)
is the truncation parameter α for the filtered optimal preconditioner Dα.

A graphic example of the three steps is given in Figure 5.5. The graph on the
top shows all of the 2562 Fourier components, and the graph on the bottom is the
corresponding zoom onto the first 500. As already mentioned, the procedure is not
simple to apply. Indeed, there is a large set of “reasonable” indices where the Fourier
components of g start to be approximately constant, which gives rise to very different
truncation parameters α. In the figure, the value α ≈ 10−3 seems to be a good “stag-
nating” value, corresponding to a noise space generated by the Fourier components of
index greater than about 350. Unfortunately, this choice gives a too small parameter,
as can be observed in Table 5.3, and the results are unsatisfactory due to the high
contribution of the noise in the restoration process. In our test, good values of α are
contained between 0.4 · 10−1 and 10−1, corresponding to a noise space generated by
the Fourier components more or less after the first 30–70. Hence, in order to avoid
noise amplification, it seems to be better to overestimate the noise space by choosing
a truncation parameter α higher than the one located by steps (i)–(iii). In this way,
although the convergence may be slower, the restoration is generally good.

Since it is easy to miss the proper value of α, it is worth noticing that sharp filters
are not appropriate for such situations, due to their discontinuity with respect to this
parameter. This is confirmed by the column F4 of Table 5.3: There is a remarkable
gap in the results between the second and the third rows (in particular, a dramatic
change occurs from 17 iterations for α = 0.02 to 200 iterations for α = 0.03). Similarly,
other experiments not reported in the table show very irregular performances for the
filter F3 when α goes from 0.0087 (RRE of 0.5734 in 3 iterations) to 0.01 (RRE of
0.4351 in 200 iterations).

Concerning the quality of the restorations, we can say that after 200 iterations the
RRE without preconditioning is still very high (RRE=0.4689), and the reconstruction
is unsatisfactory, as shown on the top left of Figure 5.6. A similar accuracy is pro-
vided within about 10 iterations by the Tikhonov filter, with α = 0.03, for instance.
The Tikhonov filter F1 gives again the best results, and for this filter the choice of
the regularization parameter is simpler since it is not very sensitive with respect to
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Fig. 5.5. Test 2—Choice of the regularization parameter α.

nonoptimal choices. The other choices, especially F2 and F3, do not provide good
results, since they bring too much regularization, that is, the convergence speed is too
slow along the components related to the smallest eigenvalues.

Notice that the restorations with F1 are good for any α between 0.03 and 0.06.
Within few iterations, we obtain very fast and sufficiently good restorations with the
low values α = 0.03 and α = 0.04 (see the corresponding images of Figure 5.6). On
the other hand, if we are more interested in low RREs than fast computation, we can
adopt a larger α. For instance, by using α = 0.06, within about 100 iterations the
details of the restored image are accurate, as shown by the image on the center right
of Figure 5.6.

The results of this numerical test could be directly compared with those of
other solving techniques used in the literature on the same input data set (see,
e.g., [19, 21, 24, 28]). For instance, we consider the (preconditioned) conjugate
gradient and the (preconditioned) steepest descent methods applied to the normal
equations (CGLS/PCGLS and RNSD/PRNSD), as developed by Lee and Nagy [28].
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Fig. 5.6. Test 2—Restorations of the Landweber method with positivity, filter F1.

The preconditioner used in [28] corresponds to our BCCB preconditioner with fil-
ter F3 and regularization parameter α chosen by a cross-validation technique, which
works very well in this case. We recall that the RNSD method is similar to the
Landweber one (2.1), since the two methods differ only in the choice of the con-
vergence parameter τ : It changes with any iteration in the former, so that fk+1 =
arg minf=fk+τA∗(g−Afk) ‖A∗(g −Af)‖2, whereas it is simply constant in the latter.

The convergence history of Figure 5.7 can be directly compared with [28, Fig-
ure 4.2]. By a direct comparison of the RRE values, we can say that the preconditioned
Landweber method is approximately fast as the CGLS method without precondition-
ing acceleration. In addition, as expected by virtue of its better choice of τ , the
RNSD method is faster than the (unpreconditioned) Landweber one (for instance,
RNSD reaches after 50 iterations the RRE value of about 0.50 instead of our value of
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Fig. 5.7. Test 2—RREs versus the first 200 iterations; experimental blurred data with 5% of
noise, filter F1.

0.56), and the same is true for the corresponding preconditioned versions. Concerning
the graphical quality of the restored images, comparing the output of Figure 5.6 (see,
for instance, the top right image) and [28, Fig. 4.3], the situation is different, since
the projection on positives of the proposed method substantially reduces the artifacts
due to ringing effects, as already noticed at the end of Test 1. These results show
that the method is not competitive by considering the convergence speed only, but
the quality of the restorations is generally good in a moderate number of iterations,
with high regularization effectiveness.

In addition, we notice that the projected Landweber method with regularizing
preconditioners presented here allows us to recover better restorations than other
widely used deblurring algorithms; with a large value of the regularization parameter
the convergence is not fast, but the restored image is very good (RRE=0.3510 at
iteration 158 with α = 0.07; RRE=0.3438 at iteration 200 with α = 0.08). In this
case, the method could be very favorable when the speed is not crucial. The image on
the bottom left of Figure 5.6, relative to α = 0.08, where RRE=0.3438, seems better
than others provided in the previous literature on the same example (consider, e.g.,
[19, 21, 24]).

As a final test, we compare the projected Landweber algorithm with the con-
strained methods proposed by Bardsley and Nagy in [1]. In particular, we consider
the same blurred data developed and used in [1] as a simulation of a charge-coupled-
device (CCD) camera image of the satellite taken from a ground-based telescope.
These input data are shown in Figure 5.8 (top), where the noise comes from both
Gaussian and Poisson distributions plus a background contribution so that the rela-
tive noise is about 1% (see [1, section 4] for details). The PSF and the true image are
the same as in the previous test (see Figure 5.2).

The first method used in [1] is basically a nonnegatively constrained RNSD
method, where at any iteration the convergence parameter τ is the result of a more
involved minimization procedure which guarantees the nonnegativity of the restora-
tion [25]. A BCCB preconditioned version of this first method is also considered
(RNSD/PRNSD). The second method of [1] is a weighted version of the previous
nonnegatively constrained RNSD method (WRNSD), where the weight at any pixel
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Fig. 5.8. Test 2—Input data of [1] and restorations of the Landweber method with positivity,
filter F1.
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Fig. 5.9. Test 2—RREs versus the first 200 iterations, filter F1; satellite blurred data with 1%
of noise of [1].

depends on the values of the blurred data. As similarly noticed in the previous test,
the convergence history of Figure 5.9 shows that the unpreconditioned Landweber
algorithm is slower than all of these more sophisticated methods, as can be seen by
a direct comparison with [1, Figure 4.4 (left)]. The preconditioned version is a bit
faster than both RNSD and WRNSD (about 70 iterations are needed by these two
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methods to achieve an RRE value of 0.4), but it is much slower than the precondi-
tioned RNSD method. On the other hand, the convergence curves of Figure 5.9 show
again that the projected Landweber algorithm has a very regular semiconvergence
behavior, stronger than the other approaches. When speed is not a basic aim, the
method becomes competitive due to its very high regularization capabilities also for
the preconditioned version; in particular, the restorations are quite good, and the
application of a stopping rule may be simplified. For instance, Figures 5.8 (bottom
left) and 5.8 (bottom right) show two different restorations, the first related to a good
compromise between speed and accuracy and the second with high accuracy.

6. Conclusions. On account of its reliability and easiness of implementation,
we have proposed a regularizing preconditioned version of the Landweber algorithm
for space-invariant image deblurring, which speeds up the convergence without losing
the regularization effectiveness.

Our theoretical contribution has proceeded along two main directions.

First, a basic analysis of the method in a simplified setting related to periodic
boundary conditions has been given, in agreement with the theory developed by
Strand [34] but described here in terms of linear algebra language. This way, the
convergence properties of the algorithm have been easily addressed to provide practi-
cal rules about the choice of all of the several parameters of the method.

Second, Dirichlet boundary conditions have been considered as a case study of
other settings not considered in [34]. In particular, by proving that the eigenvectors
of the preconditioned matrix are distributed like the Fourier vectors, we have shown
that the algorithm is able to speed up the convergence among all of the eigendirections
related to the signal space only. These arguments also extend the results of [20] and
the subsequent literature, where signal and noise spaces were described in terms of
low and high frequencies, regardless of the eigenvectors of the preconditioned matrix.

The numerical results have confirmed the main properties of the method, that is,
robustness and flexibility; on these grounds, the method may become a valid tool for
the solution of inverse problems arising in real applications.

More precisely, in seismology the Landweber method has been used to estimate
the source time function [3] because it provides numerically stable and physically
reasonable solutions by introducing positivity, causality, and support constraints. In
astronomy the projected Landweber (PL) method is considered as a routine method
for the analysis of large binocular telescope images [5], together with Tikhonov reg-
ularization and ordered subsets-expectation maximization (OS-EM); in addition, as
stated in [7] Landweber should be preferred to others because it is more flexible and
modifiable (e.g., by taking into account the support of localized objects) in order to
obtain superresolution effects. Again, the PL method is the routine method used
for the restoration of chopped and nodded images in thermal infrared astronomy [6];
it is able to determine the response function in the chirp-pulse microwave comput-
erized tomography [29] in a reasonable iteration number (as discussed in section 3,
without problems of parameter estimation); even for more ill-conditioned problems in
multiple-image deblurring [38], Landweber is more robust than the other methods in
the literature.

Indeed, other widely used strategies, such as CGLS, GMRES, or MRNSD [38]
methods, are less reliable; although much faster, these methods may lead to less
accuracy in the restorations with respect to the proposed method if the signal-to-noise
ratio is not large or in severely ill-posed problems (as formerly noticed by [17]). For
instance, in these faster methods it is essential to choose the filtering preconditioner



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1456 P. BRIANZI, F. DI BENEDETTO, AND C. ESTATICO

with very high accuracy and stop the iterations really very close to the optimal point,
and we know how both of these tasks are as crucial as they are difficult to solve.
On the contrary, the regularizing preconditioned Landweber method with positivity
allows us to operate at higher safety, since it is much less sensitive to nonoptimal
settings of the parameters.

Appendix A. Convergence for τ = 1. As observed in section 3, τ = 1 is the
best parameter choice in order to speed up the preconditioned Landweber method.
In any case, we must ensure that this value is suitable for convergence along the
directions related to the signal; this is true if the preconditioned eigenvalue λM

j is less
than 2 for any spectral component of interest.

In this appendix we give a formal proof of the inequality λM
j < 2 for all j, assuming

periodic boundary conditions.
In what follows, we will use the same notation as in section 2.2 concerning

λA
j , λ

D
j , λM

j : notice that all of these eigenvalues implicitly depend on n = (n1, n2).
The first step consists of proving a “spectral equivalence” between A∗A and B∗

optBopt

(from which the definition of the preconditioner D comes).
Lemma A.1. Let λB

j := λj(B
∗
optBopt), Bopt being the optimal T. Chan approxi-

mation of the PSF. Then

lim
n→∞

max
j=1,...,N

|λA
j − λB

j | = 0 .

Proof. Since we are imposing periodic boundary conditions, as observed in sec-
tion 2.2 both A and Bopt are square circulant matrices, representing Strang or T. Chan
approximations of the PSF matrix. It is well known (see, e.g., [9, Lemma 5] or [36,
Theorem 7.1]) that they are spectrally equivalent in the following sense:

(A.1) lim
n→∞

max
j=1,...,N

|λj(A) − λj(Bopt)| = 0 .

The circulant algebraic structure of the matrices involved yields the relations

λA
j = λj(A

∗A) = |λj(A)|2 , λB
j = λj(B

∗
optBopt) = |λj(Bopt)|2 ;

thus

|λA
j − λB

j | = |λj(A)λj(A) − λj(Bopt)λj(Bopt)|

≤ |λj(A)| |λj(A) − λj(Bopt)| + |λj(Bopt)| |λj(A) − λj(Bopt)|

≤ (‖A‖2 + ‖Bopt‖2) · |λj(A) − λj(Bopt)| .

Applying (A.1) and the uniform boundedness of A and Bopt, the thesis follows.
Theorem A.2. Under the assumption of periodic boundary conditions, if the

threshold parameter α is sufficiently small, then any filter listed in Table 2.1 deter-
mines a preconditioner D such that ‖DA∗A‖2 < 2.

Proof. Since

‖DA∗A‖2 = max
j=1,...,N

|λD
j λA

j |

and λD
j = Fα(λB

j ) can change its expression according to the comparison between λB
j

and α, we distinguish two cases.
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Case λB
j ≥ α. It is easy to check that the inequality λD

j ≤ 1/λB
j holds for all of

the filters I–VIII of Table 2.1.
Set ε = α, and apply Lemma A.1; for n large enough, we have λA

j < λB
j + α for

all j and then

0 < λD
j λA

j ≤
λA
j

λB
j

<
λB
j + α

λB
j

= 1 +
α

λB
j

≤ 2 .

Case λB
j < α. As before, λA

j < λB
j + α for large n, and in this case we obtain

λA
j < 2α. Examining the eight filters of Table 2.1, it can be observed that λD

j always

has an upper bound: 1 for filter III and α−1 for the others. It follows that

0 < λD
j λA

j <

{
2α for filter III,

2 for filters I, II, IV–VIII.

Hence the thesis is proved with the only restriction α ≤ 1 for filter III.
It is worth noticing that the maximal eigenvalue is attained for the indices j

such that λB
j ≈ α or even smaller: If the same situation occurs for other boundary

conditions, we could justify the conjecture that large outliers (not belonging to the
interval (0, 2)) correspond to eigendirections outside the signal subspace, as confirmed
by the experiments where the semiconvergence property of the method is preserved.
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