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The recent advances in angle-resolved photoemission techniques allowed the unambiguous experimental

confirmation of spin-charge decoupling in quasi-one-dimensional s1Dd Mott insulators. This opportunity stimu-

lates a quantitative analysis of the spectral function Ask ,vd of prototypical one-dimensional correlated models.
Here we combine Bethe Ansatz results, Lanczos diagonalizations, and field theoretical approaches to obtain

Ask ,vd for the 1D Hubbard model as a function of the interaction strength. By introducing a single spinon

approximation, an analytic expression is obtained, which shows the location of the singularities and allows,

when supplemented by numerical calculations, to obtain an accurate estimate of the spectral weight distribution

in the sk ,vd plane. Several experimental puzzles on the observed intensities and line-shapes in quasi-1D

compounds such as SrCuO2, find a natural explanation in this theoretical framework.

DOI: 10.1103/PhysRevB.80.195113 PACS numberssd: 71.10.Fd, 79.60.2i

I. INTRODUCTION

Since the theoretical prediction of the decoupling of spin
and charge excitations in one-dimensional s1Dd models,1

many experiments have long sought to verify this effect.2

According to the spin-charge separation scenario, the va-
cancy se+d created by removing an electron in a photoemis-
sion experiment decays into two collective excitations sor
quasiparticlesd, known as spinon ssd and holon shd, carrying
spin and charge degrees of freedom respectively. The recent

observation of a well-defined two-peak structure in the

angle-resolved photoemission spectra sARPESd of the

quasi-1D materials SrCuO2 and Sr2CuO3 sRefs. 3 and 4d is
deemed a significant clue of spin-charge decoupling, con-

firming previous expectations.

However, other quasi-one-dimensional materials5 fail to

show distinct holon and spinon peaks, casting some doubt on

the interpretation of ARPES experiments based on spin-

charge decoupling. A number of puzzling features also sug-

gest that more physics, beyond the simple decay e+→s+h, is

involved in the photoemission process: the spectral functions

of SrCuO2 and Sr2CuO3 reported by Kim et al.3 and by Kidd

et al.4 systematically display broad line-shapes in contrast to

the sharp edges expected on the basis of the available calcu-

lations on model systems. The spectral intensity also appears

considerably weaker in a half of the Brillouin zone, a feature

often ascribed to cross-section effects.6

A quantitative theoretical understanding of ARPES in

low-dimensional systems is important and deserves a careful

investigation because ARPES provides a direct experimental

probe to the single particle excitation spectrum, allowing for

reliable estimates of the key parameters governing the phys-

ics of strongly correlated electrons: the electron bandwidth

and the Coulomb repulsion. Here we will focus on the 1D

Hubbard model, a simple lattice model defined by just two

coupling constants: the nearest neighbor hopping integral t

and the on-site Coulomb repulsion U:

H = − to
i,s

fci+1,s
†

ci,s + h . c .g + Uo
i

ni↑ni↓. s1d

Although several other terms, such as next-nearest hopping,

further orbital degrees of freedom, temperature, disorder or

lattice instabilities, would be necessary in a realistic model
of these materials, we believe that an accurate investigation
of the simplest Hamiltonians should be performed before
facing more challenging problems.

The theoretical studies aimed at the investigation of the
spectral properties of one-dimensional models are either
fully numerical such as Lanczos diagonalizations2 and den-
sity matrix renormalization group sDMRGd techniques,7 or
are carried out in the limiting cases of infinite8 or vanishing9

interaction U / t. In the former case, they suffer from severe
finite size effects, in the latter the interplay between charge
fluctuations and strong correlations is not satisfactorily taken
into account. Monte Carlo studies of dynamical properties of
quantum systems are instead hampered by the necessity to
perform an analytic continuation to real times.

In this paper, we provide the quantitative evaluation of the
full spectral function Ask ,vd of the 1D Hubbard model at
half filling for intermediate and strong coupling U / t.10 A
formalism based on the Bethe Ansatz solution,11 and supple-
mented by Lanczos diagonalizations, is developed and is
shown to provide a transparent description of the dynamical
properties of mobile charges in Mott insulators. From this
analysis we find that the 1D Hubbard model does indeed

contain the physics required for a quantitative interpretation

of photoemission experiments. In particular: sid the underly-
ing free electron Fermi surface plays a key role in defining

the shape and the intensity of the ARPES signal, up to fairly

large effective couplings U / t; siid the power-law singularities

which characterize the spectral function in one dimension

give rise to intrinsically broad peaks, whose width is propor-

tional to the intensity of the line; siiid ARPES data are ex-

tremely sensitive to the Hubbard parameters and allow for a

direct determination of the effective coupling constants in

quasi 1D materials. As a working example, we apply our

method to SrCuO2, where accurate ARPES data are

available,2 and we derive reliable estimates for t and U.

The plan of the paper is as follows. In Sec. II we present

and motivate the single spinon approximation which lies at

the basis of our method, deriving the predicted formal struc-

ture of the spectral function in one-dimensional models. Sec-

tion III shows how Lanczos diagonalizations provide a pre-

cise quantitative estimate of the quasiparticle weight required
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for the evaluation of the spectral function. Then, in Sec. IV

we discuss the weak coupling limit, where a thorough field

theoretical analysis is available. The application to the case

of SrCuO2 is performed in Sec. V, while in the Conclusions

we briefly discuss the generalization of our method to more

complex one-dimensional hamiltonians.

II. ANALYTICAL STRUCTURE OF THE SPECTRAL

FUNCTION

The dynamical properties of one sspin downd hole in the

half filled Hubbard model are embodied in the spectral func-

tion Ask ,vd which, at zero temperature, can be written as

Ask,vd = o
huC1lj

ukC1uck,↓uC0lu
2dsv − E1 + E0d , s2d

where uC0l is the ground state of the model at zero doping,
i.e., when the number of electrons N equals the number of

sites of the lattice L, E0 is the corresponding energy and

huC1lj represents a complete set of one-hole intermediate

states, of energies E1. The whole energy spectrum of the

Hubbard hamiltonian s1d can be obtained from the Lieb and

Wu equations.11 In the thermodynamic limit, its structure has

been thoroughly investigated in a series of papers by

Woynarovich12,13 ssee also the comprehensive book by Es-

sler et al. Ref. 14d. In summary, the exact excitation spec-

trum at half filling and at arbitrary coupling U / t depends on

two sets of “rapidities” describing the charge and spin de-

grees of freedom respectively. The excitation energy is al-

ways written as the sum of contributions involving just two

elementary excitations, representing collective quasiparti-

cles: “holons” fof momentum kh and energy ehskhdg and

“spinons” fof momentum QP s p

2
,
3p
2

d and energy essQdg. The
simplest physical excitation created by the removal of an

electron of momentum k gives rise to one holon and one

spinon satisfying the momentum conservation equation k

=kh+Q. The total energy of this state is E1=E0+ehskhd
+essQd. Besides this suggestive “decay” mechanism of the

electron, other excited states also appear in the exact spec-

trum: they are either multispinon and multiholon states, or

states involving the creation of double occupancies.13 How-

ever, it is remarkable that the full excitation spectrum can be

always expressed in terms of ehskhd and essQd, showing that
spin-charge decoupling holds, in the Hubbard model, at all

values of U / t and at all energy scales.14 The two quasiparti-

cles, holon, and spinon, are both collective excitations in-

volving an extensive number of degrees of freedom and can

be approximately related to simple real space pictures of a

“hole” and an unpaired spin only in the strong coupling limit,

where spin-charge decoupling acquires a more intuitive

meaning. As U→0 the holon and spinon bands reduce to

simple analytical forms,11 closely related to the free particle

band structure: ehskhd=4t cosskh /2d and essQd=2tucos Qu.
While the whole energy spectrum of the Hubbard hamil-

tonian is known in detail, the matrix elements appearing in

Eq. s2d are of difficult evaluation. Moreover the summation

over the intermediate states formally involves a number of

terms exponentially large in N, making the exact implemen-

tation of the definition s2d impractical. Our approach, which

allows for the evaluation of the full spectral function in the

thermodynamic limit, is based on the single spinon approxi-

mation: i.e., we neglect the contribution to the spectral func-

tion coming from all multispinon excited states and all exci-

tations with complex rapidities, but we evaluate exactly the

matrix elements involving one holon and one spinon. The

accuracy of this method is tested a posteriori by use of a

completeness sum rule and can be estimated of the order of

few percents. Such a remarkable performance of the single

spinon approximations is not unusual in one-dimensional

physics: a known example is provided by the Haldane-

Shastry spin model sHSMd,15 where each intermediate state

contributing to the dynamical spin correlation is completely

expressible in terms of eigenstates of the HSM with only two

spinons. In this case, only a small OsLd number of eigen-

states contribute to the exact dynamical spin correlation

function as proved in Ref. 16. Similarly, in our approach, the

most relevant intermediate states are expressible is terms of

eigenstates of the Hubbard model with only one spinon and

one holon excitations.

A first clue on the structure of the spectral function in

one-dimensional models can be obtained by analyzing the

U→` limit, where double occupancies are inhibited and

several exact results are available.8 At half filling sN=Ld the
Hubbard hamiltonian is mapped onto a Heisenberg Hamil-

tonian: each site is singly occupied and the ground state is a

nondegenerate singlet of zero momentum.17 When a hole of

momentum kh is created, all the eigenfunctions of the Hub-

bard hamiltonian swith periodic boundary conditionsd can be
written as18

uC1l =
1

ÎL o
x,hyij

eikhxfHsy1, . . . ,yMdux,hyijl , s3d

where ux , hyijl represents the configuration of L−1 electrons

defined by the positions of the M=L /2 spin up shyijd and of
the hole sxd. The amplitude fH is a generic eigenfunction of

the Heisenberg hamiltonian on the “squeezed chain,” i.e., on

the L−1 site ring defined by all the sites occupied by an

electron. The intermediate states uC1l entering the spectral

function s2d have momentum −k relative to the ground state

at half filling. Due to the factorized form of eigenfunctions

s3d the total momentum of the state satisfies k=kh+Q where

Q is the momentum of the Heisenberg eigenfunction fH,

expressed in integer multiples of 2p / sL−1d in finite chains.
In the thermodynamic limit the energy of the intermediate

state is E1=E0+ehskhd+essQd, where, to lowest order in J

=4t2 /U, the first sholond contribution is just the kinetic en-

ergy of a free particle sehskhd=2t cos khd and the second one
sspinond is the energy of the eigenstate fH referred to the

ground-state energy of the Heisenberg ring of L sites.19 This

analysis shows, in an intuitive way, the origin of momentum

and energy conservation in the decay process of the vacancy

and suggests that, in the U→` limit, the most relevant con-

tributions to the sum of intermediate states in Eq. s2d come
from the lowest-energy eigenstates fH of the Heisenberg

Hamiltonian for the L−1 allowed momenta Q=
2p
L−1

n, sn
=0. . .L−2d. Accordingly, the sum over an exponentially

large set of eigenstates huC1lj in Eq. s2d can be sapproxi-
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matelyd replaced by a sum over L−1 single spinon states.

This special set of intermediate states uC1l, which we argue
provides the dominant contribution to the spectral weight for

each spinon momentum Q, will be referred to as u−k ,Ql in
order to emphasize the two quantum numbers which

uniquely identify them. The single spinon approximation can

be easily tested in the U→` limit8 where it proves ex-

tremely accurate. In the next section we will show that it

remains fully satisfactory also at finite coupling. In fact, it is

known14 that the eigenstate structure of the Hubbard model

displays a remarkable continuity in U / t, the only singular

point being the striviald free particle limit U=0. However,

when charge fluctuations are allowed for, by lowering the

strength of the on-site repulsion U, the identification of the

single spinon states u−k ,Ql is not easy, because the spinon
momentum Q is not a good quantum number any more, al-

though it can be still formally defined on the basis of the

Bethe Ansatz solution of the Hubbard model.13 The key ob-

servation, which will be exploited in the next section, is that

the correct single spinon states can be identified at finite U

via Lanczos or DMRG calculations by following adiabati-

cally the evolution of the Heisenberg states as U is gradually

decreased.

Keeping only the single spinon states in the summation of

Eq. s2d, the spectral function in the thermodynamic limit

becomes

Ask,vd =E dQ

2p
ZksQddfv − ehsk − Qd − essQdg

=
1

2p
o
Qp

ZksQ
pd

uvhsQ
p − kd + vssQ

pdu
. s4d

Where we have defined the quasiparticle weight as the ma-

trix element

ZksQd ; lim
L→`

sL − 1duk− k,Quck,↓uC0lu
2. s5d

The sum in Eq. s4d runs over all the solutions Qpsk ,vd of the
algebraic equation

v = ehsk − Qd + essQd , s6d

where ehskhdfessQdg is the known holon sspinond excitation

energy13 and vhskhd=
deh
dkh
, fvssQd=

des
dQ

g the associated velocity.
Equation s4d is the main result of this work: an explicit and
computable expression for the spectral function of one-

dimensional models. In the special case of the Hubbard

model, the Bethe Ansatz solution directly provides spinon

and holon dispersions in the thermodynamic limit further

simplifying the evaluation of the spectral function. Due to

the presence of a spinon Fermi surface, the dispersion rela-

tion essQd is defined only in the interval
p

2
,Q,

3p
2
,20 it

vanishes at the boundaries and has a single maximum at Q

=p, while ehskhd is an even and periodic function in the

whole range −p,kh,p with maximum at k=0.12,13 The

only missing ingredient in Eq. s4d is the quasiparticle weight
ZksQd which defines the line-shape and intensity of the spec-
tral function. Previous studies21 have shown that in spin iso-

tropic models such as the Hubbard model, the quasiparticle

weight is a regular function with square root singularities at

the spinon Fermi surface Q=p6p /2. This implies that

Ask ,vd has power-law singularities too, whenever either Qp

defined by Eq. s6d lies at the spinon Fermi surface, or when
the total excitation velocity vhsQ

p−kd+vssQ
pd vanishes. In

both instances, square root divergences are expected:22 in the

former case the location of the singularity identifies the ho-

lon dispersion via s6d v=ehsk+p6
p

2
d; in the latter case the

singularity is trivially due to band structure effects and does

not necessarily corresponds to a pure spinon contribution as

often assumed. However, at small to moderate interactions

U / t, the holon velocity uvhskhdu displays an abrupt drop

around kh,p sRef. 13d placing the band lower edge close to
Q,p+k, i.e., at v,ehspd+essp+kd, thereby following the
spinon band for 0,k,

p

2
. This particular feature of the Hub-

bard model dispersion is apparent in the shape of the holon

spectrum12 which sharply bends at kh, 6p so to display a

vanishing charge velocity at band edges. This also agrees

with the “relativistic” form of the holon spectrum predicted

by bosonization at weak coupling,9 as reported in Eq. s8d.
The expected location of the square root singularities of the

spectral function in the sk ,vd plane is shown for few values

of the coupling in Fig. 1. The holon branch sshown as full

circles in the figured marks precisely the holon excitation

spectrum ehskhd while the location of the singularities due to
the band structure sshown as crosses in the figured differs

from the spinon essQd dispersion by less than 0.1t. Note also
that the curvature of the “spinon branch” displays a signifi-

cant dependence on U / t, allowing for a rather precise experi-

mental determination of the effective coupling ratio. There-

fore we conclude that precise photoemission data, able to

identify the singularities of the spectral function, do provide

direct information on both holon and, within a good approxi-

mation, also spinon excitations.

The full holon bandwidth is always 4t at all couplings,

due to the particle-hole symmetry of the Hubbard model but

the upper and lower branches of the holon band are not sym-

metrical at finite U. This observation is relevant for the cor-

rect interpretation of photoemission experiments, because an

estimate of the effective hopping integral t is usually per-

formed by measuring the half bandwidth of the upper holon

branch23 leading to a sizable overestimate of t. In Fig. 2 we

show the bandwidth Wh of the upper holon branch fi.e.,
ehsp /2d−ehspdg and the ratio between the spinon and the

holon bandwidths Ws /Wh as a function of the coupling U / t.

Both quantities, which allow for a direct estimate of t and

FIG. 1. sColor onlined Location of the singularities of the spec-
tral function in the thermodynamic limit for three values of U in the

plane sk ,E=−vd. The sgreend circles correspond to the singularities
of the ZksQd sholon branchd, while the black stars to the extrema of
the excitation spectrum.
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U / t from ARPES, show a remarkable seven nonmonotonicd
dependence on the coupling constants. By comparing these

results with the dispersion curves for SrCuO2 reported in

Ref. 3 we can estimate the Hubbard effective coupling con-

stants appropriate of this material: t,0.53 eV and U / t,7.

III. QUASIPARTICLE WEIGHT FROM LANCZOS

DIAGONALIZATION

Unfortunately, the formal Bethe Ansatz solution does not

lead to a practical way for the evaluation of the quasiparticle

weight s5d at arbitrary couplings and therefore we resort to

Lanczos diagonalizations in lattices up to L=14 sites. As

previously noticed, we first have to devise a method to select

the correct single spinon states at finite coupling U / t, for

these states are not identified by a good quantum number at

finite U. Our method is based on an adiabatic procedure

starting from the strong coupling limit. We first perform a

Lanczos diagonalization on the sL−1d site Heisenberg model
in the symmetry subspace of total momentum Q, leading to

the numerical determination of fH and of the exact eigen-

states of the one-hole Hubbard model for U→` via Eq. s3d.
In this limit, the single spinon states are indeed the lowest

energy eigenstates at fixed spinon momentum Q and can be

easily obtained by Lanczos sor DMRGd technique, while at
finite U the relevant intermediate states are not necessarily in

the low-excitation energy portion of the Hubbard spectrum.

Then we take advantage of the continuity of the one spinon

states between the weak and strong coupling limit by adia-

batically lowering the interaction strength U and performing

successive Lanczos diagonalizations for smaller and smaller

couplings Un. At the nth step we keep the exact eigenstate

having the largest overlap with the eigenstate at the sn
−1dth level. In this way we are able to identify the single

spinon states down to small values of U, t, each state being

uniquely identified by Q, i.e., by the momentum of the “par-

ent” Heisenberg eigenstate.

A check on the validity of the single spinon approxima-

tion comes from the completeness condition on the interme-

diate states:

n↓skd = kC0uck,↓
†
ck,↓uC0l = o

huC1lj

ukC1uck,↓uC0lu
2

$ o
Q

uk− k,Quck,↓uC0lu
2 =

1

L − 1
o
Q

ZksQd , s7d

where n↓skd is the momentum distribution of the down spins

at half filling and the equality holds if and only if the single

spinon states included in the sum via the definition of the

quasiparticle weight ZksQd s5d exhaust the spectral weight at
each k. The amount of violation of this sum rule quantifies

the weight of all the neglected states in the Hilbert space due

to the single spinon approximation. In Fig. 3 we plot n↓skd
and

1

L−1
oQZksQd restricted to the one spinon states: the vio-

lation of the completeness condition is smaller than 0.01 at

all k’s.24 Note how, even at fairly large values of U / t, the

momentum distribution is considerably depressed for k larger

than the free electron Fermi momentum kF=
p

2
, strongly re-

ducing the spectral weight in the second half of the Brillouin

zone. This feature is consistent with the photoemission ex-

periments performed with high energy photons.3,6 Con-

versely, in the strong coupling limit U→`, the momentum
distribution becomes flat, n↓skd=1 /2, washing out this effect.

The dependence of the quasiparticle weight on the

strength of the Coulomb repulsion has been investigated and

is summarized in Fig. 4 for strong and intermediate U / t and

for different lattice sizes. The quasiparticle weight has been

evaluated by Lanczos diagonalization on lattices ranging

from L=6 to L=14 sites. By using standard periodic bound-

ary conditions, the total momentum of the state would be

quantized in units of 2p /L, making size scaling impractical.

In order to avoid this problem we have adopted skewed

boundary conditions: given an arbitrary hole momentum k

we choose the flux at the boundary in such a way to match k

with the quantization rule. Figure 4 reveals an astoundingly

negligible size dependence and the expected vanishing of the

quasiparticle spectral weight outside the spinon Fermi sur-

face, with singularities at the Fermi momenta. While ZksQd
is almost independent on k at large U, as expected,8 it shows

more structure for realistic values of U / t. The further peak

sor shoulderd present for k#
p

2
is indeed reminiscent of the

free Fermi nature of the electrons at U=0. In the free particle

limit, only one state provides a finite contribution to the spec-

tral function: the holon sits at the bottom of the band skh
=pd and the quasiparticle weight ZksQd reduces to a delta

function at Q=p+k. When such a form of ZksQd is substi-
tuted in Eq. s4d, the known free particle result is recovered.

Remarkably, a remnant of the free particle peak in ZksQd is
still visible at U=7t, as shown in Fig. 4sbd.

FIG. 2. Panel sad: holon bandwidth Wh=ehsp /2d−ehspd as a

function of U / t. Panel sbd: ratio between the spinon bandwidth

Ws=esspd and Wh as a function of U / t.

FIG. 3. sColor onlined Momentum distribution n↓skd sblack open
circlesd and 1

L−1
oQZksQd sred trianglesd versus the hole momentum

k from Lanczos diagonalization, for U=7t in a L=14 ring.

VALERIA LANTE AND ALBERTO PAROLA PHYSICAL REVIEW B 80, 195113 s2009d

195113-4



IV. WEAK COUPLING LIMIT

The Green’s function of one-dimensional models has been

thoroughly investigated by bosonization methods: while in

the Luttinger liquid regime its asymptotic form is character-

ized by power-law tails,1 precisely at half filling the Green’s

function is known to display a more complex behavior due to

the presence of a gap in the holon spectrum. At weak cou-

pling, the holon dispersion near the bottom of the band

shows a “relativistic” structure:

ehskhd = Î
vh
2dkh

2 + m2, s8d

where m is the charge gap and dkh=kh6p is the holon mo-

mentum measured from the bottom of the band. Note that the

holon spectrum s8d is shifted by m=U /2 with respect to our

previous definition. In Fig. 5sad we plot the exact Bethe An-
satz spectrum at U=3t and the form s8d predicted by

bosonization with suitably chosen parameters m and vh.

In order to compare the results of our single spinon ap-

proximation with the bosonization form, it is convenient to

introduce the single hole Green’s function in imaginary time,

G↓sk,td = kC0uck,↓
†
e−sH−mdtck,↓uC0l . s9d

According to bosonization,9 the Green’s function G↓sk ,td of
a hole of momentum close to kF=p /2 acquires a factorized

form in real space:

G↓
Rsx,td ;E dk

2p
G↓

Rsk,tdeikx = eip/2xGhsx,tdGssx,td ,

s10d

where the superscript R identifies the contribution to the

Green’s function due to right moving holes. Here, Gh and Gs

just depend on holon and spinon degrees of freedom, respec-

tively. The spinon term is simply given by

Gssx,td =
1

Î
vst + ix

, s11d

while the holon contribution is predicted, by the form factor

approach, to behave as

Ghsx,td = GÎm

vh

E
−`

`

duefu/2−mt cosh u−imx/vhsinh ug, s12d

with G,0.0585. . ..9 The question now arises whether our

single spinon approximation is consistent with such a factor-

ized form. By inserting a complete set of intermediate states

into the definition s9d and adopting the single spinon ap-

proximation, the full Green’s function in imaginary time can

be written as

G↓sk,td =
1

L
o
Q

ZksQde−fehskhd+essQdgt, s13d

where the momentum conservation relation k=kh+Q is un-

derstood and the holon spectrum ehskhd is now referred to the

chemical potential m. Notice that, due to momentum conser-

vation, the combined requirements of having k,kF=
p

2
and

kh,−p si.e., the hole sits near the bottom of the bandd force
Q, 3p

2
. By substituting the asymptotic forms s8d and ess

3p
2

−qd=vsq for q*0 we get

G↓
Rsx,td = eip/2x

m

vh

E
0

p
dq

2p
e−fiqx+vsqtgE

−`

`
du

2p
ZksQd

3cosh uef−imx/vhsinh u−mt cosh ug, s14d

where we set dkh;−
m

vh
sinh u. This form does indeed factor-

ize in a holon and spinon part, as predicted by bosonization,

provided the quasiparticle weight does,

FIG. 4. sColor onlined Panel sad: ZksQd versus spinon momen-

tum Q for U=100t and different lattice sizes s3: L=6, m: L=8, j:

L=10, p: L=12, P: L=14d. Open sgreend symbols for total momen-
tum k=p /4 and full sblackd symbols for k=0. Lines are polynomial
fit to Lanczos data. Skewed boundary conditions are used in order

to fix the same total momentum of the state −k srelative to half

fillingd for all L’s. Panel sbd: same as sad for U=7t. Panel scd:
binding energy at fixed k referred to half filling versus spinon mo-

mentum Q in the thermodynamic limit E=E0−E1 for U=100t.

Panel sdd: same as scd for U=7t.

FIG. 5. sColor onlined Panel sad: Holon spectrum ehskhd of the
Hubbard model at U=3t from Bethe Ansatz sshifted by m=U /2d
compared to the Lorentz form s8d. The fitting parameters are m

=0.316t and vh=2.43t. Panel sbd: Dimensionless holon quasiparticle

weight Z̄h=Î m

vh
Zh in the single spinon approximation for U=3t and

lattice sizes L=10 sfull squaresd, L=12 sempty circlesd, L=14 sfull
circlesd, compared to the bosonization result s16d slined.
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ZksQd , ZhskhdZssQd . s15d

Notice that our approach, being based on a numerical evalu-

ation of the quasiparticle weight, does not allow for an inde-

pendent demonstration of such a factorized form. We just

observe that the bosonization approach and the single spinon

approximation lead to the same result if we assume that Eq.

s15d holds. Following Ref. 14 we argue that the factorization
of the quasiparticle weight at low energies s15d reflects the
trivial structure of the holon-spinon scattering matrix in this

limit.

As previously noticed, the spinon contribution to the qua-

siparticle weight gives rise to the square root divergence at

the spinon Fermi surface, with leading behavior Zss
3p
2
−qd

,q−1/2 for q*0 which correctly reproduces Eq. s11d when
the ultraviolet cutoff in Eq. s14d is disregarded. Matching

Eqs. s12d and s14d then selects a unique form of the holon

quasiparticle weight,

Zhskhd = Î2vh

Îehskhd − vhdkh

ehskhd
, s16d

with ehskhd given by Eq. s8d. The scale factor in Eq. s16d has
been fixed by evaluating the Green’s function in the t→0

limit, where it coincides with the momentum distribution. In

Fig. 5sbd we compare Eq. s16d with the numerical results for
Zhskhd obtained by Lanczos diagonalization at U=3t. No fit-

ting parameters have been used: In order to obtain Zhskhd we
first evaluated ZksQd, as discussed in Sec. III, then we di-

vided the result by ZssQd,q−1/2 evaluated at the spinon mo-

mentum Q closest to the spinon Fermi point QF=
3p
2
. The two

parameters vh and m are independently obtained from the

holon spectrum falso shown in Fig. 5sadg. As usual the Lanc-
zos data display a very small size dependence and allow for

a precise identification of the holon quasiparticle weight

Zhskhd. The agreement between the two expressions is re-

markable for dkh.0 while some discrepancy is found for

negative dkh. Note however that the asymptotic form of the

holon quasiparticle weight s16d holds only at low energies

and weak coupling, while the comparison shown in Fig. 5 is

performed for U=3t. The results at lower values of U / t are

plagued by severe finite-size effects: in the U→0 limit, the

holon mass m vanishes exponentially and the dimensionless

momentum scale m /vh vanishes as well. Therefore, at very

weak coupling, the relevant holon momenta are constrained

in an extremely small interval around kh=6p, a range not
easily accessible due to the momentum quantization rule in

finite Hubbard rings.

V. RESULTS FOR SrCuO2

We are now ready to compare our results for the spectral

function of the 1D Hubbard model with precise photoemis-

sion data recently obtained for SrCuO2.
3A preliminary study,

based on the strong coupling limit of the Hubbard model,

pointed out some discrepancies, related to the peak heights

and widths.3 Figure 6 shows the singularity loci of the 1D

Hubbard model with the parameters t=0.53 eV and U

=3.7 eV, together with the ARPES results from Kim et al.3

The nice agreement suggests that this material indeed repre-

sents a good experimental realization of the simple one-

dimensional Hubbard model. The effects due to interchain

coupling, phonons, finite temperature, and other perturba-

tions appears rather small and mostly limited to the spinon

branch. We remark that the same material has been already

theoretically investigated on the basis of the Hubbard and t-J

model by several groups3,25,26 leading to different sets of

parameters both for the hopping integral 0.3 eV& t

&0.7 eV and for the Coulomb repulsion 2 eV&U

&6.5 eV. Our analysis shows that both spin and charge fluc-

tuations play a key role in determining the line-shape of the

spectral function of the Hubbard model, even at moderately

high values of the coupling U / t.

In Fig. 7 the spectral function has been plotted versus the

binding energy E=−v for three representative values of the

total hole momentum k. The experimental line broadening

reported in Ref. 3 has been also included in the Hubbard

model results, leading to a merging of close peaks. The den-

sity plot clearly reproduces the overall shape defined by the

singularities of the spectral function shown in Fig. 6. As

expected, most of the spectral weight is indeed concentrated

in the first half of the Brillouin zone between the holon and

the spinon band. Although the relative intensity of the

ARPES signal at the two singularities depends on the details

of the band structure, the power-law nature of the diver-

gences implies that the intrinsic width of each peak is always

comparable with the separation between the holon and the

spinon branch Dv,ehsk+
p

2
d− fehspd+essp+kdg. The aver-

age intensity can be estimated on the basis of the sum rule

s7d and scales as sDvd−1/2, getting smaller when the two

branches separate, as shown both in experiments3 and in nu-

merical calculations.7

VI. CONCLUSIONS

The single spinon approximation, combined to Bethe An-

satz results and Lanczos diagonalizations allows to obtain

very accurate results for the dynamic properties of a single

hole in the one-dimensional Hubbard model. The Lehmann

representation of the spectral function s2d shows that two

separate ingredients combine to define the overall shape of

Ask ,vd: the excitation spectrum and the quasiparticle weight.

The idea at the basis of our method is to limit the size effects

FIG. 6. sColor onlined Locus of singularities of the spectral

function for the Hubbard model at U=3.7 eV and t=0.53 eV

sopen circlesd compared to the experimental results by Kim et al.

sRef. 3d sfull circlesd for k'=0.1.
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that plague numerical results by dealing with these two quan-

tities separately: in the 1D Hubbard model the excitation

spectrum is given exactly by the Bethe Ansatz equations in

the thermodynamic limit,11 while the quasiparticle weight is

obtained, in the single spinon approximation, by Lanczos

diagonalization. Size effects are shown to be negligible and

the accuracy of the approximation can be checked a poste-

riori by a frequency sum rule s7d. Our expression for the

spectral function of the 1D Hubbard model s4d is consistent
with the structure predicted by bosonization9 at weak cou-

pling, provided the quasiparticle weight ZksQd factorizes as
shown in Eq. s15d. A numerical test carried out at U=3t does

not show a convincing quantitative agreement with the result

obtained by the form factor approach,9 possibly due to the

difficulty to achieve the U→0 limit.

The extension to finite doping is straightforward but in

principle this approach can be also generalized to other fer-

mionic lattice models, in one or more dimensions, provided

the relevant states entering the quasiparticle weight in the

strong coupling limit can be easily classified. This would be

the case of the extended Hubbard model si.e., a Hubbard

model with nearest neighbor Coulomb repulsiond or in the

presence of lattice dimerization. Clearly, for non integrable
models, no analytical information on the excitation spectrum
is available and a size scaling on the energy spectrum is also

required. A study of such generalizations may be useful to

understand the role of some perturbation on the spectral

function of correlated electron models.

The specific example of SrCuO2 shows that our method

allows for a direct comparison between theory and ARPES

experiments and for an accurate determination of the Hub-

bard parameters which best describe the hole dynamics in the

material. The spectral function derived here provides a natu-

ral explanation of the observed reduction in the spectral

weight in a half of the Brillouin zone and of the broad line-

shape detected in experiments. Future applications of this

method to the case of cold atoms in optical traps may help in

pointing out the peculiar features of one-dimensional physics

in other experimental realizations of correlated one-

dimensional Fermi gases.
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