
A Meta-model for Problem Frames:
Conceptual Issues and Tool Building Support

P. Colombo, L. Lavazza, A. Coen-Porisini
Dipartimento di Informatica e Comunicazione

Università degli Studi dell’Insubria
Varese, Italy

{pietro.colombo, luigi.lavazza,
alberto.coenporisini}@uninsubria.it

V . del Bianco
Systems Research Group, CASL

University College Dublin
Dublin, Ireland

vieri.delbianco@ucd.ie

Abstract—Problem frames are an approach to requirements
modeling that is gaining increasing attention and popularity.
The approach provides useful concepts and methodological
guidelines. However, problem frames are not equipped with an
expressive and complete notation and they lack tools support.
These limitations can be addressed by introducing a suitable
meta-model to formally define the notation. In this way it is
also possible to identify the aspects that are not covered by the
problem frames notation and to provide hooks for user-defined
extensions. The meta-model is expected to support the
underlying analysis methodology, and the following design and
verification phases. Furthermore, it can provide the basis for
building a tool supporting both the editing of problem frames
and the other activities associated with the approach (frame
concern, composition, correctness argument, etc.). This paper
presents a meta-model that addresses the former issues and
was used for building a tool with the EMF/GMF technology.

Keywords- meta-modeling; modeling tools; problem frames.

I. INTRODUCTION
Problem Frames (PFs) [1] are an approach to

requirements analysis and modeling that drives the analyst to
model the problem in terms of (physical) problem domains,
their properties, the information they exchange and the user
requirements. The solution of the problem is specified in
terms of a machine, whose behavior is defined so that the
interaction of the machine with the given environment
satisfies the requirements.

PFs allow analysts to analyze complex problems by
decomposing them into simpler ones; these basic problems
are modeled according to basic patterns (i.e., the frames,
which represent common, well understood problems). Then
the analyst can show that the user requirements are satisfied
by the outcome of the previously defined modeling activity;
finally, the various problem frames are composed into a
complete description.

While a great effort has been dedicated to define the PF
methodology, little attention was given to the definition of an
expressive and complete notation and to tools supporting
PFs. For instance, PFs do not provide any language for
describing the properties of problem domains, or for
specifying the desired behavior of the system: the analyst has
to select and use a language among the available ones (in [1]

Jackson uses state-charts, pseudo-code, and natural
language). Problem Frames also lack automated support: no
tool is available for defining, analyzing, or composing PFs.

The aforementioned problems can be solved with the
help of a meta-model that defines precisely the Problem
Frames concepts, supports the methodology, and provides
the basis for the construction of tools.

An initial proposal of a meta-model for Problem Frames
was presented by the authors of this paper in [21]. The usage
of the proposed meta-model in the construction of a
prototype tool using the meta-model in combination with
EMF [13] and GMF [14] was also discussed.

The meta-model presented did not cover a very important
part of the Problem Frame methodology, namely the
correctness argument [1]. This paper is an extended version
of [21]. Besides refining the material already presented in
[21], here we illustrate and discuss the usage of the meta-
model in describing the requirements, domain characteristics
(with special reference to behavioral properties), and
machine specifications. These are the ingredients for
building correctness arguments, that is, for showing that the
proposed machine specification satisfies the requirements in
the problem domain.

A PF-based development process is introduced as well, in
which PF models are exploited also in the design and
verification phases.

The paper is organized as follows: Section II provides a
brief introduction to Problem Frames; Section III illustrates
the proposed meta-model, while Section IV describes the
UML definition of the meta-model and exemplifies the usage
of the meta-model in describing a problem. Section V
illustrates the usage of the meta-model for expressing
requirements and describing machine and problem domain
behavior, and the support to correctness arguments. Section
VI describes the construction of a tool based on the meta-
model, exploiting the EMF/GMF methodology. In Section
VII a PF-based development process is introduced; Section
VIII accounts for related work; finally Section IX draws
some conclusions.

II. PROBLEM FRAMES
Problem Frames are based on the concept that user

requirements are about relationships in the real world and not
about functions that the software system must perform. The

100

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università dell'Insubria

https://core.ac.uk/display/53549873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

desired relationships in the real world are achieved with the
help of a machine; however, in the requirements analysis
phase, the Machine is only specified as far as its role in the
real world is concerned: only the interface between the
machine and the problem domain needs to be specified,
while the machine internals are left unspecified, since they
will be addressed in the design phase.

Thus, the first task is to understand and represent the
context in which the problem is set: the context diagram
shows the various problem domains in the application
environment along with their connections, and the Machine
and its connections to (some of) the problem domains. A
domain is simply a part of the world that we are interested in.
It consists of phenomena such as individuals, events, states,
relationships, and behaviors. An interface is a place where
domains overlap, so that the phenomena in the interface are
shared, thus allowing connection and communication
between domains. A set of shared phenomena is controlled
by a domain and is observed by other domains.

Problem diagrams add requirements to context diagrams.
Requirements are attached to domains and specify conditions
involving the phenomena of those domains (possibly
including the private, non-shared ones).

An interface that connects a problem domain to the
Machine is called a specification interface. The goal of the
analyst is to develop a specification of the behavior that the
Machine must exhibit at its interface in order to satisfy the
user requirements. A PF is a description of a recognizable
class of problems, and thus in some sense problem frames
are problem patterns.

Figure 1 shows an example of a commanded behavior
frame: “there is some part of the physical world whose
behavior is to be controlled in accordance with commands
issued by an operator. The problem is to build a machine that
will accept the operator’s commands and impose the control
accordingly [1]”.

 Gate &
motor

Raise &
lower gate

ba

Sluice
operator

cc

Sluice
controller

a: SC!{Clockw, Anti, On, Off}
GM!{Top, Bottom}

b: GM!{Open, Shut, Rising, Falling}
c: SO!{Raise, Lower, Stop}

Figure 1. The sluice gate commanded behavior frame.

Such a frame (illustrated in Figure 1) is described using a
simple example concerning the specification of a controller
that operates a sluice gate. A small sluice, with a rising and a
falling gate, is used in a simple irrigation system. A
computer system is needed to raise and lower the sluice gate
in response to the commands issued by an operator. The gate
is opened and closed by rotating vertical screws. The screws
are driven by a small motor, which can be controlled by
clockwise, anticlockwise, on and off pulses. There are
sensors both at the top and the bottom of the gate travel:
when the top sensor is active the gate is fully open, when the
bottom sensor is active, it is fully shut. The connection to the
computer consists of four pulse lines for motor control, two
status lines for the gate sensors, and a status line for each
class of operator commands. The position of the gate is
defined as the fraction of space occupied by the gate: when it
is open Position=0, when it is closed Position=1. Finally, the
top and the bottom sensors are active when Position becomes
less than 0.05 and greater than 0.95, respectively.

The PF diagrams involves three domains: the Sluice
Controller, which is the machine that will be developed to
satisfy the requirements; the Gate & motor, which is the
domain to be controlled (it is a causal domain since its
properties include predictable causal relationship among its
causal phenomena); the Sluice Operator, which is a biddable

domain indicating a user without a positive predictable
behavior (that is, the user can issue commands but cannot be
constrained to act in any way).

It has to be assured that requirements, domain and
specification descriptions fit together properly. Addressing
this issue (the “frame concern”) must result in a ‘correctness
argument’ showing that the proposed machine will make the
requirements satisfied in the problem domain [1].

In the case of the commanded behavior frame, we have to
assure that only sensible and viable commands are executed.
Requirements can be expressed as effects on the problem
domain caused directly by the user’s commands or by other
events, such as reaching the completely open or closed
position. According to Jackson, these effects can be
expressed in a rather straightforward way by means of state
machines. Also the behavior of the problem domain can be
represented by means of a state machine, showing the states
of Gate & motor, and specifying the reactions to external
commands, as well as the evolution in time of the domain.
For instance, the behavior of the Gate & motor domain is
specified by the state machine reported in Figure 2 (taken
from [1]); state 5 is an ‘unknown’ state, which should never
be reached in normal operations; in fact, the gate would
probably break if entering this state were attempted.

101

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1: ClocW ∧ ¬IsOn
(State==IsStill)

SwitchOff, SetClkWise

2: ¬ClocW ∧ ¬IsOn
(State==IsStill)

SwitchOn, SetAntiClkWise

SetClkWise
SetAntiClkWise

3: ClocW ∧ IsOn
(State==IsOpening)

SwitchOn, SetClkWise

SwitchOn

SwitchOff

4: ¬ ClocW ∧ IsOn
(State==IsClosing)

SwitchOn, SetAntiClkWise
SwitchOff

SwitchOn

5: ?

SetAntiClkWise

SetClkWise

after(1s)/Position -= 0.01

after(1s)/Position += 0.01

Position>1

Position<0

Figure 2. The specification of the Gate & motor domain.

III. THE META-MODEL
In order to build a tool that supports the PFs approach,

several aspects need to be defined. Our approach consists in
introducing a meta-model that supports the definition of all
the aspects necessary to specify both notational and
methodological concepts.

Notational concepts are used to represent the structural
elements of a problem, the behavioral properties associated
with such elements, the user’s goals, and the machine
specification. In our case the notational concepts have to
support the representation of the Problem Frames diagrams
as specified in [1].

Methodological elements are a collection of concepts,
rules and suggestions that drive requirement analysis. For
instance, phenomena that are internal to a domain are
modeled, although they do not appear in problem diagrams,
because they can be useful to define shared phenomena and
the domains behavior.

Moreover, the definition of the meta-model allows us to
identify possible inconsistencies, weaknesses or incomplete
definitions in the notation, and therefore to propose solutions
to address such issues. The meta-model introduces the
elements needed to describe the following concepts:
• The basic structural elements and connections associated

with a problem.
• The dynamic and behavioral properties associated with

structural elements.
• The goals of the user, i.e., the user requirements.
• The specification of the solution, i.e., of the machine.
• The decomposition criteria.

The Problem Frames specific elements to be addressed
are the following:
• A Problem Domain represents a physical domain of the

environment where the problem is located, whose
properties can be either given or designed by the user. A

Machine Domain is a computer that interacts with the
Problem domains in a way that satisfies the requirements.

• Phenomena are properties of a domain and can be
classified as Entities, Events or States.

• Interfaces are connections between Domains
characterized by shared phenomena.

• A Shared phenomenon is controlled by a domain and
observed by one or more other connected domains.

• The behavior of a domain is specified in terms of the
involved domain’s phenomena. Even though the PFs
methodology does not prescribe a notation for describing
the behavior, the meta-model should be able to explicitly
indicate the existence of a behavioral specification
element and which phenomena are involved.

• Requirements are associated with domains; requirements
are described in terms of domains’ phenomena; in
particular, they should be modeled as capable of referring
to and constraining phenomena.

• Machine specifications specify the properties of the
machine’s interface with the problem domains.
In the next section the meta-model is described using

UML [16]. This choice is motivated by the expressiveness of
the language and by its diffusion in the communities of
analysts and designers. Moreover, the serialization of a UML
model via XMI [17] is recognized as a valid description of
the meta-model by frameworks –like EMF [13]– that support
the generation of tools.

IV . UML DESCRIPTION OF THE META-MODEL
A UML Class Diagram that introduces the essential

features of the meta-model is shown in Figure 3.
The root element of the model is named PFsModel. It is

composed of entities representing essential structural
concepts such as Domain and Interface.

102

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. The UML Class Diagram defining the meta-model.

Domain is characterized by an attribute name (for
identification purposes), an attribute type (to express whether
the domain represents the machine, or it is given or
designed), an attribute behaviour (to specify whether the
domain is lexical, biddable or causal). The attributes type and
behavior are typed by means of two enumerative data types
named DType and DBehavior, respectively. Some
constraints are defined on the values associated with these
attributes. More specifically, a machine domain is always a
causal domain, and a designed domain is never biddable.
These properties are specified by means of OCL [15]
constraints:
context Domain inv:
 ((self.type=Dtype::machine) implies
 (self.behavior=Dbehavior::causal)) and
 ((self.type=Dtype::designed) implies
 (self.behavior<>Dbehavior::biddable))

Another constraint imposes that domains have unique
names:
context Domain inv:
Domain.allInstances()->forAll(p1, p2 | p1 <> p2
implies p1.name <> p2.name)

Similar rules are defined to assure that distinct elements
of a model are given different names.

Domain is composed of sub-domains and internal
phenomena. Phenomenon is characterized by the attributes
name and type. According to Jackson, the latter is used to
express whether a phenomenon is a state, an event, a value,
etc. The attribute type is typed by means of the enumerative
data type PType; the Boolean attribute internal specifies
whether the phenomenon is owned and controlled or just
visible by the connected domain. Also in this case some
constraints are introduced. More specifically, a lexical

domain cannot be characterized by causal phenomena such
as events or states.
context Domain inv:
 self.phenomenon->forAll(p |
 self.behavior=Dbehavior::lexical implies
 (p.type<>Ptype::event and p.type<>Ptype::state))

Domains can be connected by means of the element
Interface. Two directional association relationships named
source and target connect the class Interface to the class
Domain. Notice that the terms ‘target’ and ‘source’ do not
imply that the interface has an orientation. A constraint is
defined in order to assure that the involved domains are
distinct:
context Interface inv: self.target <> self.source

An Interface exists when one or more phenomena are
shared between two domains. The shared phenomenon
concept is represented in the meta-model by the
homonymous class. In the proposed meta-model, whenever a
phenomenon (for instance, SC!Off in Figure 1) is shared, a
corresponding phenomenon is created and added to the
phenomena of the connected domain (in our example, a non
internal phenomenon is added to the gate&Motor domain).
An instance of SharedPhenomenon is also created, and
connected to the instances of the corresponding phenomena
(in our example, controlled will identify the Off phenomenon
of sluiceController, while observed will identify the Off non
internal phenomenon of gate&Motor). This rather baroque
representation is motivated by the goal of using the meta-
model for the development of a tool based on GMF/EMF
technology. In fact, in order to guarantee that an element of a
model is accessible for editing, such technology imposes that
the element belongs to a containment hierarchy having the
diagram being edited as root. In order to satisfy such

103

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

constraint, we identified the following solution: domains
contain phenomena, and interfaces contain shared
phenomena that in turn refer to the phenomena (both
controlled and visible) of domains.

An additional constraint assures that the usage of the
relationships controlled and observed is consistent with the
value of the attribute internal.
context SharedPhenomenon inv:
 (self.controlled.internal=true and
 self.observed.internal=false and
 self.controlled.name=self.observed.name) and
 self.name=self.observed.name

The following constraint states that every instance of
SharedPhenomenon is properly connected.
context SharedPhenomenon inv:
 (self.controlled.domain=self.interface.target and
 self.observed.domain=self.interface.source) or
 (self.controlled.domain=self.interface.source and
 self.observed.domain=self.interface.target)

The proposed solution supports the association of a
different, specific editor with each element of the meta-
model: the editable elements are those recursively contained
in the element; the elements that are reachable from the
considered element via non containment relationships can be
accessed by the editor in a read-only manner. As an example,
the proposed solution supports the definition of a diagram
editor for domains and another editor for interfaces. With the
former, internal phenomena may be added to the domain
instance, which is the root element of the diagram. With the
interface editor,, shared phenomena that refer to the internal
phenomena of the involved domains are added to an instance
of Interface. No internal phenomena can be added to a
domain with the interface editor, being only possible to refer
to existing instances.

The specification of the behavior of the domains is
supported by means of the element Description. Description
allows the model to be extended, i.e. several kinds of
elements can be attached to this element for specifying the
behavior by means of ad hoc notations. In fact, descriptions
can be expressed with different notations such as state
machines, natural language, formal languages, modeling
languages like UML or SysML, etc. This can be done by
importing elements from the meta-models of external
notations, and by connecting them to Description; both the
choice of which elements to import and the definition of the
associations depend on the involved notation. Extending the
PFs meta-model is out of the scope of this work and
therefore the meta-model simply provides two attributes
named text and language. The former describes the behavior
by means of a textual description, while the latter indicates in
which language the description is written.

Descriptions predicate on the phenomena of a domain
(both controlled and visible); this concept is expressed by
means of a directional association named predicatesOn
between the classes Description and Phenomenon.

PFsModel also includes class Requirement, whose
instances are crosscutting elements that specify static or
dynamic properties with reference to the structural elements
of a model. Class Requirement represents the user
requirements, expressed by predicating on the domains’
phenomena. The class is characterized by the attribute name,
and by the relationships constrained and referenced, which
express whether the requirement constrains the phenomena
or just observes them. The specification of requirements is
supported by the class Description. In fact, in the meta-
model, the requirements, the machine specification and the
behavior of domains are all represented by the same element
Description.

PFsModel also introduces concepts that aim at
supporting problem decomposition. More specifically, the
problem concept is defined by the class Problem, while the
decomposition is represented by the subProblems
relationship. Other relationships are defined in order to
express that a problem is characterized by requirements and
domains, which are interconnected by means of interfaces.
Notice that such relationships are simple associations, i.e. an
instance of Problem is associated with instances of other
elements that are contained in an instance of PFsModel.
Such relationships support both the decomposition of a
problem, and the definition of multiple views. A problem
may involve only a subset of the domains (and of the
corresponding phenomena) of a model: instances of Problem
may be considered partial views on the model, consisting of
subsets of the elements contained in an instance of the
PFsModel class.

Figure 4 reports a fragment of the instance of the
proposed meta-model that describes the sluice gate control
problem. In particular, the model contains the Gate&Motor
and SluiceController domains and their internal phenomena.
Moreover, interface ‘a’, which connects the two domains
(see Figure 1), is also shown: the interface involves a set of
shared phenomena, each one corresponding to an internal
phenomenon of the controlling domain and an external
phenomenon, which is observed by the other domain
participating in the interface. For instance, the phenomenon
‘on’, controlled by the SluiceController is made visible to the
Gate&Motor domain through interface ‘a’ and the shared
phenomenon ‘onSP’.

The description is actually a bit redundant, with each
phenomenon represented several times; however, this kind of
organization was practically imposed by the constraints due
to the usage of GMF.

104

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. An instance of the meta-model (fragment).

V . REPRESENTING REQUIREMENTS AND REASONING
ABOUT CORRECTNESS

A fundamental part of the problem frame methodology
deals with correctness arguments.

With problem frames, the idea is that requirements are
described as relations that the user wants to be established
among domains in the problem environment. Requirements
are therefore given by means of optative descriptions
involving problem domain elements. For instance, a
requirement of the sluice gate control system is that when a
Raise command is issued and the state of the system makes
the required operation sensible and viable, the command is
executed, i.e., the gate starts rising.

Some characteristics of the relevant domains belonging
to the problem environment have also to be described,
because they contribute to the actual behavior of the
proposed solution. For instance, the fact that the gate starts
moving when the motor is set on, or that the Bottom signal is
issued when the gate reaches the closed position clearly
contribute to the behavior of the system. The behavior of
given domains is specified by means of indicative
descriptions.

The machine is the hardware/software part of the
proposed solution. Its behavior is defined via suitable
specifications that involve only the machine interface. The
machine specification must guarantee that the interaction of
the machine with the problem domain causes the required
relations in the problem environment to hold.

The correctness argument must convince that the
proposed machine satisfies the requirements in the problem
domain.

Figure 5 illustrates a piece of the correctness (or
adequacy) argument for the sluice gate control problem.
Figure 5 is an adaptation from [1]. According to [1], in this
kind of problem, requirements (1) state what commands are
sensible in which situations and (5) what effects they should
cause in the problem domain if they are viable. The
specifications of the machine (2 and 3) define what is the
reaction of the machine to commands (including those that
are not sensible or viable). The description of the behavior of
the problem domain describes how the domain state and
behavior are affected by what the machine does at their
shared interface.

Figure 5 provides an excerpt of the just mentioned
description concerning a specific case (i.e., what happens
when the Raise command is issued and the Gate is closed).
The correctness argument shows the domain behavior
resulting from the commands and that the final state of the
system complies with the requirements, which prescribe the
consequences of commands. In order to support this type of
argument, the meta-model must be able to support the proper
description of requirements (in terms of phenomena of the
problem domains), of domain behaviors (in terms of their
own phenomena and phenomena that are visible because
shared by other domains, including the machine) and of
machine specifications (in terms of phenomena shared
through its interfaces; talking about machine’s internal
phenomena is strictly forbidden in this phase).

Figure 3 shows that the meta-model includes
“descriptions” that belong either to domains (including the
machine) or to requirements. These descriptions consist of
text, written in some language, and of references to the
phenomena that are mentioned in the description itself.

105

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Gate &
motor

Raise &
lower gate

Sluice
operator

Sluice
controller

When the operator issues
the Raise command it may
or may not be sensible ...
{requirments}

... and the gate is closed,
the command is sensible
and viable, thus ...
{specifications}

... the machine shall
issue the ClockW and
On commands ...
{specifications}

... which cause the
gate to start opening
...
{domain properties} ... Thus achieving the

required effect.
{requirements}

1

3

2

4

5

Figure 5. An adequacy argument.

Figure 6 shows a fragment of an instance of a meta-
model, reporting the requirement that prescribes the effect of
a Raise command when the gate is closed. In Figure 6 the
textual description of the requirement is written in plain
English. Therefore, it brings no meaning to a possible tool
using the meta-model (unless, perhaps, sophisticated
artificial intelligence techniques are used; we do not consider
this possibility). However, the underlined words in the
descriptions have a specific meaning, comprehensible by a
tool using the meta-model: they correspond to the references

to phenomena having the same names. Therefore, when the
analyst that is defining the model of a system selects the
phenomena that are relevant for a requirement, he/she is also
determining the vocabulary that can be used in the textual
description of the requirement.

Note that the analyst, when describing requirements, has
to classify every phenomenon connected to a requirement as
‘referenced’ or ‘constrained’, according to the notation
defined in [1].

Open_req_descr: Description

language: English
text: If the gate is closed (IsOn is false and
Position≥0.95) and the event Raise is issued, the gate
starts opening (IsOn becomes true and ClockWise is
true)

Raise_closed_gate_req: Requirement

Name: Effect of Raise on the closed Gate

SluiceOperator: Domain

Name: Sluice operator
Type: given
Behaviour: biddable

Raise: Phenomenon

name: Raise
type: event
internal: true

constrained

referenced

constrained

referenced

Gate&Motor: Domain

name: Gate and motor
type: given
behaviour: causal

ClockWise: Phenomenon

name: ClockWise
type: state
internal: true

IsOn: Phenomenon

name: IsOn
type: state
internal: true

Position: Phenomenon

name: Position
type: state
internal: true

Figure 6. A fragment of meta-model instance that specifies a requirement.

106

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7 shows a piece of the description of a domain,
namely the Gate and motor. It is possible to see that this type
of description works exactly like a requirement description.
The only difference is that –following Jackson– we do not

distinguish referenced phenomena from constrained ones.
However, it must be noted that since external phenomena are
always referenced, it is possible to omit their classification.

Gate&Motor: Domain

name: gate and motor
type: given
behaviour: causal

ClockWise: Phenomenon

name: ClockWise
type: state
internal: true

IsOn: Phenomenon

name: IsOn
type: state
internal: true

On: Phenomenon

name: On
type: event
internal: false

G&M_descr: Description

language: English
text: If ClockWise is true and IsOn
is false (i.e., the state is still) and
event On is received, IsOn
becomes true (i.e., the state
becomes opening).

predicatesOn

predicatesOn

predicatesOn

Figure 7. A fragment of meta-model instance that specifies the behaviour of the Gate&Motor given domain.

Finally, Figure 8 reports the specifications of the
machine. The diagram is similar to those describing
requirements and domain behavior. However, more instances

of domains and phenomena are involved, since the
specifications deal with phenomena from three different
domains (the machine, the operator and the Gate and motor).

Controller: Domain

name: Sluice controller
type: machine
behaviour: causal

Off: Phenomenon

name: Off
type: event
internal: true

On: Phenomenon

name: On
type: event
internal: true

ClockW: Phenomenon

name: ClockW
type: event
internal: true

machine_spec: Description

language: English
text: If the command Raise is
received and the gate is closed (i.e.,
Bottom was received, then Off was
issued, and since then no On was
issued), the commands ClockW and
On are issued

SluiceOperator: Domain

Name: Sluice operator
Type: given
Behaviour: biddable

Raise: Phenomenon

name: Raise
type: event
internal: true

predicatesOn

Gate&Motor: Domain

name: gate and motor
type: given
behaviour: causal

Bottom: Phenomenon

name: Bottom
type: event
internal: true

predicatesOn

predicatesOn

predicatesOn

predicatesOn

Figure 8. A fragment of meta-model instance that specifies a piece of the machine specifications.

107

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The above reported descriptions provide the information
needed to build correctness arguments. In principle, it could
be possible to develop a tool that assists the user in building
such arguments. In fact, the tool could help the analyst in
selecting domains and phenomena that are relevant to the
argument. For instance, given the Raise command, the tool
could automatically select the involved requirements, the
triggered machine reactions, etc., thus providing the user
with the ‘bricks’ that can be used to build the argument.

In [1] Jackson uses a few different notations, and leaves
the analysts free to choose the notation they like the most.
Accordingly, the proposed meta-model allows the analyst to
use any notation: it is only necessary to specify the
‘language’ attribute of the descriptions.

The fact that the description of domains, requirements
and the machine can be used to build correctness
requirements, suggests that better results could be achieved if
a formal notation is used. In order to illustrate this
possibility, in what follows we rewrite the descriptions
already reported in Figure 6, Figure 7 and Figure 8 using
event calculus (EC).

The EC is a system of logical formalism, which draws
from first-order predicate calculus [24]. EC has already been
used for describing and reasoning about event-based
temporal systems, and has been used in conjunction with
problem frames [23][22]. Of the several variations of EC that
have been proposed, the version discussed in [25] was used
in [22]; we also use that version.

Domain behaviour

If ClockWise is true and IsOn is false (i.e., the state is
still) and event SwitchOn is received, IsOn becomes true
(i.e., the state becomes opening).
HoldsAt(ClockWise ∧ ¬IsOn,t) ∧ Happens(On,t) →
HoldsAt(IsOn, t+1)

The state IsOn persists until SwitchOff is issued
HoldsAt(IsOn,t) ∧ ¬Happens(Off,t) →
HoldsAt(IsOn,t+1)

Requirements

If the gate is closed (IsOn is false and Position≥0.95) and
the event Raise is issued, the gate starts opening (IsOn
becomes true and ClockWise is true).
Holds(¬IsOn ∧ Position≥0.95,t) ∧
Happens(Raise,t) → Holds(IsOn ∧ ClockWise, t+1)

Machine specifications

If the command Raise is received and the gate is closed
(Bottom was received, then Off was issued, and since then
no On was issued), the commands ClockW and On are
issued
Holds(Closed,t) ∧ Happens(Raise,t) →
Happens(ClockW, t+1) ∧ Happens(On, t+2)

Holds(Closed,t) ← Happens(Bottom,t1) ∧
Happens(Off,t2) ∧ t1<t2<t ∧ ¬∃t3
(Happens(On,t3) ∧ t2<t3<t)

Starting from descriptions written in EC, correctness
arguments can be built, also with the help of reasoning tools.

In [22] if an event or a fluent is a part of an interface, its
name is parameterized –under some circumstances– with the
name of the interface. For example, Happens(e1(p),t1)
indicates that the event e1 is generated by a controlling
domain at the interface p at the time t1. Similarly when
describing the effect of an event on a fluent that is controlled
by a domain, the fluent name is parameterized with the name
of the domain. For example, Initiates(e1(p),f2(D),t)
indicates that when the event e1 occurs at the interface p, the
fluent f2 controlled by Domain D becomes true. Our meta-
model is defined so that all the mentioned fluents or events
correspond to specific phenomena, therefore they are
unambiguously and precisely characterized in terms of the
domain they belong to and the interfaces they participate
into.

VI. FROM THE META-MODEL TO THE TOOL
The meta-model presented above was used as a basis for

the development of a tool supporting the editing of Problem
Frames as well as other aspects of the approach.

The proposed solution exploits the Eclipse Graphical
Modeling Framework (GMF) [13], a “state of the art”
technology for the definition of model editors in the Eclipse
development framework [18]. GMF provides advanced
services that guide the developer in the definition of visual
editors starting from a meta-model. The generated editors
also provide different kinds of advanced services such as
diagram editing, validation, transformation, and support for a
standardized XMI model serialization format.

GMF provides both a generative component and a
runtime infrastructure for developing graphical editors based
on the Eclipse Modeling Framework (EMF) [12] and the
Eclipse Graphical Editing Framework (GEF) [11].

EMF is a modeling framework and code generation
facility for building tools and other applications based on a
structured data model. EMF consists of three fundamental
parts [10]:
• The Core framework: it includes a meta-model (Ecore)

for describing models and runtime support for change
notification and XMI serialization.

• The Edit framework: it includes generic reusable classes
for building editors for EMF models.

• The Codegen framework: it provides code generation
facilities to build a complete editor for an EMF model.
EMF supports the definition of OCL constraints by

providing a framework usable for property validation. EMF
also provides tools for the automatic definition of basic
editors that aim at visualizing and manipulating models
(instances of the meta-model). GEF is a framework to be
used in conjunction with GMF to create graphical editors
characterized by a model-view-controller architecture. The
development of diagram editors that handle EMF models
based on the direct usage of GEF is an onerous activity, since
it requires an in-depth knowledge of the architecture and the
API of both GEF and EMF. In order to ease the development
of graphical editors, the capabilities of EMF and GEF were

108

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

composed and made available through the GMF
infrastructure. In fact, GMF combines the advantages of
EMF and GEF, and provides tools that aim at simplifying
and automating the generation of diagram editors. The usage
of such technologies provides several advantages to the
designer:
• A collection of reusable components for graphical

editors, such as geometrical shapes, icons, etc.
• A standardized model to describe diagram elements.

Diagram elements are described by means of graphical
models that define both the characteristics of the visual
elements shown in a diagram, and the mechanisms
through which it is possible to access them.

• The separation of semantic aspects from diagrams.
Semantic elements are defined in an Ecore model, and
they are accessed by means of EMF, while diagram
models are directly managed by GMF.
The generated editors are open, thus the interested user

can access the generated source code in order to modify or
extend the functionalities of the editor. Moreover, the
generated editors are Eclipse plug-ins; hence extensions can
exploit the standard Eclipse mechanisms.

A PF editor has to support problem analysis according to
the various concepts of the PFs approach. We decided to
partition the required functionalities into several editors,
since the involved activities are fairly independent and use
different notations. For instance, the specification of the
requirements (or of the machine) uses a notation that is
different from the one used for defining the problem
structure.

Although functionalities are allocated to distinct editors,
all the editors operate on the same model. In other words,
multiple views insist on the same elements. For instance, a
dedicated editor for domain behavior specification is opened
whenever the user double clicks a domain instance in the
problem editor. Several problems may arise when supporting
diagram partitioning: editor instances have to cooperate and
to stay constantly synchronized with the state of the global
model.

We identified the following distinct editors: A context
editor, for editing context diagrams; A problem editor, for
editing problem diagram; A domain editor, for specifying the
internal structure of a domain (internal phenomena as well as
internal sub-domains may be defined); A domain
specification editor, for describing the behavior of a domain;
An interface editor, for specifying shared phenomena

between the domains; A requirement editor, which supports
the specification of the user requirement.

The editors were defined according to the typical GMF
building process [13]. First of all, an EMF model was
defined; in particular, the meta-model proposed in the
Section IV –including the properties expressed via OCL–
was defined via EMF Ecore technology. The EMF model
describes the global model shared among the different
editors. Then, a framework supporting the manipulation of
the previously defined model was automatically generated
using EMF.

All the previously introduced diagram editors were
defined starting from the model and the generated editing
code. The same GMF process was applied to the definition
of each diagram editor.

A graphical model for the representation of diagram
elements was defined, using the GMF graphical model
creation wizard. A visual layout was defined –according to
Jackson’s notation [1]– for the elements of the EMF model
of Problem Frames, and the access points and services to
modify the attributes of each element were also defined.

The definition of the tool models for the manipulation of
diagram elements exploited the GMF tool model wizard. The
Problem Editor was defined so that all the elements that can
be visualized (e.g., domains, requirements and interfaces)
can also be edited, while the Interface Editor supports the
definition of shared phenomena among domains that are
given.

A mapping model specifies which graphical elements can
be used in each diagram, and which tool is used for the
manipulation of such elements. The definition of the
mapping model was performed in part by using the GMF
mapping wizard, and in part by configuring the generated
model. The resulting model relates the elements of the
models defined in the previous steps. Moreover, it supports
editor partitioning: this model was used to specify that the
interface element of the Problem editor has to be shown in
the canvas of an Interface editor.

A generator model was defined for each mapping model
specified for the editors by using the GMFGen Model tool.
Such model supported the definition of code generation
criteria, such as the specification of the serialization formats
for diagrams.

Once all the generator models were defined, dedicated
tools were used for automatic code generation. Then the
generated source code was extended by implementing
advanced functionalities, mainly concerning the partitioning
of diagrams.

109

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. A snapshot of the generated tool.

Figure 9 shows a snapshot of the generated PFs editor,
which is composed of the previously described editors and
coordinates the activities performed by them. The current
prototype is an editor that supports the PF notation. The
aspects that are strictly related to the notations/languages
adopted for the specifications, like developing correctness
arguments, are only partly supported. Future work includes
completing the support for problem composition and
developing a full support for notation dependent activities.

Our experience with GMF technology was not fully
satisfactory. EMF and GEF frameworks are becoming de
facto standards for the definition of Eclipse based editors, but
their combination in GMF appears not mature yet. In
particular, problems arise as soon as one tries to define non-
trivial editors characterized by features such as diagram
partitioning, multiple views, and synchronization of different
diagrams. More specifically, compilation errors, and the lack
of support for a few needed functionalities, which are not
properly implemented, oblige the user to manually patch the
generated code and to implement the missing functionalities.
Such activities are furthermore complicated by the high
complexity of the structure of the automatically generated
code, and by the poorly documented API of GMF.

GMF also constrains the structure of the meta-model.
The worst limitation we found concerns the elements that
can be edited in a diagram: they have to belong to a
composition hierarchy rooted in the element associated with
the editor. We addressed such issue by means of an extensive
(and unusual) usage of composition relations, and by adding
additional elements, which, as in the previously discussed
case of the SharedPhenomenon class, increase the
complexity of the model.

VII. A PROBLEM FRAME-BASED DEVELOPMENT PROCESS
Currently, the tool described above supports problem

frame modeling only in writing syntactically correct
diagrams. However, the formal descriptions of requirements
and specifications could be easily exploited to verify
properties of the model, in particular to prove that the
specification of the machine actually satisfies (some of the)
requirements when used in the modeled environment. To this
end, the PF editor could be used in combination with an
event calculus off-the-shelf tool, as in [23]. The resulting
process (see Figure 10) would lead to reliable requirements
specifications, whose most important properties would have
been formally proved.

PF modeling tool

PF model

EC-based
verification

Analyst

Correctness
evidence

Figure 10. Problem frame editing and verification.

The process described in Figure 10 had already been
envisaged by the authors for UML specifications [27], in the
context of a whole UML-based development process.

The PF models that result from the modeling and
verification activities are the base for the following
development phases. Therefore, we need to understand to
what extent the valuable information embedded in the PF

110

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

models can be exploited in the rest of the development
process.

The notation used to model problem frames is not suited
to support the design and implementation phases, thus we
have to translate the PF diagrams into a more
implementation-oriented notation. Since the authors have
already shown that problem frames can be successfully used
in conjunction with UML [5][26], it is quite natural to
choose UML as the design notation to be used in
combination with PF-based requirements specifications. The
usage of UML is also eased by several EMF/UML2 based
Eclipse projects (such as ATL [29] and the other
transformation engines developed in the context of the
Eclipse Model-to-model transformation project [28]) which
support the generation of UML models from meta-model
instances.

A possible problem frame-based development process is
schematically described in Figure 11. The idea is to exploit
to the maximum possible extent the knowledge about the
environment and the machine embedded in the PF diagrams.

A first step concerns the design phase: problem frames
can suggest which architectural structures are best suited for
implementing the machine. In [4], Hall et al. show how each
problem frame can be implemented with an appropriate
design structure, while in our preceding work [6] we show
how to use UML and SysML to represent PF models, thus
building a starting point for the following design phase.

A PF model is often also useful for understanding the
scenarios of the system (especially if complemented with
UML sequence diagrams, as in [26]). Scenarios are on their
turn strictly connected with testing activities: in fact, in
functional testing at least one test case must be written for
each scenario. A scenario involves actions, activities and
events originated by both problem domains and the machine,
which are described in PF diagrams: the latter can thus be
used to devise test cases. Moreover, since executing test
cases involves exercising some domain behavior, if the test
has to be carried out in a laboratory, the problem domain
behavior must be simulated: in this case, the PF diagrams
provide an accurate specification of the domain behavior to
be simulated. Finally, the requirements specify the expected
outcome for each scenario, i.e., the oracle of the test case. In
conclusion, the PF diagrams contain the whole knowledge
needed to define a complete testing environment.

To summarize: PF models can be used to schematically
define the software architecture, to provide domain
simulators properties, and to derive functional tests cases. A
tool able to understand the element constituting a PF model
(based on the previously presented meta-model), could
generate automatically –through model transformations–
three different models: the formal model of the system, used
to understand whether the systems fulfills the required proofs
of correctness; the design model, used as a starting point to
develop the system; the test model, used to verify the
implementation.

PF and UML
modeling tool

PF modelEC-based
verification

Analyst

Correctness
evidence

PF-compliant
UML model

Preliminary
design
model

Implementation

Model to
architecture

Designer/Programmer
Test case
generation

Test harness
generation

Test cases

Testing
environment

Tester
Figure 11. The PF customized development process.

VIII. RELATED WORK
The existing PFs meta-models describe the PF domain

with different objectives, which are reflected on the meta-

model structure. The meta-model described in [2], [7], [8] is
highly detailed, as the one presented in [9]; a less detailed
meta-model can be found in [20], while a very concise meta-
model is described in [10].

111

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The meta-model presented in [2], [7], [8] describes the
main relationships among most of the concepts introduced in
Problem Frames methodology. This meta-model suffers from
some inadequacies: some of its concepts are exclusively
dedicated to represent methodological concepts, such as
frame flavors and frame concerns, which we just keep out of
the meta-model and out of the tool’s responsibilities, leaving
them to the user. Another problem (from our specific point
of view) with the meta-model is the very fine granularity of
the concepts presented, sometimes introducing inheritance
hierarchies. Unfortunately, the management of generalization
hierarchies is quite cumbersome in GMF. In practice, when
working with GMF it is necessary to deal with meta-models
that represent the relevant information without employing
generalization/ specialization.

The ontology of the Problem Frames proposed in [3], [9]
captures even more concepts than the meta-model defined in
[2], [7], [8], and it is more abstract, since it does not provide
any meta-model (a meta-model is always an ontology, but
the vice versa is not guaranteed). From our point of view this
ontology presents the same problems as the meta-model
introduced in [2], [7], [8]. Moreover, it does not address the
specification of behaviors and requirements, which are
clearly relevant to the user.

The essential meta-model proposed in [10] is
oversimplified: it does not include all the concepts that are
expressed in PF diagrams, and some important pieces of
information are missing. For instance, the meta-model
includes a relation between domains for specifying that the
involved domains overlap, but this relation does not indicate
which phenomena are shared by the overlapping domains;
this information is elsewhere in the model and can be
retrieved in a rather complicated way. For these and other
similar reasons, the meta-model presented in [10] –which, in
fact, was defined to support requirements progression– is not
adequate for the construction of tools.

With respect to the approaches to meta-modeling
mentioned above, our approach is more pragmatic: on one
hand, we strived to provide a synthetic though fairly
complete description of the problem frames notation,
including a few elements that –although not strictly
belonging to the notation– are necessary to support the
methodology of PF; on the other hand, we kept the meta-
model compliant with the requirements of the EMF/GMF
development method. The result was that we were able in a
relatively short time to create a prototype of a tool fully
supporting the problem frame notation, and well on the way
of supporting the PF methodology.

In [20] a work very similar to the one reported here is
described: the meta-model is expressed in UML, with added
constraints in OCL, and the resulting meta-model is –quite
comprehensibly– similar. However, there are also relevant
differences. Our meta-model was specifically structured to
be used in an EMF/GMF framework: this is reflected in the
meta-model itself, e.g., composition relations and decorators
are often used instead of inheritance relations. There are also
some semantic differences between the two meta-models: the
meta-model in [20] does not account for sub-problems and
descriptions involving multiple frames. Finally, we have

implemented the PF editor: a full working prototype of a PF
modeling tool, able to generate UML compatible models.

Another project that exploits the GMF framework is
UML2Tools: the Eclipse Ecore UML2 meta-model is used
as a basis for building a tool for editing UML2 class, state,
component and activity diagrams [19]. Although the goal
and the approach of UML2Tools are similar to ours, it does
not support a common model shared by the diagram editors
(e.g., the editor of class diagrams, the editor of state
diagrams, etc.): instead, each editor deals with a distinct
instance of the model. In practice the user is not allowed to
define a single coherent model: multiple independent
diagram-specific models have to be created.

An alternative approach to directly supporting PF
notation is to integrate PFs concepts and methodology in the
usage of well known modeling languages, like UML and
SysML. Such approach has been proposed in [5] and [6].

IX. CONCLUSIONS AND FUTURE WORK
There are several reasons for defining the meta-model of

Problem Frames. The first one is that the meta-model helps
defining the notation in a precise way; this activity is much
needed, since the Problem Frames approach provides
essentially methodological guidelines and concepts, but does
not precisely define the notation. A second motivation is that
the meta-model supports the (semi-automatic) construction
of a tool, and tool availability is an essential condition to
promote the usage of Problem Frames in industrial software
processes. A third motivation is that a precise model (based
on a defined meta-model) can be used to automate model
transformations, thus feeding other development phases,
such as formal verification of the specifications (to prove
that the specifications satisfy the requirements), development
and test. Finally, a tool based on the meta-model provides a
sort of training environment that is compliant by construction
with the problem frames approach. Such environment is
expected to favor the learning of the PF based requirements
analysis techniques, to allow users of the PF approach to
evaluate both the tool and the approach, and to stimulate the
suggestion of improvements. This paper reports the
definition of a meta-model for problem frames that can
effectively be used as a basis for the construction of a tool.
The proposed meta-model represents all the elements of the
PF notation, but leaves the support of a few methodological
issues to the initiative of the user. The effectiveness of the
meta-model was demonstrated by building a prototype tool
with GMF. This activity was also an occasion to evaluate the
GMF technology, which appears still rather immature, since
a few essential features (such as editing the same subset of
elements in two different editors) are neither well supported
nor documented.

The main goal of the work reported here was to define a
meta-model that could be used as a basis for developing a
tool supporting the problem frames technique. While
achieving such goal, we put aside a couple of issues that will
be object of future work. A first issue concerns the definition
of a way to integrate Descriptions with the rest of the model:
in essence, the issue is that the text attribute of Descriptions
should be connected to the predicateOn links to Phenomena.

112

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In other words, the occurrence of a phenomenon’s name in
the text of a description should be recognized as a reference
to an instance of Phenomenon.

A second important issue involves implementing full-
fledged problem composition and decomposition
mechanisms, thus testing the ability of the meta-model to
support this very relevant part of the problem frames method.

ACKNOWLEDGMENTS
The research presented in this paper has been partially

funded by the project “Elementi metodologici per la
specifica, la misura e lo sviluppo di sistemi software basati
su modelli”, funded by the Università degli Studi
dell’Insubria.

Massimiliano Bosetti contributed to the development of
the prototype tool using the proposed meta-model and
approach.

REFERENCES
[1] Jackson, M.: Problem Frames - Analysing and Structuring Software

Development Problems. Addison-Wesley ACM Press (2001)
[2] Lencastre, M., Boetlho, J., Clericuzzi, P ., and Araújo, J.: A Meta-

model for the Problem Frames Approach. In 4th Workshop in
Software Modeling Engineering (WiSME'05), Montego Bay, 3
October 2005.

[3] Chen, X., Jin, Z., and Yi L.: An ontology of problem frames for
guiding problem frame specification. In: 2nd International
Conference-Knowledge Science, Engineering and Management,
2007.

[4] Hall, J.G., Rapanotti, L., and Jackson, M.: Problem frame semantics
for software development, Software System Modeling. 4, 189-198
Springer-Verlag (2005)

[5] Lavazza, L. and del Bianco, V .: Combining problem frames and
UML in the description of software requirements. In Fundamental
Approaches to Software Engineering (FASE 2006), March-April
2006, Vienna.

[6] Colombo, P ., Del Bianco, V ., Lavazza, L., and Coen-Porisini, A.: A
methodological framework for SysML: a Problem Frames-based
approach. In 14th Asia-Pacific Software Engineering Conference
(APSEC 2007), 5-7 Dec. 2007, Nagoya, Japan.

[7] Lencastre, M., Araujo, J., Moreira, A., and Castro, J.: Analyzing
crosscutting in the problem frames approach. Proceedings of the 2006
international workshop on Advances and applications of problem
frames, Shanghai, China, ACM, pp. 59--64, 2006.

[8] Lencastre, M., Araujo, J., Moreira, A., and Castro, J.: Towards
aspectual problem frames: an example. Expert Systems, vol. 25, pp.
74-86, 2008.

[9] Jin, Z. and Liu, L.: Towards automatic problem decomposition: an
ontology-based approach. Proceedings of the 2006 international
workshop on Advances and applications of problem frames,
Shanghai, China, ACM, pp. 41-48, 2006.

[10] Seater, R., Jackson, D., and Gheyi, R.: Requirement progression in
problem frames: deriving specifications from requirements.
Requirements Engineering, vol. 12, pp. 77-102, 2007.

[11] Moore, B., Dean, D., Gerber, A., Wagenknecht, G., and
Vanderheyden, P .: Eclipse Development using the Graphical Editing
Framework and the Eclipse Modeling Framework. IBM Redbooks,
2004.

[12] Graphical Editing Framework (GEF), http://www.eclipse.org/gef
[June 16, 2009]

[13] Eclipse Modeling Framework (EMF),
http://www.eclipse.org/modeling/emf [June 16, 2009]

[14] Graphical Modeling Framework (GMF),
http://www.eclipse.org/modeling/gmf [June 16, 2009]

[15] Object Constraint Language Specification, version 2.0, OMG
formal/06-05-01, 2006

[16] OMG, UML Superstructure Specification, v. 2.1.2. formal/2007-11-
02, 2007

[17] OMG, MOF 2.0/XMI Mapping, v2.1.1, formal/2007-12-01, 2007
[18] des Rivières, J. and Wiegand, J.: Eclipse: A platform for integrating

development tools, IBM Systems Journal, V ol 43, No 2, 2004
[19] Model Development Tools (MDT),

http://www.eclipse.org/modeling/mdt/ [June 16, 2009]
[20] D. Hatebur, M. Heisel, and H. Schmidt: A Formal Metamodel for

Problem Frames. Proceedings of the 11th international conference on
Model Driven Engineering Languages and Systems, Toulouse,
France: Springer-Verlag, pp. 68-82, 2008.

[21] P. Colombo, V . del Bianco, L. Lavazza, A. Coen-Porisini, “Towards
a Meta-model for Problem Frames: Conceptual Issues and Tool
Building Support”, The 4th Int. Conf. on Software Engineering
Advances – ICSEA 2009, September 20-25, 2009 - Porto, Portugal.

[22] Thein Than Tun, Tim Trew, Michael Jackson, Robin Laney and
Bashar Nuseibeh: Specifying features of an evolving software system,
Software Practice and Experience 2009; 39.

[23] Classen A, Laney R, Tun TT, Heymans P , Hubaux A.: Using the
event calculus to reason about problem diagrams, Proceedings of the
3rd International Workshop on Applications and Advances of
Problem Frames, Leipzig, 10 May 2008, ACM, 2008.

[24] Kowalski R, Sergot M.: A logic-based calculus of events. New
Generation Computing 1986; 4(1).

[25] Miller R, Shanahan M.: The event calculus in classical logic—
alternative axiomatisations. Journal of Electronic Transactions on
Artificial Intelligence 1999; 3.

[26] Del Bianco, V ., Lavazza, L., Enhancing Problem Frames with
Scenarios and Histories in UML-based software development, Expert
Systems – The Journal of Knowledge Engineering, Special issue on
applications and advances in problem frames, February 2008 - V ol.
25 n. 1 Pag. 28-53 – Blackell publishing.

[27] Del Bianco, V ., Lavazza, L., Mauri, M.: Model Checking UML
Specifications of Real-Time Software, The Eighth IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS
2002), Greenbelt, Maryland, 2–4 December, 2002.

[28] M2M, http://www.eclipse.org/m2m/
[29] Frédéric Jouault and Ivan Kurtev, “Transforming Models with ATL”,

in Satellite Events at the MoDELS 2005 Conference, Springer LNCS,
V ol. 3844/2006.

113

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

