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ABSTRACT

Inappropriate activation of the IGF (insulin-like growth factor) system has been implicated in the growth
and progression of a number of tumor types. Recent evidence indicates a possible role for the IGF system
in modulating/mediating tumor cell response to hypoxia, a common occurrence in solid tumors, and
particularly in malignant gliomas, causing tumor cells either to die, or to mount a pleiotropic adaptive
response that is mainly orchestrated through activation of the hypoxia-inducible transcription factor
HIF1. Experimental evidence suggests possible links between IGF- and HIF1-dependent signaling
pathways, as well as a role for activated STAT3 in mediating their activities. Interestingly, igf2 is among
the target genes transactivated by HIF1, thereby providing the missing link in a hypothetical autocrine
self-amplifying circuit.

The present study investigates the presence of the IGF-HIF1-VEGF axis in the human glioma cell line
U-87 MG, and characterizes its molecular effectors. Our results show that exogenous IGF-I causes IGF1R
and STAT3 activation, and increases HIF1« protein levels and HIF1 trascriptional activity, inducing VEGF
release; a similar response, mediated by IGF-II release, is observed following HIF1a stabilization. The
existence of an autocrine loop is confirmed by its down-regulation following inactivation of IGF1R (using
the IGF1R-specific tyrosine kinase inhibitor NVP-AEW541), STAT3 (transfecting the cells with an
expression vector encoding a dominant negative form of STAT3), or HIF1 (using the small molecule
inhibitor YC-1). The ability of NVP-AEW541 to block this circuit could be beneficial in suppressing the
growth and angiogenic potential of hypoxic glial tumors.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The existence of an autocrine loop involving the IGF (insulin-
like growth factor) system and HIF1 (hypoxia-inducible factor 1) is
emerging as a survival strategy common to different tumor types
[1,2]. The IGF signaling pathway is activated by binding of one of
two soluble polypeptide ligands (IGF-I and IGF-II) to the tyrosine
kinase IGF1R, a tetrameric receptor consisting of two extracellular
a chains and two transmembrane (3 chains linked by a disulfide
bond, bearing a high degree of homology with the insulin receptor
(IR) [3]. Although IGF1R overexpression has been demonstrated in
tumors, its activation is strictly dependent on ligand availability,
which in turn can be regulated by the expression levels of the
decoy receptor IGF2R (also known as the mannose-6-phosphate
receptor) and of six IGF-binding proteins (IGFBPs). IGF1R activa-
tion has been implicated in several key features in malignancy,
including loss of anchorage-dependent growth, evasion of
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apoptotic signals, proteolytic degradation of the extracellular
matrix and tumor angiogenesis [4].

Interestingly, the IGF signaling pathway appears to be intimately
connected with HIF1 activation, which indeed seems to mediate at
least part of IGF-induced downstream effects. HIF1 is a hetero-
dimeric transcription factor, the activity of which depends on the
intracellular levels of its inducible o subunit. In the presence of
oxygen, HIF1la is hydroxylated on two critical proline residues
(Progoz and Prosg,4) in the so-called oxygen-dependent degradation
domain (ODDD). This modification targets the protein for ubiqui-
tylation by an E3 ligase complex (including the Von Hippel-Lindau
tumor suppressor protein) and subsequent proteasomal degrada-
tion [5]. Growth factor tyrosine kinase receptor activation has been
reported toincrease HIF1a levels, as well as HIF1 activity, under both
normoxic and hypoxic conditions, mostly through up-regulation of
the PI3K/Akt and Ras/Raf/MAPK pathways [5,6]. HIF1 orchestrates a
pleiotropic adaptive response to hypoxia by inducing the expression
of more than 100 genes encoding glycolytic enzymes and glucose
transporters (thereby facilitating the glycolytic switch in energy
metabolism typically observed under hypoxic conditions), matrix
metalloproteinases, and angiogenic as well as mitogenic and
survival factors. Most notably, IGF-II is among the growth factors
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up-regulated by HIF1, thereby potentially participating in a tumor
growth-promoting autocrine loop [7].

Members of the STAT (signal transducers and activators of
transcription) family might also be involved in mediating signaling
along an IGF-HIF1 axis. In unstimulated cells, STAT proteins are
present in a latent, inactive form; upon engagement of cytokine
and growth factor receptors by their respective ligands, STAT
proteins are recruited to activated receptor complexes and
phosphorylated on tyrosine residues, whereby they dimerize
and translocate to the nucleus, to modulate target gene expression
[8]. Constitutive activation of STAT proteins, and particularly of
STATS3, has been demonstrated in a number of cancer cell lines and
tumors, including gliomas [9,10], presumably due to dysregulation
of growth factor receptor expression and/or activation. However,
the role played by STAT3 in IGF signaling has only been
investigated superficially [11,12].

Conditions required to activate a putative regulatory IGF-HIF1
loop at different points are common in solid tumors. Regions of
intermittent or chronic hypoxia frequently develop within the
tumor mass, due to the fact that proliferating cells rapidly outgrow
existing vessels and to the aberrant function of newly formed tumor
vessel; hypoxia-induced IGF-II release might then sustain the
growth of IGF1R expressing tumors. Similarly, when the circuit is
activated by increased availability of IGFs, the downstream effects of
IGF1R might be greatly amplified through HIF1 activation.

A number of strategies have been devised to disrupt the IGF
signaling axis, ranging from forced expression of M6P/IGF2R or
IGFBPs to the development of small interfering RNAs, antisense
oligonucleotides, monoclonal antibodies and catalytic inhibitors
targeting IGF1R [13-15]. Similarly, HIF1 has also been considered
as a therapeutic target [16,17]: several small molecule inhibitors
have been described [17]; an antisense oligonucleotide targeting
HIF1oc mRNA, as well as a small molecule inhibitor (PX-478) are
currently undergoing phase I clinical trials [18,19]. Merging these
two approaches might lead to mutual potentiation of their effects
in tumors expressing an overactive IGF-HIF1 circuit.

Based on these premises, the present study investigates the role
played by the IGF-HIF1-VEGF axis in a human glioma cell line, and its
possible regulation through an autocrine circuit. Gliomas are the
most common neoplasms in the adult human brain and they are
frequently characterized by coexistence of intense neoangiogenesis
and hypoxic and necrotic regions; in addition, the IGF system has
been implicated in tumorigenesis in the CNS, and particularly in the
pathogenesis of glial tumors [13,20]. Our results indicate that: (a) an
autocrine loop, involving IGF1R, STAT3, HIF1 and IGF-I, exists in U-87
MG cells, regulating tumor cell survival and VEGF production; and (b)
the circuit can be effectively disrupted by inhibiting IGF1R activation
with the selective pyrrolo[2,3-d]pyrimidine derivative NVP-AEW541
[21], which reduces both cell viability and VEGF release. These
observations suggest that pharmacological targeting of the IGF1R
may provide a significant therapeutic benefit, especially in hypoxic
tumors featuring autocrine regulation of the IGF-HIF1 axis.

2. Materials and methods
2.1. Reagents

Standard chemicals and cell culture reagents were purchased
from Sigma-Aldrich srl. (Milan, Italy), unless otherwise indicated;
NVP-AEW541 was generously provided by Novartis (Basel,
Switzerland).

2.2. Cell culture, cytotoxicity studies and HIF1a stabilization

The human glioblastoma cell line U-87 MG (ATCC® HTB-
14™) was obtained from the American Type Culture Collection

(Manassas, VA, USA), and authenticated by morphological
inspection, growth curve analysis and short tandem repeat
profiling, using the Promega PowerPlex™ 1.2 system (Promega,
Madison, WI, USA) and the Applied Biosystems Genotyper® 2.0
software (Applied Biosystems, Foster City, CA, USA) for amplicon
analysis. Cells were maintained in DMEM supplemented with
10% fetal bovine serum (Euroclone, Italy), 1% glutamine, 1%
antibiotic mixture, 1% sodium pyruvate, 1% non-essential
aminoacids, at 37 °C in a humidified 5% CO, atmosphere and
were routinely checked for Mycoplasma infection, using the
Mycoplasma Plus™ PCR Primer Set (Stratagene, Agilent Tech-
nologies, La Jolla, CA).

To assess cell survival following NVP-AEW541 exposure,
4 x 10* U-87 MG cells/well were seeded onto 24-well plates and
allowed to grow for 24 h before treatment with different NVP-
AEW541 concentrations (0.25, 0.5, 1.0 and 2.5 uM). After 24 h
(and subsequently at 48 and 72 h for growth curves), cells from
3 replicate wells per treatment were detached by trypsinization
and resuspended in PBS containing 0.2% Trypan blue; viable cells
were counted using a Biirker hemocytometer following 10 min
incubation.

To achieve HIF1a stabilization, cells were exposed to 50 LM
CoCl, for 24 h, a condition that mimics hypoxia by inhibiting prolyl
hydroxylation of the ODDD and its subsequent interaction with the
Von Hippel-Lindau protein [22].

2.3. Vectors and transfections

U-87 MG cells were transiently transfected with an expression
plasmid (pEF-HA-STAT3F) containing a full-length cDNA encod-
ing hemagglutinin peptide (HA)-tagged STAT3F, a dominant
negative form of STAT3 in which Tyr7gs is replaced by phenylala-
nine, subcloned into a pEF-BOS expression vector (originally
provided by Prof. S. Nagata, University of Osaka Medical School,
Japan [23]); control cells were transfected with the pEF-BOS
plasmid. pEF-HA-STAT3F was a generous gift from Prof. T. Hirano
(Department of Molecular Oncology, University of Osaka Medical
School, Japan [24]). Log-phase growing cells (5 x 10%) were
harvested and transfected with 30 pg of DNA, using an Easy]Jet
electroporator system (Equibio, Ashford, UK), under conditions
optimized according to the manufacturer’s instructions (200 V,
1500 WwF). All experiments were performed starting 48 h after
transfection.

The pBabe-STAT3C expression vector, containing a cDNA
encoding a constitutively activated form of STAT3, was a generous
gift from J. Bromberg et al. [25] and was transfected into U-87 MG
cells by lipofection, using Lipofectamine 2000® (Invitrogen,
Carlsbad, CA, USA). Briefly, 1 x 10° cells were seeded onto
100 mm Petri dishes and allowed to grow for 24 h before
lipofection with the pBabe-STAT3C plasmid; control cells were
transfected with the “empty” pBabe plasmid. STAT3C expression in
transfected cells persisted for 6-8 days; all the experiments were
performed within 5 days after transfection.

U-87/HRP-EGFP cells were obtained from U-87 MG cells
by transient transfection with a plasmid containing the
EGFP (enhanced green fluorescent protein) cDNA under the
control of an artificial hypoxia-responsive promoter (HRP),
consisting of five copies of a 35-bp fragment from the HRE of the
human VEGF gene and a human cytomegalovirus (CMV)
minimal promoter (kindly provided by Dr. Y. Cao) [26]. Cells
were seeded onto 6-well plates (3.5 x 10° cells/well) and
allowed to attach for 24 h before lipofection using Lipofectamine
2000®. EGFP expression in transfected cells (following HIF1«
stabilization with CoCl, at 50 M for 24 h) persisted for 6-8
days; all the experiments were performed within 5 days after
transfection.
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2.4. Evaluation of STAT3 and HIF-1 trascriptional activities

STAT3-dependent transcriptional activity was assessed in
nuclear extracts obtained from U-87 MG (parental), U-87-STAT3C
and U-87-pBabe cells, using the TransAM™ STAT3 Trascription
Factor Assay Kit (Active Motif, Carlsbad, CA, USA) according to the
manufacturers’ instructions. HIF1-dependent transcriptional ac-
tivity was determined in U-87/HRP-EGFP cells following exposure
to CoCl, (50 wM for 24 h) or IGF-I stimulation (100 ng/ml for
15 min), in the presence or absence of 1 WM NVP-AEW541 for 24 h.
Cell samples were analyzed with a FACSCalibur™ flow cytometer
(Becton Dickinson, Mountain View, CA, USA), equipped with a
15 mW, 488 nm and air-cooled argon ion laser. At least 10,000
events were analyzed for each sample and data were processed
using CellQuest™ software (Becton Dickinson). EGFP fluorescence
data were collected, using log amplification, in the FL1 channel
(530/30) and fluorescence intensity was expressed as mean
fluorescence channel (MFC).

2.5. Immunoprecipitation and Western blot analysis

Activation of IGF1R and of STAT3 was evaluated by immuno-
precipitation of cell lysates obtained from U-87 MG, U-87 pEF-BOS
and U-87 STAT3F cells, with or without exposure to IGF-I (100 ng/
ml for 15 min) and/or NVP-AEW541 (1 M for 24 h). Lysis buffer
composition was as follows: NaCl 120 mM, NaF 25 mM, EDTA
5 mM, EGTA 6 mM, sodium pyrophosphate 25 mM, in Tris-HCl
50 mM pH 7.5, containing PMSF 0.2 mM, Na3VO,4 1 mM, pheny-
larsine oxide 1 mM, NP-40 1% and protease inhibitor cocktail 10%).
Protein concentration was determined by the bicinchoninic acid
method using the BCA™ Protein Assay Kit (Pierce, Rockford, IL,
USA) and 1000 g of protein were incubated overnight with the
primary antibody anti-IGF1IR or anti-STAT3 (rabbit polyclonal
antibodies, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA—
SCB) at 4 °C and immunoprecipitated following 2 h incubation
with protein G-Sepharose™ (Sigma-Aldrich, Milan, Italy). Proteins
were then dissolved in sample buffer and separated by SDS-PAGE,
transferred onto Immobilon™-P PVDF membranes (Millipore,
Bedford, MA, USA) and Western blot analysis was performed
incubating the membranes with a mouse monoclonal anti-pTyr
antibody (PY20, SCB) to evaluate the phosphorylation state of the
receptor, or with a rabbit anti-pSTAT3 polyclonal antibody (Cell
Signaling Technology, Danvers, MA, USA). Total IGF1R or STAT3
protein levels were obtained by incubating the same membranes
with anti-IGFIR or anti-STAT3 rabbit polyclonal antibodies.
Proteins were visualized using peroxidase-conjugated secondary
antibodies and the SuperSignal®West Pico Chemiluminescent
Substrate (Pierce).

The effects of IGF-1 and/or NVP-AEW541 on HIF1« expression in
normoxia and following HIF1« stabilization with CoCl; (50 M for
24 h) were determined by Western blot analysis of total cell
lysates. Fifty microgram of proteins were separated and trans-
ferred onto Immobilon™-P membranes and the membranes were
incubated with a mouse anti-HIF1a monoclonal antibody (Becton
Dickinson, San Jose, CA, USA). Equal loading of the samples was
verified by re-probing the blots with a mouse monoclonal anti-
actin antibody (SCB).

2.6. VEGF and IGF-II release

VEGEF levels were measured in supernatants from U-87 MG cell
cultures following exposure to NVP-AEW541 (1.0 uM for 24 h) and
IGF-I (100 ng/ml for 15 min), using the Human ELISA VEGF
Development Kit (PeproTech, Inc., Rocky Hill, NJ, USA), according
to the manufacturer’s instructions. IGF-II levels were measured in
supernatants from U-87 MG cell cultures following 24-h exposure

to CoCl, (50 wM) and YC-1 (10 M) using a Human Total IGF-II
DuoSet®™ ELISA System (R&D Systems, Inc., Minneapolis, MN).
Growth factor release was quantitated colorimetrically using a
Universal Microplate Reader EL800 (BioTek, Winooski, VT, USA) at
405 nm for VEGF and at 450 nm for IGF-IL

2.7. Statistical analysis

Statistical analysis of the data was performed by two-way
ANOVA, with Bonferroni’s post-test for multiple comparisons.

3. Results

3.1. IGF1R stimulation causes STAT3 activation, increases HIF1a
protein levels and HIF1 activity, and induces VEGF release

Fig. 1A shows the effects of exogenous IGF-I, with or without the
IGFR1 inhibitor NVP-AEW541, on tyrosine phosphorylation of
IGF1IR and STAT3, and on HIFla protein levels, as assessed by
immunoprecipitation and/or Western blot. Immunoreactive bands
corresponding to all three proteins were detected in U-87 MG cells
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Fig. 1. Effect of IGF-I (100 ng/ml for 15 min) and of inhibition of IGF1R tyrosine
kinase activity by NVP-AEW541 (1 wM for 24 h) on: (A) IGFIR and STAT3
phosphorylation and IGF1R, STAT3 and HIFla protein levels; (B) HIF1
transcriptional activity; (C) VEGF release in U-87 MG human glioma cells.
Mean + SE of 3 independent experiments. Actin levels were determined as a
control for equal gel loading.
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under baseline conditions, and their intensities markedly in-
creased following exposure to IGF-I (100 ng/ml for 15 min). As
expected, treatment with NVP-AEW541 (1 wM for 24 h, including
the last 15 min with IGF-I) caused pTyr-IGF1R to revert to baseline
levels. Interestingly, this treatment also reduced the levels of
pTyr,05-STAT3 and of HIF1«, suggesting that IGF1R acts upstream
of both. Total IGF1R and STAT3 protein levels were unchanged.

HIF1 transcriptional activity was also up-regulated by IGF-I, as
indicated by the shift of the EGFP fluorescence peak towards higher
intensity values, and inhibited by NVP-AEW541, with the
fluorescence peak reverting to control values (Fig. 1B). This finding
is indirectly confirmed by increased VEGF release following IGF-I
treatment and by its inhibition in the presence of NVP-AEW541
(Fig. 1C).

3.2. STAT3 inhibition blocks HIF1 activation and VEGF release

Fig. 2A shows STAT3, pSTAT3 and HIF1« levels in U-87 MG cells
following transfection of the pEF-HA-STAT3F expression vector,
encoding a dominant negative form of STAT3 (U-87 STAT3F), or
with the “empty” vector pEF-BOS (U-87 pEF-BOS), with or without
IGF-I stimulation. As expected, pSTAT3 levels were lower in U-87
STAT3F than in U-87 pEF-BOS control cells under baseline
conditions; in contrast, total STAT3 levels were similar in the
two cell lines, and were not modified by treatment with IGF-I.
Following IGF-I exposure (100 ng/ml for 15 min), the activated
form of STAT3 was found to increase in U-87 pEF-BOS cells, while
pSTAT3 levels were unaffected in U-87 STAT3F cells (Fig. 2A).
Accordingly, HIF1a protein levels, as well as VEGF release (Fig. 2B),
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Fig. 2. Effect of IGF-I on: (A) total and phosphorylated STAT3 and HIF1« protein
levels and (B) VEGF release in U-87 MG cells transfected with a dominant negative
form of STAT3 (U-87 STAT3F); cells transfected with the “empty” pEF-BOS vector
(U-87 pEF-BOS) were used as controls. Transcriptional activity of STAT3 (panel C)
and HIFla protein levels (panel D) in U-87 MG cells transfected with a
constitutively active form of STAT3 (U-87 STAT3C); cells transfected with the
“empty” pBabe vector (U-87 pBabe) were used as controls. Mean + SE of 3
independent experiments. Actin levels were determined as a control for equal gel
loading.

were also increased in U-87 pEF-BOS cells following exposure to
IGF-I, whereas no increase was observed in U-87 STAT3F cells,
indicating that STAT3 inhibition prevents IGF-I-induced HIF1a
accumulation (and HIF1 transcriptional activation). The role
played by STAT3 in HIFla accumulation is confirmed by the
finding that, in U87-STAT3C cells, expressing a constitutively
active form of the transcription factor (Fig. 2C), HIFla protein
levels are increased under normoxic conditions, as compared with
U-87 pBabe cells (Fig. 2D).

3.3. HIF1« stabilization causes IGF1R activation by inducing
IGF-II release

In line with the literature [22], exposure of U-87 MG cells to
CoCl; (50 M for 24 h) induces a marked increase in HIF1a levels
(Fig. 3A), due to decreased degradation by the proteasome. Under
these experimental conditions, pTyr-IGF1R levels are also in-
creased, even in the absence of added exogenous IGFs. The addition
of YC-1 (10 M for 24 h), a guanylyl cyclase activator that has been
shown to decrease HIF1a accumulation and HIF1 activity [27-29],
reduces HIF1« protein levels almost to baseline values. Interest-
ingly, pTyr-IGF1R, but not total IGF1R, levels are also reduced by
YC-1 treatment, indicating that HIF1 plays a causal role in IGF1R
activation. In agreement with this finding, and with the putative
role of STAT3 in the IGF1R-HIF1-IGF-II circuit, pTyr,os5-STAT3 levels
are increased following exposure to CoCl, and this effect is
prevented by simultaneous exposure to YC-1. The hypothetical
role of IGF-II in the circuit is confirmed by the findings reported in
Fig. 3B, showing IGF-II release from U-87 MG cells following HIF1a
stabilization by CoCls, an effect that is also inhibited by YC-1. These
results point to IGF-II as the molecular effector actually mediating
HIF1-induced IGF1R activation.

3.4. NVP-AEW541 inhibits glioma cell growth and disrupts the
autocrine loop initiated by HIF1o stabilization

Fig. 4A shows the growth curves (0-72 h) obtained for U-87 MG
glioma cells in the absence or presence of different NVP-AEW541
concentrations, and indicates that selective inhibition of IGF1R
activity decreases cell growth in a dose-dependent fashion; ICsq
values extrapolated from dose response curves at 24 and 72 h are
2.07 £ 0.050 and 0.99 + 0.021 M, respectively. In addition, NVP-
AEWS541 (1 wM for 24 h) significantly inhibits the growth of U-87 MG
cells in which HIF1a has been stabilized by exposure to CoCl, (50 uM
for 24 h) (Fig. 4B). On a molecular level, under the same experimental
conditions NVP-AEW541 is not only able to prevent IGF1R activation
in the absence of added IGFs, but also to reduce HIF1a accumulation
(Fig. 5A), which suggests disruption of a positive feedback loop, very
likely sustained by IGF-II release (see above). Accordingly, HIF1-
transcriptional activity and HIF-induced VEGF release, which are
significantly increased following exposure to CoCl,, are markedly
reduced by co-treatment with NVP-AEW541 (Fig. 5B and C).

4. Discussion

A large body of converging evidence from laboratory investiga-
tions and population studies implicates the IGF system in the
development of malignancies, including gliomas [3,13]. IGF-I has
been shown to affect both proliferation and migration of
glioblastoma cell lines in vitro, and IGF1R inhibition has been
reported to contribute to growth suppression of primary cell lines
derived from human high-grade gliomas [30,31]. In contrast to
other growth factor receptors, and most notably to EGFR (which is
also involved in gliomagenesis), IGFIR activation in tumors is
hardly ever due to gene amplification or point mutations. Rather,
constitutive receptor activation is commonly caused by increased
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ligand availability, depending on a number of factors, such as
decreased levels of IGF-binding proteins (IGFBPs) and/or IGF2R (a
decoy receptor primarily sequestering IGF-II), or increased release
of IGFs through paracrine or autocrine processes [15]. The working
hypothesis underlying the present study is that autocrine
activation of IGFR1 is a likely occurrence in high-grade gliomas,
where hypoxic conditions frequently prevail, in spite of active
neoangiogenesis, due to high proliferation rates and to the
aberrant structure of newly formed vessels [32,33]. In IGF1R-
expressing cells, hypoxia may trigger a positive self-regulatory
circuit mediated by HIF1 activation and subsequent release of IGF-
I [7], an important by-product of the circuit being increased VEGF
release. If such a circuit could be demonstrated to operate in
gliomas, this would constitute a powerful rationale for using one of
the several recently developed IGF1R-targeting agents in the
clinical management of this tumor type. To verify our hypothesis,
we first demonstrated that IGF1R activation by exogenously
applied IGF-I was indeed able to increase the levels of HIF1q, the
inducible subunit controlling HIF1 transcriptional activity, in
human U-87 MG glioblastoma cells under normoxic conditions; as
a result, HIF1 transcriptional activity also increased, as demon-
strated using a GFP-expressing reporter construct (Fig. 1B) and by a
significant increase in VEGF release (Fig. 1C). All these effects were
abrogated, or significantly reduced, by exposure to NVP-AEW541, a
pyrrolopyrimidine derivative selectively targeting the catalytic
domain of IGF1R [21]. These observations are in agreement with
findings reported for other tumors/cell lines, corroborating the
existence of an IGF-HIF1-VEGF axis in different tumor types
[6,11,34,35]. Growth factor receptor activation is known to
increase HIF1a levels in an oxygen-independent fashion, and this
effect is generally attributed to increased protein synthesis via the
PI3K/Akt/mTOR pathway [36]. In the present study, the contribu-
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tion of this pathway to HIF1 activation was not specifically
addressed; however, it is worth noting that, in the case of IGF1R,
the “canonical” model for PI3K/Akt/mTOR activation involves
intracellular engagement of insulin receptor substrates (IRS) 1 and
2 to the activated IGF1R, which in turn leads to recruitment of the
regulatory subunit (p85) of PI3K, followed by activation of the
p110 catalytic subunit [37]. As mTOR is known to downregulate
IRS-1/2 [38,39], activation of this pathway would have a self-
limiting impact on HIFla synthesis. However, other signaling
cascades downstream of IGF1R might lead to HIF1 activation:
besides the Ras/Raf/MEK/ERK pathway, known to enhance HIF1
activity by phosphorylating the C-terminal transactivating domain
of HIFla and facilitating interactions with transcriptional co-
activators [36], the JAK/STAT pathway has also been implicated as
an important mediator in the IGF-dependent signaling in a number
of tissues and tumor types [40]. Of note, constitutive activation of
STATS3, as indicated by Tyr,qs phosphorylation, has been reported
in brain tumors [10,41], where it may play a major role in driving
angiogenesis, but up to now its role in IGF signaling has not been
extensively investigated in this tumor type. In our experimental
model, constitutively active STAT3C increases HIFla protein
levels, thereby supporting that STAT3-dependent signaling path-
ways contribute to HIF1 activation. In addition, our data indicate
that in U-87 MG glioblastoma cells STAT3 acts downstream of
IGF1R activation and upstream of HIF1, based on the ability of DN-
STAT3F to prevent the increase in HIF1a normally observed upon
exposure to exogenous IGF-I (Fig. 2). Mechanistically, the effect of
STAT3 on HIFla levels seems to depend on a variation of the
canonical IGF1R-PI3K-AKT-mTOR model outlined above: STAT3
can be recruited by the IGF1R independent of IRS1/2 [12] and
subsequently regulates Akt1 expression [42], which may increase
HIF1a protein synthesis. In addition, STAT3 has been shown to
increase HIFla. mRNA levels [43] and to stabilize HIFla by
inhibiting its binding to the Von Hippel-Lindau protein [44]. Finally
STAT3 and HIF1a have been shown to form a multiprotein complex
with transcription coactivators CBP/p300 and Ref-1/Ape, that
binds to the VEGF promoter and regulates gene expression [45].
Having established that an IGF-(STAT3)-HIF1 axis operates in U-
87 MG cells, we then proceeded to investigate the existence of an
autocrine circuit involving these same players. To this aim, we
induced HIF1 activation independent of IGFIR stimulation, by
exposing the cells to CoCl, to stabilize HIF1«, and observed that
under these experimental conditions IGF1R was activated in the
absence of exogenously added ligands. Importantly, such activa-
tion was prevented by YC-1, a guanylyl cyclase activator that is also
known to inhibit HIF1ae accumulation and HIF1 transcriptional
activity [27-29], indicating that HIF1 activation is an obligatory
step in the circuit (Fig. 3). Incidentally, this experiment also
confirmed the involvement of STAT3 in this signaling axis, based on
the increase in pTyr;os5-STAT3 induced by CoCl, and the ability of
YC-1 to prevent it. The observed cell-autonomous activation of
IGF1R strongly suggests that autocrine stimulation of the receptor
occurs following HIF1-induced release of specific ligand(s). Indeed,
CoCl,-stimulated cells were found to release IGF-II, the product of a
recognized HIF1 target gene; IGF-II release was significantly
suppressed by YC-1 at the same concentration that was shown to
block IGF1R and STAT3 activation. Similar autocrine regulatory
loops have been described in cell lines and xenografts derived from
other tumor types, where they appear to play a key role in tumor
cell survival and angiogenesis [1,2,11]. It is important to underline
that the circuit can be set in motion by different stimuli besides
IGF1R stimulation, including HIF1 activation by hypoxia and/or
growth factors and STAT3 activation by growth factor or cytokine
receptors. Thus, in principle, strategies directed at any one step of
the circuit, including targeting HIF1 activity with small molecules
or nucleotide-based agents [17,18], or STAT3 activation using

inhibitors of upstream kinases [46,47] should have a disruptive
effect on the whole circuit. As antibodies and small molecule
tyrosine kinase inhibitors targeting IGFR1 are by far the most
advanced in the clinic [48,49], in the present study we decided to
use NVP-AEW541 to verify how blocking this step in the circuit
would affect the survival and pro-angiogenic features of glioblas-
toma cells. Recent data by Moser et al. indicate that in IGF-I-
stimulated pancreatic cancer cell inhibition of IGF1R activation by
NVP-AEW541 was accompanied by decreased STAT3 phosphory-
lation and led to reduced IGF-dependent growth [11]; inhibition of
tumor growth and angiogenesis was also observed in mice bearing
pancreatic cancer xenografts following NVP-AEW541 treatment in
vivo. In U-87 MG cells, we found that NVP-AEW541 inhibited cell
growth in a time and concentration-dependent fashion (Fig. 4A).
Cell survival was also inhibited in U-87 MG cells following HIF1a
stabilization with CoCl, (Fig. 4B); however, the extent of growth
inhibition by NVP-AEW541 was not significantly affected by the
HIF1a-stabilizing treatment, even though NVP-AEW541 was
indeed able to reduce HIFla levels in CoCl,-treated cells
(Fig. 5A). So, from our results it would appear that, while IGF1R
receptor inhibition has a distinct effect on U-87 MG cell survival,
the fact that HIF1« stabilization is also significantly prevented
does not result in any added benefit in terms of growth inhibition,
which therefore seems to depend on disruption of IGF1R signaling
as a whole rather than solely on disruption of the described IGF-
(STAT3)-HIF1 circuit. This is not altogether surprising, given the
multiple signaling pathways downstream of IGF1R that might
contribute to cell survival and that are curtailed by NVP-AEW541,
whereas blocking HIF1a accumulation (by RNA interference) has
been shown to cause only marginal cytotoxicity in glioma cells in
vitro [50]. In contrast, blocking IGFR1 activation caused by HIF1
stabilization resulted in a significant decrease in VEGF release in
NVP-AEW541-treated cells, whereas no effect was observed on
VEGF release under baseline conditions (i.e. when HIF1« levels
were not artificially elevated by CoCl,). Therefore, based on these
results, activation of the circuit does seem to be crucial in
maintaining the angiogenic potential of U-87 MG cells, as assessed
by their ability to release significant amounts of VEGF. To support
this conclusion, silencing HIF1« by RNA interference was shown to
inhibit the in vivo growth of xenografts obtained from the same
glioma cell lines, the survival of which was only weakly impaired in
vitro [50], which strongly suggests that the pro-angiogenic effect of
HIF1 is crucial for the in vivo growth of glial tumors, rather than its
ability to directly stimulate intracellular pro-survival mechanisms.
On the other hand, the fact that blocking IGFR1 is able to curb HIF1
activation should not be overlooked, in view of its possible
implications for the design of drug combinations. HIF1 is well
known for its role as a resistance factor impairing the activity of a
number of cytotoxic agents in several tumor types [51,52]. More
specifically, in vitro studies on glioma cell lines indicate that HIF1
activation significantly impairs the cytotoxicity of two of the very
few agents that show some effect against this tumor type, namely
temozolomide and BCNU [53,54], and this scenario is very likely to
occur in vivo in glioblastomas, as mentioned above. Thus, blocking
IGF1R signaling with NVP-AEW541, or with one of the several
agents targeting this receptor that are currently undergoing
clinical trials, could be successfully exploited in the clinical
management of gliomas for its double effect on tumor angiogenesis
and on drug sensitivity of hypoxic cells.

To conclude, our data support the hypothesis that in U-87 MG
human glioma cells a self-amplifying autocrine loop exists, that
can be activated by IGFs and hypoxia, as well as by signaling
pathways that impinge on STAT3, and that can lead to enhanced
angiogenic potential via an increase in VEGF release (Fig. 6).
Inhibition of IGF1R tyrosine kinase activity, e.g. by using NVP-
AEW541, can disrupt such a circuit, even when the primary trigger
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Fig. 6. Proposed model for a self-regulatory circuit involving the IGF system, STAT3
and HIF1, and regulating cell proliferation and angiogenesis in human U-87 MG
glioma cells.

angiogenesis

for circuit activation is not the engagement of the receptor by its
ligands, thereby representing a potential therapeutic approach,
especially for the management of solid tumors characterized by
hypoxic regions.
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