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We investigate the Tolman-Oppenheimer-Volkoff equations for the generalized Chaplygin gas with the

aim of extending the findings of V. Gorini, U. Moschella, A. Y. Kamenshchik, V. Pasquier, and A.A.

Starobinsky [Phys. Rev. D 78, 064064 (2008)]. We study both the standard case, where we reproduce

some previous results, and the phantom case. In the phantom case we show that even a superluminal group

velocity arising for �> 1 cannot prevent the divergence of the pressure at a finite radial distance. Finally,

we investigate how a modification of the generalized Chaplygin gas equation of state, required by

causality arguments at densities very close to �, affects the results found so far.
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I. INTRODUCTION

The presence of a dark energy (DE) component in our
Universe seems to be a matter of fact. In this situation, the
study of spherically symmetric solutions of the Einstein
equations with additional matter or geometric terms de-
scribing DE turns out to be an important issue. Moreover,
since the possibility of a phantom DE, namely, a dark
component which has an equation of state parameter w<
�1, is not completely ruled out by observation [1–5], this
study is even more impelling from the standpoint of worm-
holelike solutions.

In this paper we generalize the results found in [6] to the
case of a DE described by the generalized Chaplygin gas
(gCg) [7] (see also [8]), in particular, in the light of our
recent paper [9], where the possibility of a superluminal
regime has been noticed; in [9] we have shown that the
superluminal regime does not contradict causality pro-
vided some modifications of the gCg equation of state
are made which do not affect the present and past evolution
of the Universe. It is also interesting to investigate the
effects of a very large gCg group velocity on the geome-
tries already found in [6].

In Sec. II, we write down the Tolman-Oppenheimer-
Volkoff (TOV) equations, and in Sec. III we exhibit
their special constant pressure solutions. Sections IV and
V are devoted to the analysis of the normal case jpj<�
and of the phantom one jpj> �, respectively. In Sec. VI
we address the superluminality issue and we investi-
gate how a modification of the gCg equation of state
changes the pressure solution without spoiling the results
found. Section VII is devoted to discussion and conclu-
sions; in particular, we emphasize the differences arising
in the gCg model compared to the standard Cg (� ¼ 1)
case.

II. TOLMAN-OPPENHEIMER-VOLKOFF
EQUATIONS IN THE PRESENCE OF THE

GENERALIZED CHAPLYGIN GAS

We assume a static spherically symmetric space-time
geometry (c ¼ 8�G ¼ 1)1:

ds2 ¼ e�ðrÞdt2 � e�ðrÞdr2 � r2ðd�2 þ sin2�d�2Þ (1)

and a perfect fluid stress-energy tensor

T�� ¼ ð�þ pÞu�u� � g��p: (2)

Einstein’s equations, conservation of the energy and the
boundary condition

e��ð0Þ ¼ 1 (3)

together imply the TOV [10,11] differential equation

dp

dr
¼ �ð�þ pÞðMþ 4�r3pÞ

rð8�r� 2MÞ ; (4)

where

MðrÞ ¼
Z r

0
�ðuÞ4�u2du (5)

satisfies the equation

dM

dr
¼ 4�r2�; Mð0Þ ¼ 0: (6)

The equation of state of the gCg [7,8] is given by

p ¼ ���þ1

�� ; (7)

where � and � are positive constants. By plugging (7) in

1In the preceding paper [6] we have used a different normal-
ization: G ¼ 1.
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the TOV equation, we get the following first-order system
of differential equations:

djpj
dr

¼ ð��þ1 � jpj�þ1ÞðM� 4�r3jpjÞ
jpj�rð8�r� 2MÞ ; (8)

dM

dr
¼ 4�r2

��þ1

jpj� ; (9)

written in terms of the modulus of the pressure and of the
parameter � � 1=�.

III. CONSTANT PRESSURE SOLUTIONS

One solution with constant pressure is the de Sitter
universe:

p ¼ �� ¼ ��; MðrÞ ¼ 4
3��r3; (10)

where the de Sitter radius is given by

rdS ¼
ffiffiffiffi
3

�

s
(11)

and the curvature does not depend on �.
The Einstein Static Universe (ESU) is another solution:

p ¼ ��eff � �3�1=ð�þ1Þ�;

� ¼ �eff þ �� ¼ 3�=ð�þ1Þ�;

�� ¼ 2�eff ; MðrÞ ¼ 4��effr
3:

(12)

The radius of the spatial spherical section of the ESU is

rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�=ð�þ1Þ

�

s
: (13)

In the limit � ! 1 the two radii rE and rdS coincide (but
not the geometries), while in the ultrasuperluminal � ! 0

limit rE ! ffiffiffiffiffiffiffiffiffi
1=�

p
.

IV. THE NONPHANTOM CASE � > jpj
Consider the system (8) and (9) and assume the domi-

nant energy condition � > jpj.
We fix the pressure pðrbÞ and the mass MðrbÞ at some

value r ¼ rb. The following inequality holds:

4�rb >MðrbÞ: (14)

At these initial conditions the pressure can neither vanish
nor attain the value p ¼ ��. The former case is excluded
because, when p ! 0, the right-hand side (rhs) of Eq. (8) is
positive and therefore the pressure cannot vanish. The
value p ¼ �� is also excluded, which can be seen by
rewriting Eq. (8) as follows:

d lnðjpj�þ1 ���þ1Þ ¼ �ð�þ 1ÞM� 4�r3jpj
rð8�r� 2MÞdr:

(15)

If the pressure could approach��, the left-hand side (lhs)
would diverge logarithmically while the rhs would stay
regular: a contradiction.
If the condition � > jpj is satisfied, then �ðrÞ>� or

equivalently

��< pðrÞ< 0: (16)

Equation (9) then implies thatMðrÞ grows at least as fast as
r3 and, therefore, the equality 4�r0 ¼ Mðr0Þ is achieved at
a certain radius r0.
At r ¼ r0 the denominator on the rhs of Eq. (8) diverges

unless r20pðr0Þ ¼ �1.
To elaborate on this point let us rewrite Eq. (8) by

expanding the relevant quantities in the neighborhood of
r0. Let p0 and �0 be the values of the pressure and of the
energy density at r0. To first order the mass is given by

MðrÞ ¼ 4�r0 � 4�r20
��þ1

jp0j�
	; (17)

where we have set 	 ¼ r0 � r. As for the pressure, we have

jpðrÞj ¼ jp0j þ ~pð	Þ; (18)

where ~pð	Þ vanishes when 	 ! 0.
Hence, for 	 ’ 0 Eq. (8) takes the following approxi-

mate form:

d~p

d	
¼ ð��þ1 � jp0j�þ1Þð1� r20jp0jÞ

2	ðjp0j� � r20�
�þ1Þ : (19)

A logarithmic divergence is manifest unless

jp0j ¼ 1

r20
: (20)

The inequality��< pðrÞ< 0 provides a lower bound for
r0:

��<p0 ¼ � 1

r20
! r0 >

ffiffiffiffi
1

�

s
; (21)

the inequality �ðrÞ>� implies a bound for the mass
function:

MðrÞ> 4
3�r

3�: (22)

Since Mðr0Þ ¼ 4�r0 it follows thatffiffiffiffi
1

�

s
< r0 <

ffiffiffiffi
3

�

s
(23)

[see Eq. (13)]. The approximate equation for ~p is written

d~p

d	
¼ ~p

2	
þ C0; (24)

where

C0 ¼ 1

2r30
½ðr20�Þ�þ1 � 3�; (25)
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so that

~p ¼ A
ffiffiffi
	

p þ 2C0	; (26)

where A is an integration constant. The solutions pðrÞ,
MðrÞ are characterized by the parameters A and r0, which
are in turn determined by the boundary conditions at r ¼
rb.

In order to avoid the apparent singularity on the rhs of
Eq. (8) it is useful to change the radial coordinate as
follows:

r ¼ r0 sin
: (27)

The gCg TOV equations take the following form:

djpj
d


¼ ð��þ1 � jpj�þ1ÞðM� 4�r30jpjsin3
Þ cos

jpj� sin
ð8�r0 sin
� 2MÞ ;

(28)

dM

d

¼ 4�r30sin

2
 cos

��þ1

jpj� : (29)

We investigate these equations in the vicinity of the equator
(
 ¼ �

2 ) by the substitution


 ¼ �

2
� �; (30)

where � is positive. Once more, we expand the pressure
and the mass,

jpj ¼ 1

r20
þ �pð�Þ; (31)

M ¼ 4�r0 � 2�r0ðr20�Þ�þ1�2; (32)

to lowest order in �. We can then write an approximate
equation for �pð�Þ:

d �p

d�
¼ �p

�
þ C1�; (33)

where

C1 ¼ 1

2r20
½ðr20�Þ�þ1 � 3�: (34)

The solution of (33) is

�p ¼ B�þ C1�
2; (35)

where B is an integration constant. The presence of the
parameter � in C1 does not appreciably affect the equator
crossing being of subleading order in �. The Einstein static
solution corresponds to the choice B ¼ 0 and C1 ¼ 0:

r20 ¼
31=ð�þ1Þ

�
: (36)

The solution (35) can now be continued to negative values
of � and can describe the equator crossing. This can be
done by introducing the variable

y ¼ 1

sin

; (37)

so that y 2 ½1;1Þ. Equations (28) and (29) become

djpj
dy

¼ �ð��þ1 � jpj�þ1ÞðMy3 � 4�r30jpjÞ
jpj�y3ð8�r0 � 2MyÞ ; (38)

dM

dy
¼ � 4�r30�

�þ1

y4jpj� : (39)

Following [6] we now show that the quantity 8�r0 � 2My
is always positive.
The rhs of Eq. (39) attains the smallest possible value at

p ¼ ��; this implies that

8�r0 � 2My � 8�r0 � 8��r30
3y2

: (40)

The rhs is positive for

y2 >
�r20
3

: (41)

Since by definition y2 > 1, the inequalities (23) and (41)
imply that 8�r0 � 2My is always positive.
We are now in a position to investigate solutions of the

TOV equations for 
 ! �, i.e. y ! 1.
Case 1. Consider solutions for which the pressure at-

tains, at infinity, a generic value in the range 0< jp1j<�.
For such a solution to exist, the integral

Z y

yb

dv
Mv3 � 4�r30jpj
v3ð8�r0 � 2MvÞ (42)

must converge for y ! 1, where yb ¼ r0=rb; M1 cannot
be either positive (otherwise 8�r0 � 2Mv would become
negative) or negative (otherwise the integral would diverge
logarithmically). Therefore, M1 must necessarily vanish.
Then, Eq. (39) gives the asymptotic behavior

M ’ 4�r30�
�þ1

3y3jp1j�
; (43)

and, from Eq. (38),

djpj
dy

’ �r20
ð��þ1 � jp1j�þ1Þð��þ1 � 3jp1j�þ1Þ

6jp1j2�y3
:

(44)

Case 2. jpðyaÞj ¼ 0 at a certain ya > 1. Let MðyaÞ ¼
Ma. In the neighborhood of ya Eq. (38) can be written as

djpj
dy

’ � ��þ1Ma

jpj�ð8�r0 � 2MayaÞ
: (45)

In order to have a nonpositive derivative it is necessary that
Ma � 0. First consider the case Ma � 0. Assume the
following asymptotic behavior for the pressure in the
neighborhood of ya:
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jpj ’ Dðya � yÞ�; (46)

where D and � are positive constants. Equation (45) gives

D�ðya � yÞ��1 ¼ ��þ1Ma

D�ðya � yÞ��ð8�r0 � 2MayaÞ
(47)

and therefore

� ¼ 1

�þ 1
; (48)

D�þ1 ¼ ð�þ 1Þ��þ1Ma

8�r0 � 2Maya
: (49)

If Ma ¼ 0, we assume, near ya:

MðyÞ ’ M1ðya � yÞ
 ; (50)

jpj ’ Eðya � yÞ�; (51)

where M1 and E are positive constants and 0< 
 < �.2

Substituting (50) and (51) into Eq. (39) we get

M1
ðya � yÞ
�1 ¼ 4�r30�
�þ1

y4aE
�ðya � yÞ�� : (52)

It follows that

M1E
� ¼ 4�r30�

�þ1

y4a

(53)

and


 ¼ 1� ��: (54)

Since 
 > 0 we can infer that

1

�þ 1
<�<

1

�
: (55)

Plugging (50) and (51) into Eq. (45) one finds

E�ðya � yÞ��1 ’ ��þ1M1

E�ðya � yÞ���
8�r0
: (56)

Therefore, it follows that

� ¼ 1þ 


�þ 1
(57)

and

E�þ1 ¼ ��þ1M1

8�r0�
: (58)

Combining (57) and (58) with (53)–(55) we obtain

� ¼ 2

1þ 2�
; 
 ¼ 1

1þ 2�
; (59)

and

M1 ¼ 16�r0
��þ1ð1þ 2�ÞE

�þ1;

E2�þ1 ¼ r20�
2ð�þ1Þð1þ 2�Þ2

4y4a
:

(60)

Case 3. p1 ¼ ��. In this case, rewrite the pressure as
follows:

jpj ¼ �� j~pj: (61)

Equation (38) has the following asymptotic form:

dj~pj
dy

’ � ð�þ 1Þj~pj
2y

; (62)

whose solution is

j~pj ¼ F

yð�þ1Þ=2 ; (63)

where F is a positive integration constant.

V. THE PHANTOM CASE � < jpj
The violation of the dominant energy condition is inter-

esting for the following two reasons:
(1) � < jpj is a necessary condition for the existence of

wormholes solutions [12,13] (but it is not sufficient
for their stability [14]).

(2) The possibility of a phantom DE has not been ruled
out by observation [1–5].

We consider Eqs. (8) and (9) together with the assumption

pðrbÞ<��: (64)

Case A. If

MðrbÞ � 4�r3bjpðrbÞj< 0 (65)

then djpj=dr > 0 at r ¼ rb. Since jpj grows and satisfies
condition (64), the term M� 4�r3jpj stays negative also
for r > rb. Therefore, djpj=dr > 0 for r > rb. Then, there
are three possible asymptotic behaviors:
(1) For r ! 1, jpj tends to a certain finite value

jpð1Þj>�.
(2) For r ! 1, jpj diverges.
(3) For r tending to a finite value, say r1, jpj diverges.

The first subcase is ruled out since the rhs of Eq. (8)
diverges for r ! 1.
The second subcase cannot take place because Eq. (8)

has the following asymptotic form:

djpj
dr

’ 1

2
rjpj2; (66)

whose solution

2This inequality comes from Eqs. (38) and (39) written as

djpj
dM

¼ ð��þ1 � jpj�þ1ÞðMy3 � 4�r30jpjÞy
4�r30�

�þ1ð8�r0 � 2MyÞ ;

which vanishes for y ! ya.
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jpj ’ 4jpðrbÞj
4þ jpðrbÞjðr2b � r2Þ (67)

diverges at the finite distance r2 ¼ r2b þ 4=jpðrbÞj. This is
a contradiction.

Then, we are left with subcase 3. In the neighborhood of
r ¼ r1, assume for the pressure the following power law
behavior:

jpj ¼ p1

ðr1 � rÞ� ; (68)

where �> 0. Let Mðr1Þ ¼ M1; Eq. (8) has the following
form in the neighborhood of r ¼ r1:

�p1

ðr1 � rÞ�þ1 ¼ 4�r21p
2
1

8�r1 � 2M1

ðr1 � rÞ�2�; (69)

from which

� ¼ 1 (70)

and

p1 ¼ 8�r1 � 2M1

4�r21
: (71)

Case B. If

MðrbÞ � 4�r3bjpðrbÞj> 0; (72)

then djpj=dr < 0 at r ¼ rb. From Eq. (8) it is easily seen
that jpj cannot decrease ad libitum because at a certain
finite radius, say r2, the term M� 4�r3jpj changes sign,
becoming negative.

Then, the pressure has the following profile: from pðrbÞ
it grows up to a certain (negative) value, say pmax at r ¼ r2,
and then decreases according to the behavior described in
subcase 3 of A, diverging at r ¼ r1 with r1 > r2.

In general, pmax � ��. We prove that the equality is
ruled out. We rewrite the pressure equation as follows:

d lnðjpj�þ1 ���þ1Þ ¼ �ð�þ 1ÞM� 4�r3jpj
rð8�r� 2MÞdr:

(73)

If M� 4�r3jpj> 0 and 8�r� 2M> 0, we have a loga-
rithmic divergence on the lhs while the rhs is regular, i.e. a
contradiction.

If we demand that 8�r� 2M vanishes in r2, Eq. (73)
has the following form in the neighborhood of r ¼ r2:

d lnðjpj�þ1 ���þ1Þ ¼ ��þ 1

2

dr

r� r2
; (74)

whose solution is

jpj�þ1 ���þ1 ’ jr� r2j�ð�þ1Þ=2: (75)

For r ! r2 the lhs vanishes while the rhs diverges, i.e.
another contradiction.

The last possibility is thatM� 4�r3jpj ¼ 0 and 8�r�
2M ¼ 0 at r ¼ r2. In this case

p ¼ � 1

r22
(76)

and from Eq. (9)

8�r� 2M ’ 8�ðr� r2Þ½1� ðr22�Þ�þ1�: (77)

Since jpj>� and r22�< 1 the rhs is negative, while
8�r� 2M> 0 by assumption, which is again a
contradiction.
In conclusion, only two regimes are possible for a stellar

object immersed in the phantom gCg:
(1) If the boundary conditions at the surface of this

object satisfy Eq. (65), then jpj grows and diverges
at a finite radius r ¼ r1.

(2) If instead inequality (72) holds true, then the pres-
sure grows, attaining a maximum (negative) value
pmax <�� at r ¼ r2, and then it decreases, diverg-
ing at r ¼ r1.

It is important to stress that, as it can be seen from Eqs.
(70) and (71), the divergence of the pressure at a finite
radius does not depend on the parameter �. Therefore, the
formation of a curvature singularity at a finite value of r is
unavoidable even for a very large gCg sound speed.
Then we are in the position to generalize the theorem in

[6]:
In a static spherically symmetric universe filled with the

phantom generalized Chaplygin gas, the scalar curvature
becomes singular at some finite value of the radial coor-
dinate and the universe is not asymptotically flat.

Wormholelike solutions for a universe filled exclusively
with the phantom generalized Chaplygin gas

Let us consider 8�rb � 2Mb > 0 and pb <�� and
investigate the solution of Eq. (8) for small values of r.
There are two possibilities:
(1) 8�r� 2MðrÞ remains positive up to r ¼ 0;
(2) 8�r� 2MðrÞ vanishes at a certain r ¼ r0.

In the first case, let pðr ¼ 0Þ ¼ p0 and, using Eqs. (8) and
(9), we expand the pressure modulus and the mass in the
neighborhood of r ¼ 0:

jpj ¼ jp0j þ ðjp0j�þ1 ���þ1Þð3jp0j�þ1 ���þ1Þr2
12jp0j2�

;

(78)

M ¼ 4���þ1

3jp0j�
r3: (79)

In the second case 8�r� 2M vanishes at r ¼ r0. As for the
nonphantom case of Sec. IV, M� 4�r3jpj vanishes at r0
and p0r

2
0 ¼ �1. While in the nonphantom case r0 is the

maximum value of the radial coordinate, in the phantom
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case it is the minimum one and represents the radius of a
throat.

We now investigate the crossing of the latter. To this
purpose, we change coordinates as follows:

r ¼ r0 cosh�: (80)

Equations (8) and (9) become

djpj
d�

¼ ð��þ1 � jpj�þ1ÞðM� 4�r30jpjcosh3�Þ sinh�
jpj� cosh�ð8�r0 cosh�� 2MÞ ;

dM

d�
¼ 4�r30cosh

2� sinh�
��þ1

jpj� : (81)

The solution of the mass equation near r0, i.e. for small �,
is

M ¼ 4�r0½1þ 1
2ðr20�Þ�þ1�2�; (82)

while, rewriting the pressure as

p ¼ � 1

r20
þ ~p; (83)

Eq. (81) takes the following form near the throat:

d~p

d�
¼ ~p

�
þ CT�; (84)

where

CT ¼ 3� ðr20�Þ�þ1

2r20
: (85)

The solution of this equation is

~p ¼ D�þ CT�
2; (86)

where D is an arbitrary constant. It is important to empha-
size that the wormholelike solutions that we have found
here are completely different from the Morris-Thorne-
Yurtsever ones [13] since they do not connect two asymp-
totically flat space-time regions, but two regions in which
the space-time has a singularity.

VI. THE SUPERLUMINAL NONPHANTOM
GENERALIZED CHAPLYGIN GAS AND THE

CAUSALITY PROBLEM

The gCg speed of sound is

c2s ¼ ���þ1

��þ1
: (87)

In the range �> 1 (i.e. �< 1) it can exceed the speed of
light for values of the energy density sufficiently close to
�. This occurs for

� < �1=ð�þ1Þ� � �sl: (88)

The largest value of �sl is attained at the maximum of the

function �1=ð�þ1Þ, namely, at

�max ¼ exp

�
W

�
1

e

�
þ 1

�
� 3:591; (89)

where W is the Lambert function. At � ¼ �max one has
�sl � 1:321�.
In cosmology a speed of sound exceeding 1 does not

contradict causality. Indeed, what is required by causality
is that the signal (i.e. the wave front) velocity does not
exceed that of light. As we have shown in [9] using an
underlying tachyonlike field model for the gCg, the condi-
tion that cs � 1 for the asymptotic ‘‘vacuum’’ state � ¼
�p ¼ � is sufficient for the purpose. Therefore, following
[9], we solve the causality problem for �> 1 by smoothly
modifying the gCg equation of state to that of the standard
Chaplygin gas (� ¼ 1) at some value � ¼ �c very close to
�.
If we assume that �c < �0, where �0 is the present

cosmological energy density, the required change in the
equation of state will occur in our future. However, this
escamotage does not work in the geometries described in
the present paper because the change takes place at a finite
coordinate distance r.
In order to quantitatively describe the transition in the

equation of state, assume that � ¼ �c for r ¼ rc and
suppose that � is now a function of the energy density so
that� ! 1 sufficiently fast for�< �< �c and it becomes
constant for � > �c. A simple example of such a function
is

� ¼ 1þ ��

2

�
tanh

�
�� �c

�

�
þ 1

�
; (90)

where � is a small (i.e. j�� �cj � �) positive parameter
which tunes the rapidity of the transition and �� is a
constant.
We now investigate the effect of the transition in the

equation of state on the pressure and mass configurations in
order to understand if all the results found so far still hold
true.
Assume that �c is close to �, i.e.

x � �c ��

�
� 1: (91)

Then from (7) we have

jpcj ¼ �½1� �ðrcÞx�; (92)

to first order in x. Equation (8) now reads

djpj
dr

¼ ð��ðrÞþ1 � jpj�ðrÞþ1ÞðM� 4�r3jpjÞ
jpj�ðrÞrð8�r� 2MÞ (93)

with an r-dependent parameter �. We expand all the
relevant quantities in the neighborhood of rc:

r ¼ rc þ 	; MðrÞ ¼ Mc þ 4�r2c�c	;

jpjðrÞ ¼ jpcj þ ~pð	Þ; �ðrÞ ¼ �c þ @�

@r

��������rc

	:
(94)
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Assume that �c ¼ 1 and substitute formulas (91) and (92)
and the expansions (94) in Eq. (93). To first order in 	 and
x, we find

d~p

d	
¼ 2�ðMc � 4�r3c�Þ

rcð8�rc � 2McÞ x� ðMc � 4�r3c�Þ
rcð8�rc � 2McÞ ~p: (95)

Since @�=@r does not appear in Eq. (95) we can conclude
that a rapid variation from the gCg to the standard
Chaplygin gas equation of state at � ¼ �c does not change
the results obtained so far.

We did not consider here the case of the phantom gCg
(i.e. � <�) because the standard phantom Chaplygin gas
(� ¼ 1) is already superluminal by itself [see Eq. (87)].
Moreover, note that, in the phantom case, in order that c2s <
1 the energy density must satisfy the inequality

�1=ð�þ1Þ�<�<�; (96)

which implies �< 1.
On the other hand, we have shown in Sec. V that the

pressure has a singularity at a finite radial distance r, where
the energy density vanishes. Then we conclude that in the
phantom case a superluminal speed of sound cannot be
avoided.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have investigated solutions of the
Tolman-Oppenheimer-Volkoff equations for static and
spherically symmetric configurations of the generalized
Chaplygin gas, thus generalizing the same analysis carried
out in [6] for the standard � ¼ 1 case. We have found the
same geometrical configurations discovered in [6]. In the
normal (nonphantom) case all solutions, except the
de Sitter one, realize a three-dimensional spheroidal ge-
ometry because the radial coordinate achieves a maximum
value r0, dubbed the equator. After the equator crossing,
the same three scenarios studied in [6] may take place: a
regular spheroid, a truncated spheroid having a scalar
curvature singularity at a finite radial distance, and a closed
spheroid having a Schwarzschild-type singularity at the
south pole, namely, for 
 ¼ �. The presence of � does
not give rise to any new scenario but slightly modifies the
pressure and mass profiles in the three scenarios mentioned
above, as we have shown by studying their asymptotic
behavior.

We have also considered the possibility of a phantom
gCg. In this case there is no equator and all solutions have
the geometry of a truncated spheroid with the same type of
singularity; namely, the pressure diverges at a certain finite
radius. We point out that the asymptotic behavior of the
pressure near the resulting curvature singularity is com-

pletely independent of �. There are only two spherically
symmetric static configurations in the presence of the
phantom gCg: the first is a truncated spheroid, whereas
the second is a wormholelike throat. The peculiar property
of the latter is that it does not connect two asymptotically
flat space-times. In these cases, the presence of � does not
affect the qualitative behavior of the pressure. We have also
shown that a smooth transition from the generalized to the
standard Chaplygin gas near the asymptotic value p ¼
�� ¼ ��, required to preserve causality, does not affect
the validity of all the previously obtained results.
Finally, let us briefly recapitulate the main similarities

and differences between the cases of the standard
Chaplygin gas and of the gCg. First, the main result of
our present investigation is that all geometrical configura-
tions (and only these ones) which we have found in [6] for
the standard case are also present for the whole range of the
gCg parameter 0<�<1. Second, in spite of the quali-
tative similarity between the solutions for the gCg and the
standard Chaplygin gas, there exists quantitative differ-
ences between these cases, especially for the normal (non-
phantom) gCg, case 2 (see Sec. IV), where the �
dependence of the pressure profile and the geometric char-
acteristics acquire a rather involved character. Third, an-
other interesting aspect has been found in the case of the
superluminal normal gCg. As we showed in [9], for this
case there is a good agreement with observation not only at
the level of global cosmological dynamics, but also for the
description of perturbations responsible for large scale
structure formation.We have shown here that the technique
employed in [9] to solve the problem of causality in the
superluminal fluid could be applied also in the context of
the study of static spherically symmetric solutions of the
TOV equations.
A natural development of the techniques and results

contained in this paper would be the analysis of a starlike
object in the standard dynamical gCg universe and of a
local spherical collapse of a gCg sphere, the latter process
being a kind of generalization of the Lemaı̂tre-Tolman-
Bondi solution [15–17]. Though we are fully aware of the
difficulties of these problems, we are still hopeful to get
some results in this direction in the near future.
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