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Standard entropy calculations in quantum field theory, when applied to a subsystem of definite volume,

exhibit area-dependent UV divergences that make a thermodynamic interpretation troublesome. In this

paper we define a renormalized entropy which is related with the Newton-Wigner position operator.

Accordingly, whenever we trace over a region of space, we trace away degrees of freedom that are

localized according to Newton-Wigner localization but not in the usual sense. We consider a free scalar

field in dþ 1 spacetime dimensions prepared in a thermal state and we show that our entropy is free of

divergences and has a perfectly sound thermodynamic behavior. In the high temperature/big volume limit

our results agree with the standard QFT calculations once the divergent contributions are subtracted from

the latter. In the limit of low temperature/small volume the entropy goes to zero but with a different

dependence on the temperature.
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I. INTRODUCTION

Thermodynamics is a very powerful tool for describing
complex physical systems. Beside its evident experimental
success in the laboratory, thermodynamics is used in the
everyday practice of cosmology, for instance when the
conservation of entropy is applied to a comoving volume
of the expanding Universe (see e.g. [1]); on a more specu-
lative level, the quest for a theory of quantum gravity often
makes use of thermodynamic and entropic arguments,
since they are supposed to be somewhat independent of
the details of the underlying dynamics. Especially in view
of such adventurous applications, it is certainly worth
understanding better and better the connection between
thermodynamics and microphysics within those physical
regimes which are best known and under control. The
tendency to thermal equilibrium, that in classical statistical
physics relies on ergodic or mixing hypotheses, in quantum
mechanics seems to be naturally driven by the correlations
that a subsystem inevitably develops with its environment.
This general view, which has occasionally appeared in the
literature at the level of common wisdom, is now being put
on firmer ground e.g. in the interesting book [2] and in
related ongoing works. During time evolution, the reduced
quantum state of a subsystem tends in fact to approach that
of a thermal Gibbs state �thermal / e��H, H being the
Hamiltonian operator of the subsystem. This happens,

under some generic circumstances and on time scales
which are thoroughly discussed in [2], even if the initial
state of the subsystem is very different from �thermal, e.g. in
the case when the entire system is initially prepared in a
product state jsubsystemi � jenvironmenti.
Our most successful microscopic description of physical

interactions, quantum field theory (QFT), faces some dif-
ficulties when asked to reproduce coarse-grained mean-
ingful thermodynamic quantities. In particular, as first
noted in [3], the UV-divergencies encountered in the cal-
culation of entropy are of a relatively uncommon type. If a
finite system is in a thermal state, its entropy can be
calculated with standard methods giving a thermodynami-
cally sound result (see e.g. [4]). For the reasons described
above, however, it is also interesting to consider, instead of
the entire system, a subsystem occupying a finite portion of
the entire volume. In this case, the entropy exhibits a UV-
divergent ‘‘vacuum’’ contribution proportional to the
boundary of the subsystem.

A. Thermal entropy and UV divergences

To be more definite, consider a system S whose dynam-
ics is described by a QFT Hamiltonian H and put it in a
thermal state �total / e��H. Then consider a region of
space P (P stands for ‘‘place’’) of definite volume inside
S and call R the rest of the system. The state in P is
obtained by tracing out the irrelevant degrees of freedom
belonging to R, � ¼ TrR�total. Then calculate the Von
Neumann entropy S ¼ �Tr� ln�, which is the appropriate
generalization of thermodynamical entropy for generic
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quantum states (see e.g. [5,6]). Schematically, in four
spacetime dimensions, one finds

S ¼ SvacðA;�Þ þ SthermðV; TÞ: (1)

Here A and V are the boundary area and the volume of P
respectively, � is a UV cutoff and T ¼ 1=� is the tem-
perature. The term Svac is the UV-divergent entanglement
entropy of the vacuum (see, among others [7–10]), ob-
tained with the same procedure in the limit of zero tem-
perature, i.e. when �total ¼ j0ih0j. The general form of Svac
is [11]

Svac ¼ c�2AþOð�2AÞ1=2; (2)

c being a regularization dependent number of order one,
for more general boundaries see, e.g. [12]. The expansion
(2) follows quite generally e.g. from the heat kernel meth-
ods used in [9]. The finite component SthermðV; TÞ, on the
other hand, is the meaningful thermodynamic quantity; for
a massless field it typically scales as �VT3 in the big
volume/high temperature limit. A few comments are now
in order.

While the leading area-dependent vacuum divergence
(2) can be checked in a variety of ways, bringing out the
subleading finite term Stherm is not trivial and, to our
knowledge, has been done explicitly only for conformal
field theories. In 1þ 1 dimensions Calabrese and Cardy
[13], by exploiting the analytic properties of the theory,
found a structure of the type (1) with a term Svac logarith-
mically divergent with the cutoff. By using insights from
AdS/CFT correspondence, Ryu and Takayanagi have been
able to extend the result to higher dimensions [14,15].
However, it would be surprising if thermal entropy did
not have the structure (1) in general. The entanglement
of the vacuum is in fact a UVeffect and should be there also
for generic finite energy states. The two separate terms in
(1) are thus expected in any plausible QFT theory where
the highest energy modes decouple from the low energy
physics. Of course, if thermal entropy did not have the
form (1) and, say, some divergent term were also tempera-
ture dependent, then the intent of deriving meaningful
coarse-grained quantities would be even more
troublesome.

One may object that the volume dependent term in (1)
wins over the area-term in the thermodynamic limit. In
thermodynamics, however, volumes have to be big in
comparison, say, to the typical distances between particles.
On the other hand, by taking for instance a typical cosmo-
logical setup (T2 �MPl � Hubble) and��MPl, it is easy
to see that the thermodynamic term overcomes in (1) only
for volumes much bigger than the Hubble scale! We expect
thermodynamics to be applicable in much less extreme
conditions. One may also object that, rather than the abso-
lute value, only entropy differences are meaningful. Still,
the area-dependent term in (1) spoils the attempts of a
thermodynamic description for subsystems whose size is

(adiabatically) changing in time. In this regard, once again,
a comoving volume in an expanding Universe is perhaps
the cleanest example.
Because of the non trivial dependence of the divergence

on area, the quantity (1) cannot be renormalized by stan-
dard methods, i.e. by adding local counterterms to the
Lagrangian. Moreover, since the result (2) has been carried
out for free and conformal theories, we are bound to have
divergences regardless of the asymptotic behavior of the
couplings or the UV completion of the theory, as long as
such a completion is still a field theory. Of course, as
proposed in [3], one can always subtract the divergent
terms. The latter, however, are not more ‘‘spurious’’ than
the widely accepted entanglement of the vacuum [16]. In
plain contradiction with the general view/common wisdom
illustrated at the beginning of this introduction, Eq. (1) is
just saying that the state of a generic subsystem in QFT is
actually very far from being thermal!
Since the Hamiltonian operator H is an integral of a

local density, one may expect that a state of the form e��H

would factorize over contiguous regions of space giving
e��HP � e��HR , where HP and HR are the integrals of
Hamiltonian density extended only to subsystems P and
R respectively. If this were the case, tracing over R would
trivially give a thermal state in P. However, the energy H
hides a relevant amount of nonextensiveness that does not
allow this factorization. The ‘‘inside’’ and ‘‘outside’’ con-
tribution, HP and HR, do not add up to the total
Hamiltonian because of the UV-divergent contact term
HI coming from the gradients across the boundary between
P and R. In QFT, because of the singular nature of the
interaction HI between P and its environment R, the gen-
eral arguments of [2] are not applicable.

B. Renormalizing the entropy

The above difficulties can be ascribed to an inconvenient
choice of degrees of freedom. To see what that means, note
that the system/region of space in question has two com-
plementary descriptions [18–20]. In compliance to com-
mon intuition, P is described in classical general relativity
by a subset �P—more specifically, a submanifold—of the
points/events at a given timelike coordinate t. On the other
hand, as a quantum subsystem, P is described by a Hilbert
space H P, which is a factor in the tensor product decom-
position (H ¼ H P �H R) of the total Hilbert space of
the field theory under examination [21]. In this paper we
show that if we associate the region of space �Pwith a more
suitable—although unconventional—set of quantum de-
grees of freedom H P, the entropy is already ‘‘renormal-
ized’’ and has a perfectly sound thermodynamic behavior.
For a massless free scalar in the large volume/high tem-
perature limit we find S ¼ cðdÞVTd, where dþ 1 is the
dimension of spacetime and cðdÞ a numerical factor that we
calculate explicitly (see Eqs. (79)). In this limit our results
are consistent with those obtained by [13,14] once their
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divergent contribution is subtracted. However, there is no
trace of any area-dependent term in our calculations and no
infinities are encountered except, of the IR type, in the 1þ
1 dimensional massless case in the limit T ! 0. In the
same limit, our results differ from the ‘‘finite piece’’ Stherm
that is found in (1) by using the conventional approach,
although entropies tend to zero in both cases. For T ! 0
we find in fact S��VTd lnðVTdÞ, while [13,14] find

Stherm � ðVTdÞðdþ1Þ=d. We comment on this in the
conclusions.

Before describing our calculation in Sec. II it is perhaps
worth spending few more words and see in which sense our
anomalous renormalization procedure underlies a different
‘‘localization scheme’’ (see [20] for more details). The
main point here is how to pick a bunch of (local) quantum
degrees of freedom H P out of a larger system. A tensor
product structure (TPS)—or quantum partition—can be
assigned by specifying the observables of the individual
subsystems [23,24]. In a composite system H P �H R

two sets of observables AjðPÞ and AkðRÞ, separately
defined in P and R respectively, commute by construction:

½AjðPÞ;AkðRÞ� ¼ 0 for any j; k: (3)

The point here is that such a trivial result can be applied the
other way around [23]: if, within the algebra of observables
acting on H , we manage to isolate two commuting sub-
algebras AjðPÞ and AkðRÞ, they induce a unique [25]
bipartition H ¼ H P �H R on the whole system. In the
conventional calculation of entropy (1) it is implicitly
assumed that the quantum degrees of freedom H P of a
region of space �P at time t are those defined by the set of
local relativistic fields �ðt;x 2 �PÞ and their conjugate
momenta �ðt;x 2 �PÞ. In fact, thanks to the canonical
commutation relations, the two subalgebras generated by
� and � with labels x inside and outside P satisfy (3), and
therefore induce a TPS. Such a TPS is the conventional
localization scheme in QFT.

In order to renormalize the entropy, in this paper we use
an alternative set of commuting operators—and their cor-
responding TPS—as a new rationale to isolate the quantum
degrees of freedom of P. We consider a free scalar field in
dþ 1 dimensional Minkowski spacetime. The normal or-
dered Hamiltonian reads

H ¼
Z

ddkwka
y
kak; (4)

where wk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and operators ak satisfy the com-

mutation relations ½ak; ak0 � ¼ 0, ½ak; ayk0 � ¼ �3ðk� k0Þ.
Instead of the relativistic fields and their conjugate mo-
menta we introduce the ‘‘Newton-Wigner’’ fields aðxÞ just
as the Fourier transforms of ak:

aðxÞ ¼ 1

ð2�Þd=2
Z

ddkake
ik�x;

ayðxÞ ¼ 1

ð2�Þd=2
Z

ddkayke
�ik�x;

(5)

The above defined operator ayðxÞ is directly related to the
Newton-Wigner (NW) position operator [26] in that, acting
on the vacuum, it produces an eigenvector of eigenvalue x.
Note that the relativistic invariant measure 1=

ffiffiffiffiffiffiffiffiffi
2wk

p
is

absent from the integrand and therefore those operators
are not relativistically invariant. This amounts to the fact
that a particle perfectly NW-localized according to some
observer is instead ‘‘spread’’ when described by a boosted
one [27]. On the other hand, the dynamics is still relativisti-
cally invariant because we are not changing the
Hamiltonian of the free scalar (4) nor the other generators
of the Poincaré group. What is usually considered a draw-
back of the NW approach does not worry us too much,
particularly here since thermal states with T > 0 break
Lorentz invariance. The obvious reference frame in this
setup is the one with four-velocity parallel to the expecta-
tion value of the momentum operator, hP�i. We refer to the
extensive literature for more technical details (e.g. [26–
28]) and philosophical implications [29] of NW operators.
A very introductory comparison between the two localiza-
tion schemes is found in [20].

II. SKETCHESOF THECALCULATIONANDMAIN
RESULTS

Since the entire problem is stationary, we can forget
about the time coordinate. At some given timewe cut a dþ
1 dimensional Minkowski space into two connected re-
gions: �P, of finite volume, and �R, i.e. �P [ �R ¼ R3. Our
results are independent of the shape of �P. We distinguish
spatial coordinates belonging to different regions using
labels p, p0, pj . . . for points inside �P, r, r0, rj . . . for those
in �R and x, y . . . for generic points in Rd. One of the basic
properties of NW localization is that the vacuum of the
theory is a product state, i.e. j0i ¼ j0Pi � j0Ri [20].
Moreover, starting from the vacuum, we can repeatedly
apply ayðx 2 �PÞ and ayðx 2 �RÞ and generate two inde-
pendent Fock spaces:

H P ¼ C � P1 � P2 � . . . � Pn � . . .

H R ¼ C � R1 � R2 � . . . � Rn � . . . :
(6)

This Fock space decomposition of the regions is the dis-
tinctive feature of NW localization and allows an intuitive
representation of particles localized in space. This is im-
possible in the standard localization, as the Reeh-Schlieder
theorem forbids the existence of particle states of finite
energy. The most striking consequence is that the vacuum
is here a product state, while it is entangled in the standard
scheme. In each Fock subspace of given particle number
we choose the obvious basis
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Pn ! jp1 . . .pni ¼ 1ffiffiffiffiffi
n!

p ayðp1Þ . . . ayðpnÞj0i

Rn ! jr1 . . . rni ¼ 1ffiffiffiffiffi
n!

p ayðr1Þ . . . ayðrnÞj0i:
(7)

When we calculate traces we therefore sum on a basis in a
Fock space of given particle number and then sum over all
Fock subspaces. For example, if we restrict to block di-
agonal states (as are all those appearing here), we have

TrR� ¼ h0Rj � j0Ri þ
Z
R
ddrhrj � jri

þ
Z
R
ddrddr0hrr0j � jrr0i þ . . . (8)

(here and in the following we write P, R, for �P, �R, under-
standing the identification of regions with subsystems via
the NW scheme).

We put the entire system in a (non normalized) thermal
state, �total ¼ e��H, where H is defined in (4). We call �
the reduced state in P: � � TrR�total and we calculate Von
Neumann entropy by means of the formula [9]

S � �TrPð� ln�Þ ¼
�
� d

dn
þ 1

�
lnTrP�

njn¼1 (9)

which allows us to lose track of normalization factors.
It is easy to check that � (as well as �total) is block

diagonal on the particle number subspaces of its Fock
space. Its matrix elements on each subspace are expressible
in terms of the crucial two point function defined in the
one-particle sector

Kðp;p0Þ � hpj�jp0i
�

; (10)

where � � h0Pj�j0Pi is the vacuum-vacuum matrix ele-
ment. The function K is itself an infinite series obtained by
tracing over R (see Eq. (24) below) and can be nicely
written (see Eq. (26)) in the diagrammatic formalism to
be introduced in the next section. Since we are dealing with
a free theory, the generic matrix element
hp1p2 . . .pnj�jp0

1p
0
2 . . .p

0
ni is expressed as a combination

of products of Ks in Eq. (29).
Since � is an operator acting on P, when calculating

matrix elements of �n, integrations over the variables p
have to be carried out in each Fock subspace. A final
integration over the same variables has to be done in order
to obtain TrP�

n. The terms in the corresponding series
rearrange (see Eq. (35)) and this number can be written
in closed form, again, in terms of the two point function K
as

Tr P�
n ¼ �n exp

�X1
j¼1

1

j
TrKj�n

�
; (11)

where, by definition,

TrKm �
Z
P
ddp1d

dp2 . . . d
dpmKðp1;p2ÞKðp2;p3Þ . . .

� Kðpm;p1Þ: (12)

Note that the normalization factor �n in (11) drops when
used in formula (9). Note also that each factor K in the
above integral is itself a series of integrals over the r
variables. A consistent part of this work is finally devoted
to evaluate the above quantity in the high temperature,
V=�d ! 1, and small temperature, V=�d ! 0, limits.
Two distinct behaviors of TrKn as a function of n follow.
In the high temperature limit the leading term of the

series giving TrKn is the one containing only integrations
over the p variables: the other terms converge and give a
subleading contribution. The actual proof of that is rather
involved and part of it appears in the Appendix. The only
integrations left are those inside P. Those are all of the
same order in VTd, although they scale as 1=nd, where n is
the number of integration variables. The corresponding
behavior of TrKn, when used in (9) and (11), gives an
extensive entropy. In this limit, apart from numerical fac-
tors to be found in Eqs. (66) and (67), one finds in fact
(1=VTd ! 0)

TrKn ’ VTd

nd
þOð1=VTdÞ0;

S ’ VTd þOð1=VTdÞ0:
(13)

In the low temperature limit the external integrals are no
longer negligible and they have to be summed up. The
corresponding series can be explicitly calculated at leading
order in VTd. On the other hand, terms with a higher
number of internal integrations are subleading and this
gives (VTd ! 0)

TrKn ’ ðVTdÞn þOðVTdÞnþ1;

S ’ �VTd lnVTd þOðVTdÞ: (14)

The numerical factors are found in Eqs. (75) and (76)
below. In Sec. IVC 2, we will also consider massive fields;
in the low temperature limit they behave like (14) except
that the quantity VTd is each time suppressed by the factor

e�m=T (see Eq. (83) below).

III. FORMALISM AND DIAGRAMMATIC

After the general setting described above (basically,
Eqs. (4)–(7)) we give here more details of the calculation.
First of all, we need to calculate the matrix elements of
�total ¼ e��H in position space; using the basis vectors (7)
and going to Fourier space, we have

hx1 . . .xnje��Hjx0
1 . . .x

0
ni ¼ 1

m!ðn�mÞ!
X
�2Sn

I�ðx1 � x0
�ð1ÞÞ

� � � � I�ðxn � x0
�ðnÞÞ: (15)
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Here, of the total n points,m is the number of points inside
P, Sn denotes the group of permutations over n elements
and

I�ðx� x0Þ � hxje��Hjx0i ¼ 1

ð2�Þd
Z

ddkeik�ðx�x0Þ��wk :

(16)

Explicit expressions of the two point function I and its
massless limit follow for d ¼ 1

I�ðxÞ ¼ m�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ x2

p K1

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ x2

q �

’ �

�ð�2 þ x2Þ þOðm2Þ (17)

and d ¼ 3:

I�ðxÞ ¼ m2�

2�2ð�2 þ x2ÞK2ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ x2

q
Þ

’ �

�2ð�2 þ x2Þ2 þOðm2Þ: (18)

Here Kj are the modified Bessel functions of the second

kind. Note that (16) is not the usual QFT thermal correlator
and, as such, it is not periodic in �. This reflects the fact
that we are not working in the usual thermic representation,
where traces are taken by functional integration over a
compactified Euclidean manifold.

A crucial property of the two point function I� that

follows straightforwardly from its expression (16) in
Fourier space is

Z
ddzI�ðx� zÞI�ðz� yÞ ¼ I�þ�ðx� yÞ: (19)

By iteration we also have

In�ðx� yÞ ¼ In�ðx� yÞ; (20)

where the nth power of I� has been implicitly defined in an

obvious way.
Matrix elements with a different number of particles on

the two sides vanish, because in transformation (5) the
number of creation and annihilation operators is preserved;
our matrix �total is thus block diagonal in the subspaces of
given particle number. The same property is retained by the
reduced density matrix � with respect to the local Fock
space H P, so that we only need to calculate the matrix
elements hp1 . . .pnj�jp0

1 . . .p
0
ni.

First, we define� as the matrix element of � on the local
vacuum in P:

�� h0Pje��Hj0Pi
¼ ðh0Rj � h0PjÞ�ðj0Pi � j0RiÞþ

Z
R
ddrðhrj � h0PjÞe��H

� ðj0Pi � jriÞ þ
Z
R�R

ddr1d
dr2ðhr1r2j � h0PjÞ

� e��Hðj0iP � jr1r2iPÞ þ . . . (21)

In terms of the two point function I�ðx� x0Þ we have

� ¼ X1
n¼1

1

n!

Z
Rn
ddr1 . . . d

drn
X
�2Sn

Yn
j¼1

I�ðrj � r�ðjÞÞ

¼ 1þ
Z
R
ddrI�ðr� rÞ þ 1

2

Z
R�R

ddr1d
dr2½I�ðr1 � r1Þ

� I�ðr2 � r2Þ þ I�ðr1 � r2ÞI�ðr1 � r2Þ� þ . . . (22)

We can write this kind of expressions in a diagrammatic
form; in this way, the vacuum expectation value is given by
the sum of all the ‘‘bubble diagrams’’:

(23)

Here and in the following empty circles 	 are points in R
and full circles 
 points in P, lines are the two point
function I and two lines getting at the same circle imply
integration. The nth term of the series (22) is obtained
diagrammatically by taking n empty circles and connect-
ing them with each other in all possible ways such that each
circle is reached by two lines.
The matrix element of � living in the one particle sector

is a two point function:

hpj�jp0i ¼ I�ðp� p0Þ þ
Z
R
ddr½I�ðp� p0ÞI�ðr� rÞ

þ I�ðp� rÞI�ðr� p0Þ� þ . . . (24)

diagrammatically,

(25)

Each term, weighted by a factor 1=n!, consists of all
possible ways that the two external lines with the full
circles can connect each other through n empty circles.
Note that the ‘‘vacuum contribution’’ factorizes out, leav-
ing
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(26)

We call the two point function inside the parenthesis K:

hpj�jp0i � �Kðp;p0Þ: (27)

When we consider the matrix elements in the n-particles
sector, bubble diagrams again factorize out, leaving us with
an expression of the form

hp1p2 . . .pnj�jp0
1p

0
2 . . .p

0
ni ¼ �

n!

Xð2n� points

connected diagramsÞ; (28)

where now we are summing over all the possible diagrams
that connect n points on the left to n points on the right. As
we can have only two lines starting from each internal
point, a diagram is composed by ‘‘paths’’, each of which
connects one point on the left to one on the right (two
points on the same side cannot be connected). This means
that, if we select a pair of points ðpi;p

0
jÞ, we can factorize

an expression equal to the sum of connected diagrams in
(23), which gives the two point function Kðpi;p

0
jÞ. To

obtain all the diagrams, we have to consider all the possible
pairs; the result is that we can write all the matrix elements

in terms of functions Kðpi;p
0
jÞ:

hp1p2 . . .pnj�jp0
1p

0
2 . . .p

0
ni ¼ �

n!

X
�2Sn

Yn
j¼1

Kðpj;p
0
�ðjÞÞ:

(29)

Note that this expression has the same structure as (15),
with I�ðx� x0Þ replaced by Kðp;p0Þ; the reason is that,

using NW, local regions have the same Fock structure as
the global space.
We define the powers of the two point function K by

multiplying K as a one-particle operator acting inside P.
Accordingly, we define the trace of some power of K as

TrKm �
Z
Pm

dpdp0 . . . dpðm�1ÞKðp;p0Þ
� Kðp0;p00Þ . . .Kðpðm�1Þ;pÞ: (30)

These traces are what we need to calculate TrP�
n which, in

turn, allows us to find Von Neumann entropy by means of
Eq. (9) that can be applied to � regardless of its
normalization.
Consider first the case n ¼ 2; as � is block diagonal in

the fixed number of particles subspaces, so is �2, and we
can write, for the generic matrix element in them-particles
subspace

hp1p2 . . .pmj�2jp0
1p

0
2 . . .p

0
mi ¼

Z
Pm

ddq1 . . . d
dqmhp1p2 . . .pmj�jq1 . . .qmihq1 . . .qmj�jp0

1p
0
2 . . .p

0
mi

¼
�
�

m!

�
2 Z

Pm
ddq1 . . . d

dqm
X

�;�02Sm

Ym
ij¼1

Kðpi;q�ðiÞÞKðqj;p
0
�0ðjÞÞ

¼
�
�

m!

�
2 Z

Pm
ddq1 . . . d

dqm
X

�;�02Sm

Ym
j¼1

Kðpj;q�ðjÞÞKðq�0ðjÞ;p0
jÞ

¼ �2

m!

X
�2Sm

Ym
j¼1

Z
P
ddqKðpj;qÞKðq;p0

�ðjÞÞ �
�2

m!

X
�2Sm

Ym
j¼1

K2ðpj;p
0
�ðjÞÞ: (31)

Iterating this procedure we obtain the expression for �n:

hp1p2 . . .pmj�njp0
1p

0
2 . . .p

0
mi ¼ �n

m!

X
�2Sm

Ym
j¼1

Knðpj;p
0
�ðjÞÞ:

(32)

Finally, the trace is given by the sum of all the contribu-
tions of the m-particles matrix elements:

TrP�
n ¼ �n

Xþ1

m¼0

1

m!

X
�2Sm

Z
Pm

ddp1 . . . d
dpm

�Ym
j¼1

Knðpj;p�ðjÞÞ

¼ �n detð1� KnÞ�1 (33)

[see for example [30], page 187, formula (4-86)], and then

Tr P�
n ¼ �n exp

�X1
j¼1

1

j
TrKjn

�
: (34)

Inserting this expression in (9), we find

S ¼
�
� d

dn
þ 1

�X1
j¼1

1

j
TrKjn

��������n¼1
: (35)

The quantities we need to calculate are TrKn; we can
give for these a diagrammatic expansion, like in (26). For
n ¼ 1, we only have to ‘‘close’’ each diagram, so to match
together the full circles at the ends of each factor, and we
get
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(36)

Operator K2 is obtained multiplying term by term two
copies of the expression for K:

(37)

×

when we take the trace, again we have to match the
extremes of each diagram, so that we end up with closed
loops with two full circles each and an arbitrary number of
empty circles. The analogue expression for TrKn is a
straightforward generalization: it contains loops with n
full circles and arbitrary empty circles. The explicit for-
mula is

TrKn ¼
Z

ddp1 . . . d
dpn

Xþ1

j1...jn¼0

Z
ddr01 . . . d

dr0j1d
dr001 . . . . . .

� ddrðnÞ1 . . . ddrðnÞjn
I�ðp1 � r11ÞI�ðr01 � r12Þ . . .

� I�ðr1j1 � p2ÞI�ðp2 � r21Þ . . . I�ðrnjn � p1Þ: (38)

IV. EXPLICIT EVALUATIONS OF ENTROPY

We consider separately the two situations �d � V (high
temperature) and �d � V (low temperature), where V is
the volume of the region P under consideration. We will
mainly consider a massless field, but we will also consider
a finite mass m in the low temperature limit.

The high temperature limit, V=�d ! 1, is also the limit
of very large volume, so we may expect to find, at leading
order, the entropy that we would find by considering as our
subsystem the whole space. Although this turns out to be
the case, the actual proof is pretty involved and is carried
out in Sec. IVB.

A. The whole space

As a first check of our formalism we calculate the
entropy of a system (not a subsystem) in a thermal state.
This can be done by standard methods, i.e., by calculating
the partition function Z ¼ Tre��H that, in our formalism,
using Eq. (15), reads

Z ¼ Xþ1

n¼0

Z
ddx1 . . . d

dxn
1

n!

X
�2Sn

Yn
j¼1

I�ðxj � x�ðjÞÞ

¼ exp

�Xþ1

j¼1

1

j
TrIj�

�
: (39)

We basically used the same derivation as for (34). In fact,
in this case, K ¼ I� since there is nothing to integrate over

outside the system. The operator powers Ij� are obtained by

integration over all space. For this purpose, we use Eq. (20)
and find

Tr In� ¼
Z

ddxIn�ðx� xÞ ¼ VIn�ð0Þ: (40)

On the other hand, for m ¼ 0, we have

I�ð0Þ ¼
Z ddk

ð2�Þd e
��jkj ¼ �d

ð2�Þd
Z þ1

0
dkkd�1e��k

¼ �d

ð2�Þd
ðd� 1Þ!

�d
; (41)

where �d ¼ 2�d=2=�ðd=2Þ is the d-dimensional solid
angle. From (39) we then find

lnZ ¼ V

�d

ðd� 1Þ!�d

ð2�Þd 	ðdþ 1Þ; (42)

where 	 is the Riemann zeta function. If we calculate the
entropy by using

S ¼
�
��

d

d�
þ 1

�
lnZ (43)

we find the leading order (67) of the more general result in
the high temperature limit.

B. High temperature limit

We consider the limit �d=V ! 0 in the massless case.
Let us first consider the one dimensional case where P is
the interval ð�L; LÞ.

1. One dimensional case

We need to compute TrKn. For n ¼ 1 it is given by (36).
By Eq. (17) the first term is simply

(44)

where the term in parenthesis after the diagram, here and in
what follows, specifies the suffix� of the corresponding I�
functions running in the loop. For the second term, we have

(45)×

In the first term of the latter equality the property (20) has
been used. Now
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Z L

�L
dx

Z L

�L
dy

�

�ð�2 þ ðx� yÞ2Þ
�

�ð�2 þ ðy� xÞ2Þ ¼ � �

2�2

d

d�

Z 2L

0
dx

Z 2L

0
dy

1

�2 þ ðx� yÞ2

¼ � �

�2

d

d�

Z 2L

0
dx

1

�
arctan

x

�

¼ 1

��2

Z 2L

0
dx

d

dx

�
x arctan

x

�

�

¼ 2L

��2
arctan

2L

�
¼ L

��
þOð1Þ; (46)

thus

(47)

Thus it seems that terms containing external integrations give finite contributions. Before checking this to the next order,
let us note that

1

�nþ2

Z L

�L
dx0 � � �

Z L

�L
dxnþ1

m0m1 � � �mnþ1�
nþ2

½�2m2
0 þ ðx0 � x1Þ2� � � � ½�2m2

nþ1 þ ðxnþ1 � x0Þ2�
¼ 2L

��nþ2

Z 1

0
dx1 � � �

Z 1

0
dxnþ1

�
m0m1 � � �mnþ1

½m2
0 þ x21�½m2

1 þ ðx1 � x2Þ2� � � � ½m2
0 þ ðxn � xnþ1Þ2�½m2

nþ1 þ x2nþ1�
�

þ cyclic termsþ . . . (48)

Here cyclic means with respect to the dependence on mi

and the ellipses mean terms of the next order in�=L (when
�=L goes to zero). This can be easily verified as follows:
Let us call it Uðm0; . . . ; mnþ1Þ. One must show that the
limit

lim
�!0

�

L
Uðm0; . . . ; mnþ1Þ (49)

exists and is given by the above expression. To this end, it
is convenient first to rescale all coordinates by �, so that

�

L
Uðm0; . . . ;mnþ1Þ

¼ 1

�nþ2

�

L

Z L=�

�ðL=�Þ
dx0 � � �

Z L=�

�ðL=�Þ
dxnþ1

� m0m1 � � �mnþ1

½m2
0 þ ðx0 � x1Þ2� � � � ½m2

nþ1 þ ðxnþ1 � x0Þ2�
: (50)

Setting z ¼ L=�, it suffices to compute the limit z ! 1 by
means of the de l’Hospital rule, to get the desired result.
Indeed the de l’Hospital rule says that we must look at the
limit

lim
z!1

1

�nþ2

Z L=�

�ðL=�Þ
dx1 � � �

Z L=�

�ðL=�Þ
dxnþ1

� m0m1 � � �mnþ1

½m2
1 þ ðx1 � x2Þ2� � � � ½m2

n þ ðxn � xnþ1Þ2�
�
�

1

m2
0 þ ðL� � x1Þ2

1

m2
nþ1 þ ðL� � xnþ1Þ2

þ 1

m2
0 þ ðL� þ x1Þ2

1

m2
nþ1 þ ðL� þ xnþ1Þ2

�
þ cyclic;

(51)

where we used the obvious relation

d

dz

Z z

�z
fðxÞdx ¼ fðzÞ þ fð�zÞ: (52)

The two factors in the square brackets give the same
contribution [31], so that after the shift xi ! xi þ L=�,
for all the xi, our limit becomes

lim
z!1

2

�nþ2

Z 2L=�

0
dx1 � � �

Z 2L=�

0
dxnþ1

� m0m1 � � �mnþ1

½m2
1 þ ðx1 � x2Þ2� � � � ½m2

n þ ðxn � xnþ1Þ2�
� � 1

m2
0 þ x21

1

m2
nþ1 þ x2nþ1

þ cyclic: (53)

It remains to show that indeed the integrals on the right-
hand side of (48) converge. This can be done by introduc-
ing the new variables ti such that
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ti ¼ xi � xiþ1; i ¼ 1; . . . ; n; tnþ1 ¼ xnþ1: (54)

Then, after rewriting the integral, one sees that the inte-
grand is dominated by

Q
nþ1
i¼0

mi

m2
iþt2i

. Now, let us continue
our analysis and consider the term

(55)

Using our general formula, find

(56)

×

so that

(57)

This is true for any power of K. For example

(58)

and using the above results we see that

(59)

and then the L=� terms drop out.
Indeed, one can prove that any loop integral containing

at least a white ball insertion converges in the high energy
limit. A complete proof is very tedious, but tracks of a
proof can be found in the Appendix.
Thus we get

(60)

that is the leading contribution is given by the loop with
exactly n black ball insertions. Now, being cyclic terms all
coincident,

(61)

As we will see soon, the integral can be computed to give

UðnÞ ¼ �n�1

n2
; (62)

so that

(63)

Indeed, we can show this as follows. Using the results
shown in the Appendix, we can add a loop with a white
insertion and n black insertions, without changing the
divergent term, so that

where ’ means equal up to convergent terms. Next we can
add the term

(2)

to obtain
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Proceeding in this way, we get

(64)

which gives (63).
Inserting (63) in (35), we get for the entropy

S ¼ 2�L

3�
þ . . . : (65)

Note that the above result is finite and extensive; no sub-
traction needs to be made.

2. The d dimensional case

The computations detailed out for the one dimensional
case can be extended to any dimension d 
 1. Indeed,
using (16), one finds again that the loops containing only
black insertions dominate so that (60) and (64) continue to
be true. On the other hand

(66)

Thus we can easily compute the entropy, whose result is

Sd ¼ V

�d

ðd� 1Þ!
2d�1�d=2�ðd=2Þ ðdþ 1Þ	ðdþ 1Þ þ . . . : (67)

It can be useful to separate the odd dimensional cases from
the even dimensional cases. Using the duplication formula
for the Gamma function one finds

S2k ¼ V

�2k

ð2k� 1Þ!
k!�k22kþ1

ð2kþ 1Þ	ð2kþ 1Þ þ . . . ;

S2kþ1 ¼ V

�2kþ1

ðkþ 1Þ!
�kþ1

2	ð2kþ 2Þ þ . . . :

(68)

For example, for 3 spatial dimensions we find

S3 ¼ V

�3

2�2

45
þ . . . : (69)

C. Low temperature limits

In this section we consider two different low tempera-
ture limits. In the first case we take 
 ! 0, with


 � V

ð2��Þd ;

for fixed values of the product �m between the inverse
temperature and the mass of the field. This can be thought
as the small volume limit at fixed values of mass and
temperature. However, we can also interpret it as the low
temperature limit of a massless field; thus the mass plays

the role of a IR regulator so that successively the quantity
�m must be set to zero.
In the second case, we consider the limit � ! 1 for

fixed values of the volume V and the massm, that is the low
temperature limit of a massive field.

1. Small volumes and massless limit

Looking at 
 ! 0 as a small volume limit, the result
may depend on the shape of P and the way it ‘‘shrinks’’. To
avoid this problem, we will suppose for P to shrink down
isotropically. This means that for any m dimensional sec-
tion of P, having volume Vm, the quantity Vm=�

m must
tend to zero when 
 ! 0. Note that such condition is
automatically satisfied in the low temperature limit inter-
pretation, if P is contained in a compact region. For inte-
grals over regions shrinking down isotropically, we can
then use the approximationZ

P=�d
ddpfðpÞ ¼ ð2�Þd
fð0Þ þOð
2Þ: (70)

To estimate TrKn we must approximate all loop integrals.
The simplest one, is the tadpole integral:

(71)

Using (70), we see that each integration over P can be
simplified giving a factor 
. For example, for the two-
points loop we get

(72)

×

Note that the last integral depends on the temperature only
via the fixed product �m, so that the resulting expression is
of order 
2. In the sameway we conclude that the loop with
n full circles is of order 
n. Diagrams with empty circles
can be computed using the identityZ

R
ddr ¼

Z
ddx�

Z
P
ddp: (73)

The integrals over the whole space can be reduced using
(19) and (20), whereas each integral over P gives a con-
tribution proportional to 
, which is therefore a subleading
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term with respect to the first one. For example, for the
‘‘mixed’’ two-points loop we get

In conclusion, to estimate the generic loop integral can
simply remove each empty circle by means of the substi-
tution

R
R d

drI�ðp� rÞI ~�ðr� qÞ ! I�þ ~�ðp� qÞ, so that

the leading order of each diagram is determined by the
number of its full balls. By applying this procedure to all
terms in (36), we find

TrK ¼ V
Xþ1

j¼1

Ij�ð0Þ þOð
2Þ

¼ 
�d

Xþ1

j¼1

1

jd

Z þ1

0
dkkd�1e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þðj�mÞ2

p
þOð
2Þ

¼ 
�dCd þOð
2Þ; (74)

where Cd is a multiplicative factor that does not depend on

.

The diagrammatic expansion of TrKn contains n full
circles at any loop, so that for the leading term we get

TrKn ¼ Xþ1

j1...jn¼0

Z
ddp1 . . . d

dpnIj1�ðp1 � p2Þ . . .

� Ijn�ðpn � p1Þ þOð
nþ1Þ

¼ Yn
l¼1

�Xþ1

jl¼0


Ijl�ð0Þ
�
þOð
nþ1Þ

¼ ð
�dCdÞn þOð
nþ1Þ: (75)

Plugging this result into (11) and then into (9), we find for
the entropy

S ¼ �
�dCd ln
þOð
Þ: (76)

Note that, for d > 1, Cd is a finite number. Indeed, it is a
function of �m defined by the series

Cd ¼ Xþ1

j¼1

1

jd

Z þ1

0
dkkd�1e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þðj�mÞ2

p
; (77)

whose terms are positive and bounded by the terms of the
converging series Cdð0Þ. Thus

Cdð�mÞ � Cdð0Þ ¼
Xþ1

j¼1

1

jd

Z þ1

0
dkkd�1e�k

¼ ðd� 1Þ!	ðdÞ:

An IR divergence appears in the one-dimensional massless
case. Obviously it could be cured by an IR cutoff that limits
the integrations to the external region R. However, a natu-
ral regularization is provided by the mass term. Indeed, we
can fix �m at arbitrarily small but positive values, so that
the general term in the series (77) satisfiesZ þ1

0
dke�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þðj�mÞ2

p
¼

Z j�m

0
dke�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þðj�mÞ2

p

þ
Z þ1

j�m
dke�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þðj�mÞ2

p

� e�j�mj�mþ
Z þ1

j�m
dke�k

¼ e�j�mðj�mþ 1Þ; (78)

ensuring convergence. For d > 1, no divergences occur
and in the massless case the entropy (76) reads

S��X lnX; X ¼ V

�d
2d�d�1=2�

�
dþ 1

2

�
	ðdÞ

ðd > 1; �m ¼ 0Þ:
(79)

Again, the above result is finite and no subtractions need to
be made.

2. Low temperatures for a massive field

Let us first consider the one dimensional case. For � !
1, the two point function I�ðxÞ behave as

I�ðxÞ �
ffiffiffiffiffiffiffiffiffiffi
m

2��

s
e�m

ffiffiffiffiffiffiffiffiffiffiffi
�2þx2

p
: (80)

When x falls inside P, the whole expression can be ap-
proximated by a constant:

I�ðpÞ � I�ð0Þ �
ffiffiffiffiffiffiffiffiffiffi
m

2��

s
e�m�;

and each integration over P contributes with a term pro-
portional to the volume; thus we get

(81)

It follows that a loop with nþ 1 integrations over P is
subleading with respect to one with n integrations and we
can use again the usual trick to substitute integrations over
R with integrations over the whole space, finding
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TrK � L
Xþ1

n¼1

In�ð0Þ:

Now, each addend In�ð0Þ is suppressed by a factor ðe�m�Þn,
so that only the first term in the sum is relevant when � !
1. The same argument can be applied to TrKn, giving

TrKn �
�
2L

ffiffiffiffiffiffiffiffiffiffi
m

2��

s
e�m�

�
n
; (82)

from which we get the following expression for the entropy

S��X lnX; X ¼ 2L

ffiffiffiffiffiffiffiffiffiffi
m

2��

s
e�m�: (83)

These analysis can be easily extended to any dimension.
Indeed, the two point function I�ðpÞ is still suppressed by a
factor e�m� for p 2 P, so that all computation work
essentially in the same way, providing for the entropy an
expression of the form (83), where the exponential multi-
plies a function of � with an at most polynomial growth.
We will not enter into more details.

V. CONCLUSIONS

In this paper we have considered the problem of com-
puting the entropy of a subsystem confined in a finite
volume region of a quantum field theory system. As hinted
in the introduction, the subsystem under consideration is
taken to be deep inside a much larger system which has
reached thermal equilibrium and is therefore described by
a thermal Gibbs state. The entropy of the subsystem results
to be divergent in a non standard but curable way. The
divergent part is the entanglement entropy of the vacuum
and is a function of a cutoff and of the area of the surface
bounding the region. Here we have highlighted the general
issue of assigning appropriate quantum degrees of freedom
to the considered region. Indeed, the inside/outside sepa-
ration is traditionally realized through the usual localiza-
tion prescription, which attributes to that region the local
relativistic fields therein defined, together with their con-
jugated momenta. This in fact leads to a tensor product
separation (TPS) of the whole Hilbert space, but it must
face the above described problem of the infinities in the
calculation of the entropy.

In this paper we have adopted the Newton-Wigner (NW)
localization scheme to define the TPS of the quantum fields
associated to classical spatial separation. We made use of
the creation and annihilation operators which act on the
vacuum generating the NW position eigenvectors. At first,
one could feel disturbed by the fact that these are non
relativistically invariant operators. However, this does not
affect the relativistic characterization of the dynamics. It
simply means that localization is not observer independent.
After all, a place/region of space is always to be defined on
some chosen t ¼ constant hypersurface. Moreover,
Lorentz invariance is naturally broken by thermalization.

In the NW prescription the vacuum is a product state, so
that the corresponding divergent, area-dependent contribu-
tion to the entropy never appears in the calculations. We
argue that the NW prescription is the right one in order to
treat the problem of coarse-graining a thermalized micro-
scopic system. The first point we bring to support our thesis
is the finiteness of the results we obtained using such a
prescription. We worked with a Klein-Gordon scalar field
on a flat Minkowski spacetime in arbitrary dimensions, and
computed the Von Neumann entropy for a subsystem con-
fined in a region of volume V at a finite temperature T. The
NW prescription automatically regularizes the ultraviolet
divergences and directly gives finite results. This permitted
us to analyze various peculiar situations.
In the high temperature/large volume limit we immedi-

ately obtained the expected thermodynamic result: entropy
is extensive and, for a massless field, goes as VTd, where V
is the volume of the region and d the number of spatial
dimensions. At leading order our results match the stan-
dard calculation of the entropy of a field system with
appropriate conditions at its boundary [4]. In other words,
in the NW approach, a generic subsystem of a larger
thermal system is also approximately thermal and has the
same temperature. Again, this seems to suggest that NW
localization is more appropriate for the spatial coarse-
graining of microscopic quantities.
At low temperature/small volume, thermal entropy in

our calculation goes to zero, but, differently from the
standard approach, no unusual subtraction is needed. In
the canonical approach [13,14] thermal entropy is subex-

tensive, Stherm ’ ðVTdÞðdþ1Þ=d at low temperature, whereas
our regularized entropy approaches extensivity from above
(S ’ �VTd lnVTd for small VTd). Since the calculations
in the two approaches follow two completely different
routes, it is difficult to recognize the technical reason for
this discrepancy. Note, however, that at very low tempera-
tures the modes that are typically excited have wavelengths
much larger than the size of the subsystem itself. Such
modes are not contemplated in the spectrum of the locally
defined Hamiltonian, whose lowest nonzero eigenvalues

are of order�1=V1=d. Those long-wavelength correlations
between the internal and the external region dominate in
this limit and appear to be the cause of our superextensive
entropy. Note also that �� ln� is the generic asymptotic
behavior of the Von Neumann entropy of a density matrix
with a parameter � which becomes a pure state in the limit
� ! 0.
Our renormalization procedure, although unconven-

tional, looks encouraging. The thermodynamical descrip-
tion of quantum field systems is a lively subject, which
finds its application beyond the physics of complex sys-
tems, going through a better understanding of interconnec-
tions between gravitational and quantum effects, as, for
example, black hole thermodynamics or AdS/CFT corre-
spondence. However, many of such interesting applica-
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tions are affected by the problem of the ultraviolet diver-
gences so that, apart from some exceptional cases, many
results remain at a qualitative or conjectural level. If holo-
graphic entropy bounds (e.g. [33,34]) and the area-
dependent black hole entropy (see [35], and also [36,37]
for entropy renormalization in that context) are to be taken
as meaningful signals of quantum gravity effects, one may
want to consistently get rid of the comparable area-
dependent contribution that appears already at low ener-
gies in flat space. Because of the automatic regularization,
the finiteness of our approach seems to provide a powerful

and concrete computational method to overcome those
technical difficulties.
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APPENDIX: TRACKS OFA PROOF

Let us consider the integral

J ¼
Z
R0

dx0 � � �
Z
Rnþ1

dxnþ1

m0m1 � � �mnþ1

½m2
0 þ ðx0 � x1Þ2� � � � ½m2

nþ1 þ ðxnþ1 � x0Þ2�
; (A1)

where the ranges Ri can be the interval IL ¼ ½�L=�; L=�� or the set EL ¼ ð�1;�L=�� [ ½L=�;1Þ, and n 
 1 (the case
n ¼ 0 can be verified by a direct computation). Without loss of generality we can assume Rnþ1 ¼ EL. We can perform the
integration in dxnþ1 by means of the formula

Z
dx

ab

½a2 þ ðx� yÞ2�½b2 þ ðz� xÞ2� ¼
b½b2 � a2 þ ðz� yÞ2� arctanx�y

a þ a½a2 � b2 þ ðz� yÞ2� arctanx�z
b

½ðy� zÞ2 þ ðaþ bÞ2�½ðy� zÞ2 þ ða� bÞ2�

�
abðy� zÞ loga2þðx�yÞ2

b2þðx�zÞ2
½ðy� zÞ2 þ ðaþ bÞ2�½ðy� zÞ2 þ ða� bÞ2� ; (A2)

so that

Wðmn;mnþ1; xn; x0;�Þ ¼
Z
EL

dxnþ1

mnmnþ1

½m2
n þ ðxn � xnþ1Þ2�½m2

nþ1 þ ðxnþ1 � x0Þ2�

¼ � mnþ1½m2
nþ1 �m2

n þ ðx0 � xnÞ2� arctanðL=�Þ�xn
mn

½ðxn � x0Þ2 þ ðmn þmnþ1Þ2�½ðxn � x0Þ2 þ ðmn �mnþ1Þ2�

� mn½m2
n �m2

nþ1 þ ðx0 � xnÞ2� arctanðL=�Þ�x0
mnþ1

½ðxn � x0Þ2 þ ðmn þmnþ1Þ2�½ðxn � x0Þ2 þ ðmn �mnþ1Þ2�

þ
mnmnþ1ðxn � x0Þ log m2

nþððL=�Þ�xnÞ2
m2

nþ1
þððL=�Þ�x0Þ2

½ðxn � x0Þ2 þ ðmn þmnþ1Þ2�½ðxn � x0Þ2 þ ðmn �mnþ1Þ2�
� ð� ! ��Þ þ �ðmnþ1 þmnÞ½ðmnþ1 �mnÞ2 þ ðx0 � xnÞ2�

½ðxn � x0Þ2 þ ðmn þmnþ1Þ2�½ðxn � x0Þ2 þ ðmn �mnþ1Þ2�
: (A3)

Next, a very careful analysis is needed, distinguishing the cases if R0, Rn are of type IL and/or EL. Note that it is an odd
function of�, apart from a term which do not contain�. Indeed such term implyWðmn;mnþ1; xn; x0;�Þ ! 0 if� ! 0þ. A
very lengthy computation shows that one can find a set of positive constants Kab such that

Wða; b; xn; x0;�Þ � Kab

ðxn � x0Þ2 þ ðaþ bÞ2
�

L
: (A4)

After substitution in (A1), we see that in the worst case [38] J takes the form (50) so that the limit � ! 0þ exists.
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