
Software Engineering for
Secure Systems:
Industrial and Research
Perspectives

Haralambos Mouratidis
University of East London, UK

Hershey • New York
InformatIon scIence reference

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università dell'Insubria

https://core.ac.uk/display/53549083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Director of Editorial Content: Kristin Klinger
Director of Book Publications: Julia Mosemann
Acquisitions Editor: Lindsay Johnston
Development Editor: Christine Bufton
Typesetter: Michael Brehm
Production Editor: Jamie Snavely
Cover Design: Lisa Tosheff

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Software engineering for secure systems : industrial and research perspectives
/ Haralambos Mouratidis, editor.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book provides coverage of recent advances in the area of
secure software engineering that address the various stages of the development
process from requirements to design to testing to implementation"--Provided by
publisher.
 ISBN 978-1-61520-837-1 (hardcover) -- ISBN 978-1-61520-838-8 (ebook) 1.
Computer security. 2. Software engineering. I. Mouratidis, Haralambos, 1977-
 QA76.9.A25S6537 2010
 005.8--dc22
 2010017214

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

232

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61520-837-1.ch009

Chapter 9

Privacy Aware Systems:
From Models to Patterns

Alberto Coen-Porisini
Università degli studi dell’Insubria, Italy

Pietro Colombo
Università degli studi dell’Insubria, Italy

Sabrina Sicari
Università degli studi dell’Insubria, Italy

introduction

Nowadays privacy is a key issue and has received
increasing attention from consumers, companies,
researchers and legislators. Legislative acts, such
as the European Union Directive1 for personal
data, the Health Insurance Portability and Ac-
countability Act2 for healthcare and the Gramm
Leach Bliley Act3 for financial institutions, require

governments and enterprises to protect the privacy
of their citizens and customers, respectively. Al-
though enterprises have adopted various strategies
to protect customers privacy and to make public
their privacy policies (e.g., publishing a privacy
policy on web-sites possibly based on P3P4), none
of these approaches include systematic mecha-
nisms to describe how personal data are actually
handled after they are collected.

This chapter proposes a conceptual model that
provides a sound foundation for the definition of

ABstrAct

Enterprises have adopted various strategies to protect customers’ privacy and to make public their
policies. This chapter presents a conceptual model for supporting the definition of privacy policies.
The model, described by means of UML, introduces a set of concepts concerning privacy and defines
the existent relationships among those concepts along with the interfaces for the definition of privacy
related mechanisms. The chapter also illustrates how the conceptual model can be used to build de-
sign solutions for three recurrent requirements for privacy aware systems concerning the definition of
anonymity, the acquisition of the informed consent, and privacy policies enforcement. The proposed
problems are separately illustrated and a solution based on the conceptual model is described for each
of them. Finally, in order to assess the model and the design solutions, this chapter presents an example
concerning the health domain.

233

Privacy Aware Systems

privacy policies. The model, which extends the
work proposed by Coen-Porisini & al. (2007),
is defined using UML5 and represents a general
schema that can be easily adopted in different
contexts.

A privacy policy defines the way in which data
referring to individuals can be collected, processed
and diffused according to the rights that individu-
als are entitled to. Thus, the model introduces the
concepts, such as users, data, actions, that are
needed in order to define a privacy policy along
with the existing relationships among them.

Although the model introduces all the elements
that are required for the definition of privacy aware
systems, it operates at a conceptual level with a
very high level of abstraction. The main benefit
of this approach is represented by the fact that the
model is domain independent and it can be used
in different contexts. In this way analysts and
designers can describe privacy related features/
requirements and then they can integrate them at
design time in new or existing systems exploiting
the visibility and usability of UML.

In addition to presenting the above mentioned
model, this chapter introduces a design solution to
some privacy related requirements that are com-
mon to most privacy aware systems. The way in
which such design solutions are provided is by
means of design patterns (Gamma et al. 1994),
which constitute a set of design guidelines and
schemes that can drive the designer towards the
specification of a privacy aware system.

In this chapter, for space reasons, we focus
on the following three requirements: anonymity,
informed consent acquisition and privacy policy
enforcement. Notice that other privacy related
requirements such as pseudonymity, unobserv-
ability and so on can be addressed in the same
way by developing appropriate design patterns.

Anonymity is an important requirement for a
privacy aware system that aims at protecting the
identity of the individuals whose data are handled
by the system. In general, data can be categorized
into different classes. Among them, one class

includes data, referred to as sensitive data, con-
cerning the private life, political or religious creed
and so on, while another class contains data that
describes the identity of individuals (e.g., first
name, family name, etc.). A privacy aware system
must assure that only authorized users can view
the existing relationship between sensitive data
and the identity of the individuals.

Informed consent is another important re-
quirement for privacy aware systems that aims
at assuring individuals that the system will use
their data according to their will. For instance
many legislations require that individuals must
be informed of both the reasons for which the
system will handle their data and the way in which
data processing is performed. In such cases every
individual has to provide an explicit consent before
any data processing can occur.

Privacy policies enforcement requires that the
activities performed within a system are checked
against the privacy policy in order to avoid any
privacy violation.

Finally, in order to test the effectiveness of
the conceptual model and of the proposed design
solutions, we discuss their application by means
of an example concerning the healthcare domain.

In the last few years, hospitals, clinics, surger-
ies, and diagnostic centers have increasingly ad-
opted Information Technology-supported health-
care solutions in order to manage health-related
information and to provide a (semi)automated
administration of clinical functions. As a conse-
quence, due to its critical nature, the healthcare
domain represents an ideal field for experimenting
the definition of privacy mechanisms.

The rest of the chapter is organized in the fol-
lowing way: Section 2 provides an overview of
the main related works concerning privacy; Sec-
tion 3 introduces the privacy model and discusses
its main features; Section 4 illustrates how the
proposed model can be used for defining design
solutions that achieve specific requirements such
as the anonymity, the informed consent and the
enforcement of privacy policies; Section 5 presents

234

Privacy Aware Systems

an application scenario in the healthcare domain;
finally, Section 6 draws some conclusions.

BAckground

While research on security is a well-established
field, the issues that arise when dealing with pri-
vacy have been under thorough investigation only
in the recent years. The research efforts aiming at
the protection of individuals privacy can be parti-
tioned in two main categories: Security-oriented
Requirement Engineering (SRE) methodologies
and Privacy Enhancing Technologies (PETs).

The former focuses on methods for taking
into account security and privacy issues during
the early stages of systems development, while
the latter describes techniques to ensure privacy.

Several existing requirement engineering
methodologies, such as Kaos (Lamsweerde & al.
2000), Tropos (Liu & al., 2002), Secure Tropos
(Mouratidis & al., 2003a; Mouratidis & al., 2003b;
Mouratidis & Giorgini, 2007), NFR (Chung, 1993;
Mylopolulos & al., 1992) and GBRAM (Anton,
1996), can be used to take into account security
issues at design level.

All the above methodologies address the
problem of how to state as clearly as possible the
requirements that an information system must sat-
isfy in order to be considered secure (with respect
to a set of given security policies). This is different
from our goal, which is to define a conceptual
model for representing privacy policies.

Kalloniatis & al. (2008) present a methodol-
ogy, called PRIS, to incorporate privacy require-
ments into the system design process. PRIS is a
requirement engineering methodology focused on
privacy issues rather than on security requirements
although it can be applied to the latter as well. It is
based on the Enterprise Knowledge Development
(EKD) framework, which is a systematic approach
for developing and documenting organisational
knowledge.

PRIS considers privacy requirements as organi-
sational goals that need to be satisfied and adopts
the use of privacy-process patterns as a way to:
(1) analyse the impact of privacy requirement(s)
on organisational goals, sub-goals and processes;
and (2) facilitate the identification of the best
system architecture supporting privacy-related
business processes.

Thus, PRIS provides a complete view of the
system including both the enterprise and privacy
goals and refines the latter to identify a set of
privacy requirements.

Instead, our approach introduces a set of
concepts concerning privacy such as users, data,
actions, and it defines the existent relationships
among them, providing in this way a high level
conceptual model, described in UML, that can be
used to model privacy policies, which can be used
to satisfy specific privacy requirements. In fact, in
our approach, privacy requirements are addressed
by introducing design patterns derived from the
conceptual model. More specifically, our design
patterns represent a set of design guidelines and
schemes that can drive the designer towards the
specification of a privacy aware system. In this
way analysts and designers can describe privacy
related features/requirements and then they can
integrate them at design time in new or existing
systems exploiting the visibility and usability of
UML.

Agrawal & al. (2005) provide extensions to a
RBDMS in order to express P3P privacy policies, at
schema definition level. Furthermore, the authors
define mechanisms for translating P3P privacy
policies into a properly extended SQL-like data
definition language. This is different from our
approach, since what we propose is a conceptual
model for the definition of privacy policies (not
necessarily expressed in P3P) and for the speci-
fication of the needed functional modules of an
application in order to enforce such policies.

Finally, in the field of SRE methodologies,
several techniques have been proposed in order to

235

Privacy Aware Systems

protect private data from unauthorized accesses.
Typical examples are anonymizing techniques
based on data suppression or randomization
(Mielikinen, 2004; Narayanan & Shmatikov,
2005). However, these techniques do not require
the definition of any privacy policies; rather they
can be used as building blocks for realizing them.

The literature also reports many works that
propose patterns and design guidelines for ad-
dressing the requirements imposed by specific
security and privacy problems.

Many security patterns were defined to address
enterprise, architectural and user-level security
(Yoder & al. 1997; Blakley & al. 2004; Chung &
al., 2004; Steel & al., 2005; Schumacher & al.,
2006), while, presently, only few contributions
concerning privacy have been defined. Chung &
al. (2004) define privacy patterns for ubiquitous
computing domain.

Schummer (2004) describes the privacy mas-
querade pattern, i.e., a pattern that specifies how it
is possible to prevent personal information from
being improperly transmitted.

Schumacher (2002) describes two privacy pat-
terns, named Pseudonymous Email and Protection
against Cookies, respectively. The former specifies
mechanisms for hiding the sender of an email mes-
sage; while the latter describes how to control the
cookies in a web browser. Romanosky & al. (2006)
introduce privacy patterns for online interactions,
distinguishing between patterns for system archi-
tecture issues and patterns for end-user support.
Hafiz (2006) defines anonymity design patterns for
various types of online communication systems,
online data sharing, location monitoring, voting
and electronic cash management.

All the just mentioned patterns, however, ad-
dress specific application domain issues, while
the solution that we propose in the following
sections is more general and can be applied to
different contexts.

Modelling PrivAcy

In order to model privacy policies it is necessary
to introduce concepts such as users, data, actions
and so on. The rest of the chapter adopts the ter-
minology introduced by the EU directive, which
is summarized in what follows:

• personal data means any information re-
lating to an identified or identifiable natu-
ral person (referred to as data subject or
subject).

• processing of personal data (processing)
means any operation or set of operations
which is performed upon personal data,
whether or not by automatic means, such
as collection, recording, organization, stor-
age, adaptation or alteration, retrieval, con-
sultation, use, disclosure by transmission,
dissemination or otherwise making avail-
able, alignment or combination, blocking,
erasure or destruction;

• controller means the natural or legal per-
son, public authority, agency or any other
body which alone or jointly with others
determines the purposes and means of the
processing of personal data;

• processor means a natural or legal person,
public authority, agency or any other body
which processes personal data on behalf of
the controller;

• the data subject’s consent (consent) means
any freely given specific and informed
indication of his/her wishes by which the
data subject signifies his/her agreement
to personal data relating to him/her being
processed.

Moreover, as a distinctive feature of a privacy
policy, the processor is allowed to execute given
processing actions only under explicit purposes
and obligations. A purpose describes for what aims
data are processed, and it can be defined either as
a high-level activity (e.g., “marketing”, “customer

236

Privacy Aware Systems

satisfaction”) or as a set of actions (e.g., “com-
pute the average price”, “evaluate the customer
needs”). An obligation is a set of actions that the
processor guarantees to perform, after the data
have been processed, that is after the execution of
processing actions. Controllers define processing
actions, as well as purposes and obligations and
are required to verify that the former are executed
according to the latter.

Subjects, whenever their data are collected,
must grant their consent before any processing
can be done and must be informed of the purposes
and of the obligations related to any processing.
Notice that, the consent can be given selectively
that is, a subject can grant the consent for one
purpose, while denying it for another one.

Starting from the previously presented terms
we introduce several concepts and refinement.
More specifically, data handled by a system are
categorized into different classes. Among them,
one class includes sensitive data, that is data
concerning the private life, political or religious
creed, health conditions and so on. Another class
contains identifiable data, that is, data describing
the identity of individuals (e.g., first name, family
name, address, telephone, etc.).

Finally, we define the concepts of role and
function. The role (Ni & al., 2007) specifies
whether an individual is a subject, a controller or
a processor, while the function represents the task
performed by an individual within an organization.
Thus, role is a cross cutting concept that is do-
main independent, while function strictly depends
on the application domain. For example, in the
context of a hospital information system we may
have different functions, such as doctor, nurse,
head-nurse, employee, and so on. Notice that, a
function implicitly defines the set of actions that
can be executed by an individual. For instance, a
doctor is allowed to prescribe therapies and ac-
cess patients’ case histories, while an employee
is allowed to make an appointment for a medical
examination.

Therefore, given an application scenario, each
individual is characterized by a pair function-role,
which specifies his/her behavioral profile with
respect to a privacy policy.

the uMl Model

In the following we introduce a UML model that
specifies the concepts occurring in a privacy
policy along with their relationships. First of all
we describe the static aspects of the model, by
introducing all the structural elements involved
by means of Class diagrams. Then, we describe
by means of several Sequence diagrams the be-
havioral aspects of the model by specifying the
basic interactions occurring among the previously
introduced structural elements.

Figure 1 depicts a class diagram that provides
a high level view of the basic structural elements
of the model.

A privacy policy is represented by means of
class PrivacyPolicy, which is composed of three
different classes named User, Data and Action,
respectively. Thus, an instance of PrivacyPolicy
is characterized by specific instances of User,
Data and Action.

Let us focus on the classes introduced by the
diagram:

• User represents an actor either interested in
processing data or involved by such a pro-
cessing. Users are characterized by func-
tions and roles. More specifically Function

Figure 1. The privacy policy class diagram

237

Privacy Aware Systems

represents the employment of a user in an
application domain, while Role charac-
terizes users with respect to privacy. As
a consequence, Role is extended by three
distinct classes to represent the different
roles: Subject, which is anyone whose data
are referred to, Processor, which is any-
one who asks for processing data by per-
forming some kind of action on them and
Controller, which defines the allowed ac-
tions that can be performed by processors.

• Data represents the information referring
to subjects that can be handled by pro-
cessors. Data is extended by means of
Identifiable data and Sensitive data. The
former represents the information that
can be used to uniquely identify subjects,
while the latter represents information that
deserves particular care and that should not
be freely accessible. Moreover, Data is a
complex structure composed of basic in-
formation units named Field. Class Field
contains the attributes name and content.
The former represents an identifier used to
identify the information contained in the
field, while the latter describes the infor-
mation itself.

• Action represents any operation performed
by User (usually Processor). Since in a
privacy aware scenario a processing is ex-
ecuted under a purpose and an obligation,
Action is defined as an abstract class that is
extended by classes Obligation, Processing
and Purpose. Moreover, Processing speci-
fies an aggregation relationship with
Purpose and Obligation so that each ac-
tion can be recursively composed of other
actions allowing the definition of complex
actions in term of simpler ones. Finally, in-
stances of Action are created by instances
of Controller by means of the services pro-
vided by class FactoryAction.

Figure 2 provides a complete view of the afore-
mentioned classes along with their relationships.
For instance, the dependency relationship between
Action and Data states that data are processed by
actions, while the association between Subject and
Data represents data ownership.

Notice that this model can be extended in
order to support the definition of policies related
to different application domains. For example, to
specify privacy policies compliant with the Italian
privacy legislation6, it is necessary to extend the
model introducing the concept of “judicial data”.
Such an extension can be easily obtained by in-
troducing a class Judicial that extends class Data.

Furthermore, several interfaces have been
introduced to model the flow of information
among the instances of the different classes. In
fact, an interface defines the services that a class
can either implement or use (invoke).

The interface ActionBehavior, provided by
class Action, is introduced in order to model ac-
tion execution. ActionBehavior can be used by
classes Processor and Controller that can invoke
the method run() to represent the execution of an
action. Notice that, each class extending Action
inherits interface ActionBehavior and therefore
may provide a specific implementation of method
run().

The interface ConsentRequest, provided by
class Subject, is used to notify subjects of both the
purposes and the obligations of any processing of
their data. Thus, an instance of class Controller,
taken its id and an instance of Processing, invokes
the method notify() of interface ConsentRequest to
notify a given instance of Subject that a processing
on his/her data may occur. Interface ConsentAc-
quisition, provided by class Controller, is used by
class Subject to allow its instances to grant or deny
the consent to data processing. More specifically,
the interface provides the method setAgreement(),
that taken an instance of Processing, the id of
Subject and a boolean value, notifies the control-
ler whether the subject has granted or denied the
consent to data processing.

238

Privacy Aware Systems

Finally, interface Control, defined by class
Controller, is used by class Action to verify
whether a given action can be executed, that is
whether the subjects involved have granted the
consent. Thus, interface Control provides the
method verify() that, taken an instance of Action,
returns whether the latter is authorized that is, the
consent has been granted.

Notice that this model is meant to describe
all the activities related to privacy even though
some of them may occur outside the system.
For example let us suppose that a new customer
wants to open a checking account in a traditional
bank. In this case he/she may interact with a bank
employee who will provide the customer with all
the information concerning the privacy policy.
Before actually registering the new customer in
the system, the employee asks him/her to sign a
statement in which the customer grants the consent

Figure 2. The class diagram that describes the conceptual model

Figure 3. The general scenario

239

Privacy Aware Systems

to data processing. Such an interaction is not sup-
ported by the system since it takes place by oral
explanations and documents reading. However,
from our point of view this corresponds to hav-
ing the employee invoking the method notify() of
ConsentRequest and then the customer invoking
the method setAgreement().

On the contrary, if we consider a new customer
of an on-line bank the system will support all the
interactions needed to get the informed consent.
In both cases the way in which the interaction is
modeled does not change, the difference being to
which extent the activities are directly supported
by the system rather than being specified by hu-
man executed procedures.

Although the class diagram of Figure 2 faith-
fully represents the components of privacy poli-
cies, it does not express any dynamic aspect. This
can be done by means of UML Sequence diagrams
and therefore in what follows we present some
Sequence diagrams modeling general interaction
schemes that are common to any privacy aware
system. Notice that such diagrams can be special-
ized and extended for specific needs.

The sequence diagram of Figure 3 reports a
general scenario that introduces the main actors
along with the basic activities that can occur in
a privacy aware system. The scenario refers to
three different tasks, named ActionDefinition,
ConsentAcquisition and ActionExecution, each
of which is represented by means of a Sequence
diagram. According to the semantics of UML
Sequence diagram, such internal scenarios are
sequentially executed.

The first task, named ActionDefinition, de-
scribes how it is possible to define new actions.
Notice that actions can be exclusively defined by
users characterized by the role of Controller, us-
ing the services provided by class FactoryAction.

Class FactoryAction provides several meth-
ods to allow controllers to create new actions. In
particular the class allows the definition of the
following basic actions:

• Data creation. The method defData(Data
obj, String fieldName, String fieldType,
String fieldId) returns a new basic ac-
tion whose execution creates an instance
of class Field associated with obj. For
instance defData(d1, “family name”,
“String”, “001”), inserts a new data field
named “family name” of type String into
d1 (an instance of class Data).

• Data writing. The method defWrite(Field
f, Byte[] content) returns an action whose
execution updates the content of field f.
For instance, the method defWrite() allows
one to initialize the content of the previ-
ously created field, representing the family
name, to the value “Smith”.

• Data reading. The method defRead(Field
f) returns an action whose execution reads
the content of the field f.

The definition of basic actions is described in
the Sequence diagram, named BasicActionDefini-
tion, shown in Figure 4.

Such basic actions represent the behavioral
unit for the definition of Processing, Obligation
and Purpose. Once all the required basic actions
are defined, the controller defines a new complex
action by invoking the method defAction(…),
provided by FactoryAction (seeFigure 5). The
method defAction(…) takes as input the list of
actions composing the new action along with its
type (i.e., Purpose, Obligation or Processing).
Notice that a Processing action is defined by
composing instances of Purpose and Obligation,
hence the purpose and the obligation associated
with any instance of Processing can be easily
retrieved.

Actions definition can be carried out by means
of two different scenarios. The first one, shown
in Figure 6, represents the most common sce-
nario in which, all the needed actions are pre-
defined by a controller.

In fact, for each application domain it is pos-
sible to identify a set of actions that almost every

240

Privacy Aware Systems

processor will try to execute in order to carry out
his/her duty. Such actions represent the services
that the company provides to its customers (sub-
jects). In this case the subject consent is acquired
a priori. As an example, let us consider the case
of a potential bank customer that wants to open
a checking account. The customer is informed
that if he/she will request to make a domestic bank
transfer, his/her data will be processed for the
purpose of complying with his/her request under
the obligation of notifying national authorities
whenever the transferred amount exceeds a given
threshold. Notice that in this scenario the cus-
tomer is informed and required to grant consent
even if he/she will never request any bank trans-
fer to be made.

In the second scenario, shown in Figure 7, the
action definition is triggered by a processor that

needs to execute a not yet defined action. There-
fore, this scenario describes a situation in which
specific actions are built in order to fulfill a specific
request coming from a processor; in this case the
subject is required to grant consent for any action
for which the consent was not granted a priori. In
this case, the processor interacts with the controller
in order to define the purpose, the obligation and
the needed processing. In particular, the processor
sends his/her Id to the controller, which, in turn,
instantiates three actions (a purpose, an obliga-
tion and a processing) requested for processing
the data. Notice that Processing represents the
intention to perform a specific data processing,
which can be carried out only after the involved
subject has granted the consent.

As an example, let us consider the case of an
actual bank customer requesting to make an in-

Figure 4. The basic actions definition scenario

241

Privacy Aware Systems

ternational bank transfer. Since international bank
transfers are less common than domestic ones,
the customer was not informed nor he/she grant-
ed the consent when he/she opened the checking
account. Therefore, when the customer requests
the international bank transfer, he/she is informed
that his/her data will be processed for the purpose
of complying with his/her request under the ob-
ligation of notifying the National Security
Agency. Notice that in this scenario the customer
is informed and required to grant consent only

when he/she requests for the first time to make
an international bank transfer.

In both scenarios before action execution the
Subject has been notified of the processing and,
as described in Figure 8, he/she can grant or deny
the consent.

Finally, the scenarios terminate with the ex-
ecution of the authorized actions (if any). As
specified by the loop construct, depending on the
processor needs, actions once authorized, can be
executed multiple times.

Figure 5. The action definition scenario

242

Privacy Aware Systems

Figure 6. Action definition, the most typical scenario

Figure 7. Action definition, the alternative scenario

243

Privacy Aware Systems

towArds design solutions

Anonymity, informed consent acquisition and
enforcement of privacy policies are fundamental
requirements for privacy aware systems that can be
used both to test the effectiveness of the model and
to introduce design solutions based on extensions/
refinements of the model itself. In what follows we
present three different design patterns providing a
design solution for each of the above mentioned
requirements. The same approach is used to
provide solutions to other privacy requirements
such as pseudonymity, unobservability and so on.
Therefore, privacy requirements can be satisfied
by providing appropriate design patterns providing
the needed extensions to the conceptual model.
Notice that such extensions should be viewed as
being part of a development process in which one
starts from a high level description and moves
towards the solution by adding details concerning
the different aspects of a privacy aware system.

Anonymity

Anonymity states that sensitive data managed by
a system, cannot be used to retrieve the identity

of the data owner, that is the subject to whom
data refer, without an explicit authorization. For
example, let us consider a hospital information
system that stores both health related data (sensi-
tive data) and personal data of hospital patients.
Hospital doctors may be allowed to access both
kinds of data when they have to make a diagno-
sis, while if the hospital staff is conducting some
statistics, the may be allowed to access only
sensitive data without being able to retrieve the
identity of patients.

The aim of this pattern is to introduce a do-
main independent solution schema that drives the
construction of anonymity assurance mechanisms,
which prevent the identification of individuals
starting from their data.

Requirements

Several requirements must be taken into account
when defining anonymity assurance mechanisms
(Hafiz, 2006):

• Identity masking. Anonymity enabling
mechanisms shall mask the identity of
subjects.

Figure 8. The consent acquisition scenario

244

Privacy Aware Systems

• Usability. An anonymous data set shall
be usable. Extreme solutions such as not
releasing any data cannot be accepted.
Moreover, anonymity enabling mecha-
nisms shall not alter the processing actions
performed by a system.

• Performance. Anonymity enabling mecha-
nisms shall minimally alter the overall sys-
tem performances.

Solution

The proposed solution starts from the classification
of data and users proposed in the conceptual model.

Data Structure
In order to define anonymity, the data handled
by a system need to be suitably structured. Data
are composed of fields that, depending on their
characteristics, are grouped into sensitive and
identifiable subsets. Moreover, a data type may be
characterized by a hierarchical structure composed
of other data types possibly classified as sensitive
or identifiable.

In order to keep the link between identifiable
and sensitive data, we introduce a reference field
to the data structure used for identifiable data.
This is done by means class RefField, which
extends class Field of the conceptual model, as
shown in Figure 9. The (inherited) attributes of
Class RefField are used in the following way: the
attribute name is set to the name of the data to
which it refers, while the attribute content is set
to the value of the attribute id of the instance of
Data to which it refers.

For example, let us consider the definition of
a data structure composed of the fields “family-
Name”, “city” and “disease”. Fields “family-
Name” and “city” identify the data owner, while
“disease” represents a sensitive information. As
a consequence two different data types are defined.
The former, named “Person”, is composed of the
identifiable fields, while the latter, named
“Health”, contains the sensitive one. Let us con-

sider the following data sets: 1) “Smith”, “Milan”,
“hemicranias”; 2) “Brown”, “New York”, “gastric
ulcer”. Therefore, the first triplet is represented
by an instance of class Identifiable in which the
attribute name is set to “Person”, and the attribute
id is set to “data001”, and by an instance of class
Sensitive in which the attribute name is set to
“Health” and attribute id is set to“data003”.
Moreover, “data001” contains an instance of class
Field characterized by the attribute name initial-
ized to “familyName”, the attribute id initialized
to “field001”, and the attribute content set to
“Smith”. It also contains a further Field character-
ized by the attribute name set to “city”, the at-
tribute id initialized to “field002”, and the attribute
content set to “Milan”. Finally, “data003” contains
an instance of Field characterized by the attribute
name initialized to “Disease”, the attribute id
initialized to “field005”, and the attribute content
set to “hemicranias”. In order to represent the link
between the identifiable data represented by
“data001” and the sensitive data represented by
“data003”, “data001” contains an instance of
RefField in which the attribute name is set to
“Health”, the attribute id is set to “ref001” and
the attribute content is set to “data003”. Figure
10 reports the structure of such data sets by means
of a Composite Structure Diagram.

In order to prevent the identification of data
owners starting from their sensitive data, in-
stances of Identifiable may own references to
instances of Identifiable or Sensitive, while in-
stances of Sensitive can own only references to
instances of Sensitive. In other words, instances
of Sensitive cannot own any reference to in-
stances of Identifiable.

A second issue that must be taken into account
concerns the possibility that starting from identifi-
able data one can access the associated sensitive
data, by following the reference fields. However,
the system should prevent non authorized users of
the system to follow such references, that is there
may be some users that can access identifiable data
without being authorized to access sensitive data.

245

Privacy Aware Systems

The way in which we prevent non authorized
accesses to sensitive data is based on cryptography.
Notice that at this level we do not need to choose
any particular encryption technique (e.g., public

key, symmetric key, etc.), since the needed exten-
sions of the conceptual model are independent
from encryption techniques.

Figure 9. Extensions of the conceptual model to support anonymity

Figure 10. The composite structure diagram that describes the example

246

Privacy Aware Systems

Handling Cryptography
The way in which we introduced cryptography is
based on three new classes (see Figure 9): KeyDis-
tributionCenter, DataKey and FunctionRoleKey.
The class KeyDistributionCenter manages the
generation of the keys usable for encryption
purposes. KeyDistributionCenter generates keys
according to the restrictions imposed by the
privacy policy. FunctionRoleKey represents the
key associated with a specific pair Function-Role,
while DataKey represents the key to encrypt the
content of data fields.

In what follows we present the use of the pre-
viously introduced concepts for the definition of
anonymity mechanisms.

Data Encryption
A key, named DataKey, is generated to encrypt
the value of the attribute content of the reference
fields that refer to instances of sensitive data. As
an example, let us consider that for statistics pur-
poses we need to know how many people living
in Milan suffer from hemicranias. As described
above, such data types are separately defined
and a reference field, named “Health”, is defined
on “Person”. Notice that the attribute content of
“Health” is encrypted, and therefore it is not pos-
sible to access the sensitive data without knowing
the key that is required to decrypt such a field.

Actions
Data can be accessed only by means of actions
(see Figure 2). Actions are expressly built to be
executed by users that belong to a given function-
role pair. In order to guarantee that actions, once
defined, can be executed only by authorized us-
ers, an authentication mechanism is introduced.
More specifically, a key, represented by the class
FunctionRoleKey, is generated and released to
the authorized users.

FunctionRoleKey instances are handled by
KeyDistributionCenter, which provides genera-
tion and secure communication mechanisms like
the ones proposed by Kerberos7. Whenever a

user-controller defines a new Action, two keys
are generated. The former key is associated with
the pair Function-Processor that is authorized
to execute the action, while the latter with the
pair Function-Controller that has to supervise
the execution. Notice that the specification of
the algorithm used for key generation, and of the
communication protocol is out of the scope of
this pattern.

In order to support encryption a new class
and a new interface are introduced (see Figure
11). The class, named AnonymityFactoryAction,
extends class FactoryAction, while the interface,
named AnonymityActionBehavior, extends the
interface ActionBehavior. AnonymityFactoryAc-
tion redefines most of the methods inherited from
FactoryAction (i.e., defRead(), defWrite() and
defAction()) by adding a new parameter repre-
senting an instance of the encryption/decryption
DataKey for defRead()/defWrite() and represent-
ing an instance of FunctionRoleKey that identifies
the authorized users.

For example, let us suppose that a researcher
who works in a health care institute wants to know
how many people living in Milan suffer from
hemicranias. Moreover, suppose that data are
organized by means of the structure described in
Figure 10. Therefore it is necessary to access the
fields “city” and “disease”. The controller, in
order to create such an action, invokes the meth-
od defAction() passing as parameter an instance
of class FunctionRoleKey associated with the pair
Researcher/Processor that is authorized to execute
the action once defined.

Actions can be executed by invoking the
method run() (defined by AnonymityActionBe-
havior), providing the key FunctionRoleKey, and
the id of User. Notice that users authentication
can be carried out in different ways. For example,
the first task of method run() may check whether
the function-role key provided by the user is the
same key that was set at action definition time.

247

Privacy Aware Systems

Consequences

The pattern has the following benefits.

• Privacy. The separation of sensitive data
from identifiable data, and the adoption of
encryption techniques makes it more dif-
ficult to associate sensitive data with the
identity of data owners.

• Minimal user involvement. The users
are not required to modify their normal
activities.

A not properly defined implementation of this
pattern may suffer from the following weaknesses.

• Usability. A too high granularity level of
encryption mechanisms can undermine the
usefulness of data. As an example, in the
case of database applications, if all the data
entries are encrypted, the resultant dataset
may be hardly used even by authorized
users.

• Overhead and delay. The application of
encryption mechanisms requires adequate
computational resources. Hence, the over-
all system performances may worsen, and
delays and/or overheads can be generated.
In order to guarantee an adequate level of

usability and privacy, it is necessary to bal-
ance the usage of encryption techniques.

informed consent

Informed consent states that individuals (i.e., data
owners) must be informed on the purposes of any
processing involving their data. Therefore, the
goal of this pattern is to provide a basic schema to
deal with the acquisition of the informed consent.

Requirements

Several requirements need to be taken into account
in order to define informed consent acquisition
mechanisms:

• Disclosure. The data owner has to be in-
formed of the processing purposes, before
processing can take place.

• Agreement. The data owner has to reply to
the requests to access his/her data by speci-
fying whether he/she agrees upon.

• Comprehension. The data owner has to
state whether he/she understood how the
requested information will be used.

• Voluntariness. The data owner has to en-
sure whether his/her consent is given with-
out any coercion or external influence.

Figure 11. Extensions of the conceptual model to support anonymity

248

Privacy Aware Systems

• Competence. The data owner has to de-
clare whether he/she is adequately compe-
tent to provide the consent. For example,
he/she has to state to be of age.

Solution

According to the conceptual model presented in
this chapter, data owners are represented by means
of class Subject, while actions are represented by
means of classes Processing, Purpose, and Ob-
ligation. Moreover, all the actions involving the
acquisition of the informed consent are executed
by an instance of class Controller. Therefore,
the acquisition of the informed consent requires
user-subjects and user-controllers to communicate
among them using the method of the interface
ConsentAcquisition provided by class Controller.
However, in order to deal with the requirements
of competence, voluntariness and comprehension
it is necessary to extend the interface Consen-
tAcquisition introducing a new interface, named
InformedConsentAcquisition (see Figure 12).

Such an extension satisfies all the previously
introduced requirements, as discussed in what
follows:

• Disclosure. In order to inform User-Subject
of the processing purpose, User-Controller
invokes the method notify() of the interface
ConsentRequest by specifying the purpose
of the processing and under which obliga-
tion the action will be executed.

• Agreement. In order to reply to the request
of User-Controller, User-Subject invokes
the method setAgreement() by specifying
whether he/she granted the consent for
processing his/her data.

• Comprehension. The User-Subject, in or-
der to confirm whether he/she understood
how the requested information will be used,
invokes the method setComprehension().

• Voluntariness. The User-Subject, in order
to ensure whether his/her consent is given

without any coercion or external influence,
invokes the method setVoluntariness().

• Competence. The User-Subject, in order to
declare whether he/she is adequately com-
petent to provide the consent, invokes the
method setCompetence().

The UML Sequence diagram of Figure 13
describes a consent acquisition scenario. Notice
that the sequence of actions proposed is only one
of the many scenarios that can be defined. In other
words, Subject has to invoke all the methods of
the interface InformedConsentAcquisition. In
case Subject does not grant his/her consent, all
the actions that were defined for accessing his/
her data are destroyed.

Consequences

This pattern offers the following benefits:

• Trust: the exchange of clear and complete
information increases the individuals con-
fidence in the system.

• Protocol: the proposed pattern, besides de-
fining the fundamental interactions among
the actors involved in a consent acquisition
scenario, supports the definition of differ-
ent interaction protocols.

Figure 12. The extensions required to support the
acquisition of the informed consent

249

Privacy Aware Systems

Figure 13. The consent acquisition scenario

250

Privacy Aware Systems

This pattern may suffer from the following
weaknesses:

• The pattern can not assure that the sys-
tem will comply with the obligations un-
der which the consent is given. Notice
that this is a requirement for the pattern
Enforcement.

• The declarations of comprehension, vol-
untariness and competence depend on the
user. Since human behavior is unpredict-
able, the declarations may not reflect the
truth and they cannot be directly verified.

• The exchange of messages may worsen the
overall system performance: delays and/or
overheads may be generated.

Enforcement

Privacy aware systems prevent the unregulated
disclosure of data by means of access control
mechanisms. Although such mechanisms regulate
data access they cannot assure that the processing
activities comply with the stated purposes, nor
with the stated obligations that were given to a
Subject at consent acquisition time.

This privacy pattern tries to address such is-
sues, focusing on the definition of enforcement
mechanisms that aim at verifying the compliance
of the processing activities with the privacy policy.

Requirements

Once a data owner granted the explicit consent
the system has to guarantee that processing is
compliant with the stated purposes. Thus, it is
necessary to provide a way to verify processing
compliance. In principle there are two different
ways in which such a verification can be carried
out: run-time verification and ex-post verification.
Run-time verification requires that every action
is checked before actual execution, while ex-post
verification requires that actions are verified once
they are executed (e.g., audit-based mechanisms).

Thus, the former aims at preventing the execution
of actions that are not authorized, while the latter
aims at analyzing the system evolution in order to
find any possible unauthorized processing.

Solution

All the actions required by a privacy policy are
defined as instances of classes Purpose, Obliga-
tion and Processing, which are extensions of the
abstract class Action. Class Action uses interface
Control that, in turn, defines the method verify()
to carry out the verification of the compliance of
any instance of Action with a given policy.

Actions are executed by Processor by invok-
ing the method run() of the abstract class Action,
while verification is carried out by Controller.

In what follows we discuss both run-time and
ex-post verification.

Run-Time Scenario
A Processor, in order to execute an action in-
vokes the method run() that, in turn, invokes the
method verify() thus allowing Controller to check
whether the action is compliant with the privacy
policy. If not, Controller prevents Processor from
executing any further action, as described in the
ActionExecution scenario reported in Figure 14.
Notice that the enforcement mechanism cannot
oblige Processor to perform the required obliga-
tions, if any.

Ex-Post Scenario
In an ex-post enforcement scenario, the verifica-
tion of the compliance of the actions executed by
Processor is performed after their actual execution.

Verification is carried out as in the run-time
scenario, that is Controller invokes the method
verify(). However, in this case Controller cannot
prevent Processor from executing unauthorized
actions, but the non compliance can be recorded
so that Processor can be prevented from execut-
ing other actions.

251

Privacy Aware Systems

Figure 14. Enabling run-time enforcement

252

Privacy Aware Systems

Consequences

This pattern offers the following benefits:

• Generality. This solution is general enough
to be applied to different application
domains.

• Performance. Ex-post verification does not
affect the overall system performances,
while run-time verification may worsen
the performances of the actions that need
to be verified.

• Preserving privacy: Run-time verification
prevents privacy violations to occur, while
ex-post verification may result in privacy
violations that will not be discovered until
verification takes place.

This pattern suffers from the following weak-
nesses:

• Independence. This pattern does not ad-
dress the definition of the activities per-
formed by the verify() method. Such activi-
ties strictly depend on the characteristics of
the system and of the actions to be verified.

• Overhead and delay. Run-time verification
requires adequate computational resourc-
es. As a consequence, the overall system
performances may worsen.

An exAMPle

In order to assess the model presented in this
chapter, we discuss an example of its application
in the field of healthcare.

Hospital Information Systems are a fundamen-
tal tool for healthcare organizations since they
support the management of the most important
and characterizing internal processes of a hospital
structure. Such systems provide different types of
services such as: patient registrations, physical

examination reservations, patients’ admission, etc.
All these services handle sensitive and personal
data of the patients and of the personnel that op-
erate in the hospital structure, hence a particular
care to the management of such data is required.

The rest of this section provides a simple ex-
ample concerning the definition of a privacy policy
for data management in a Hospital Information
System of a diagnostic centre.

A diagnostic centre is an organization where
different actors operate. The following functions
are considered in our scenario: doctor, nurse,
employee, laboratory technician and outpatient.

• Outpatients need to be medically assisted.
They request a physical examination with
a medical specialist or a diagnostic test,
and once examined they pay the fee

• Doctors examine outpatients, access and
modify their case histories, prescribe ther-
apies or other medical examinations.

• Nurses execute specific actions such as tak-
ing a sample of blood, or specific physical
examination such as measuring the blood
pressure.

• Employees perform bureaucratic activities:
such as registering outpatients, making ap-
pointments for medical examinations, pre-
paring purchase orders.

• Laboratory technicians are specialized per-
sonnel that execute diagnostic tests and
draw up the medical report.

the Privacy Policy

Data processing has to be regulated by policies
that specify 1) who is allowed to process data, and
2) what can be done with such data. The system
manages different types of data:

• Patient case histories, which are detailed
records on the background of a person un-
der treatment.

253

Privacy Aware Systems

• Medical examination prescriptions: the re-
quests of thorough diagnostic tests.

• Medical examination results: the results of
the diagnostic tests.

• Identifiable data: identifiable data associ-
ated with patients

• Administrative data: the payment state for
medical examinations and treatments.

In what follows we consider one of the activi-
ties that are usually supported by a HIS, namely
blood tests management.

Let us consider that an outpatient needs to
contact the diagnostic center to request an ap-
pointment for a blood test.

The following scenario sketches the involved
actors and actions:

• An employee makes the appointment for
the medical examination;

• The outpatient goes to the appointment,
and a nurse takes a sample of his/her blood;

• The outpatient pays the fee at the payment
office;

• A laboratory technician executes the blood
test and stores the results of the patient in
the system;

• The patient picks up the results.

The privacy policy that we wants to model
must satisfy the following requirements:

• Outpatients must be informed of the pro-
cessing purposes of the diagnostic centre.

• The processing of the data of the outpa-
tients is exclusively allowed under their
explicit consent.

• The system has to prevent the identification
of outpatients starting from their health re-
lated data.

• The processing actions can be exclusively
executed by authorized users

Modeling the example

The actors involved in the proposed scenario are
represented by means of instances of the classes
User, Function and Role. Notice that in a real
scenario users may be characterized by multiple
function-role associations, but in this example
we do not consider this situation for the sake of
simplicity.

Employees are instances of User characterized
by a Function that specify the task of “Employee”
and by the role Processor, since employees process
the data of the patients. Similarly, doctors are char-
acterized by the Function “Doctor” and the role
of Processor, while technicians are characterized
by the Function “Laboratory Technician” and the
role of Processor. Finally, outpatients are the data
owners whose data will be processed by doctors,
laboratory technicians and employees. Therefore,
outpatients are characterized by the role of Subject
and no Function is associated with them.

Data

The data managed by the system concern out-
patients, appointments, costs, payments and the
results of diagnostic tests. Moreover, the system
should keep track of which laboratory technician
executes a diagnostic test for a given outpatient.

First of all it is necessary to model the data
structure and to classify the different Data in-
stances as sensitive or identifiable. In particular
the following data types (i.e. instances of class
Data) are introduced:

• “Person”: composed of fields such as “first
name”, “family name”, “birth date”, “ad-
dress”, “telephone number”, “social secu-
rity number”, which identify an outpatient.

• “Physical examination”, “Diagnostic test”:
composed of fields such as: “date”, “time”,
“place”, “examination type”, “examination
description”, which provide information
on the examination/test.

254

Privacy Aware Systems

• “Price list”: composed of fields such as
“examination type” and “price”, which
describe the price associated with each
examination.

• “Result”: composed of fields that describe
the results of the examination / test.

• “Processor trace”: composed of fields that
keep track of the users that performed the
examination / test.

• “Payment information”: composed of
fields that keep track of the payment of the
examinations/tests.

“Person” is an identifiable data type that stores
references to instances of sensitive data such
as “Diagnostic test” / “Physical examination”.
Moreover, “Physical examination”/ “Diagnostic
test” stores a reference to further sensitive data
named “Result”, “Processor trace” and “Payment
information”. “Price list” is neither sensitive not
identifiable data type.

Actions

In what follows we introduce the actions needed
to model blood tests management.

• “Registration”: registers a new outpatient
into the information system of the diagnos-
tic centre

• “Physical examination reservation” /
“Diagnostic test reservation”: makes a res-
ervation for an examination / diagnostic
test

• “Log Processor”: keeps track of the pro-
cessor that executes specific actions

• “Record Result”: stores the tests result of
the outpatient

• “Pay the bill”: stores the payment of
the fee associated with a test or with an
examination

• “Check payment”: verifies that a fee was
paid

• “Print result”: prints out the results of an
examination

In order to assure anonymity we assume that
actions are executed only by authorized users.
Moreover, we assume that a key distribution
centre and a key management service exist so that
encryption keys can be created and distributed to
each pair function-role that operates the system. In
particular, the keys are used to encrypt/decrypt the
reference fields needed to access sensitive data.
The choice of a specific encryption/decryption
algorithm is not discussed being out of the scope
of this chapter.

For each action it is necessary to specify: 1) the
data types and the fields that need to be accessed; 2)
the keys that are needed to access reference fields;
and 3) which pair Function-Role can execute the
action along with the needed keys.

Scenarios

In the following we introduce several scenarios,
each of which describes the way in which the
interactions between the different actors and the
system occur. In particular, the scenarios taken
into account concern:

• The acquisition of the informed consent
from the outpatient.

• The registration of the outpatient.
• The way in which appointment for blood

tests are made.
• The way in which the blood sample is tak-

en from the outpatient.
• How the outpatient pays the fee.
• The activities related to the blood test

examination.

Acquiring the Consent

Before any processing concerning the outpatient
data can take place, he/she has to grant the informed
consent. Therefore an explanation of the process-

255

Privacy Aware Systems

ing purposes must be provided to outpatients.
Notice that this scenario follows the Informed
Consent Pattern.

Whenever a new outpatient enters the diag-
nostic centre, an employee at the registration desk
asks the patient to provide the consent to process
his/her data. Thus the employee acts as Processor,
while the outpatient acts as Subject.

The employee informs the patient by means
of the method notify() provided by interface
ConsentRequest. Once done, the outpatient is
informed of the actions (processing, purpose and
obligations) that the system of the diagnostic center
may execute on his/her data.

Then, the outpatient interacts with the infor-
mation system by specifying his/her comprehen-
sion, competence, voluntariness and agreement
by means of the methods setComprehension(),
setCompetence(), setVoluntariness() and setAgree-
ment() provided by interface InformedConsentAc-
quisition. Since no action can be executed on the
data of an outpatient if he/she does not grant the
consent, the following scenarios can take place
only if the consent was granted.

Registering the Outpatient

The employee records the data of the outpatient
by means of the method run() of the action
“Registration”. In order to execute the method
run() the employee has to specify his/her id and
his/her FunctionRoleKey. In order to verify that
the employee is authorized to execute the action,
the method run() checks whether the provided
FunctionRoleKey equals the one introduced at
action definition time. If the key is the same the
action is executed and the data of the outpatient
are stored in the system, that is a new instance of
“Person” is created, its attribute id is initialized
and the value is communicated to the outpatient.
Otherwise the execution is aborted since the
employee is not authorized to execute the action.

Notice that this check can be considered as
a run-time enforcement in which the role of the
controller is played by the system rather than by
a physical person.

Making the Appointment

Once the outpatient is registered, the employee
can make an appointment for the blood test by
executing the action “Diagnostic test reservation”.
This action is composed of multiple basic actions
(data writing/data reading) involving some of the
fields of “Person”, “Price list” and “Diagnostic
test”. More specifically, the action requires to ac-
cess the fields “first name”, “family name”, “birth
date” and “social security number” of “Person”
and the fields “examination type” and “price” of
“Price list”.

The action defines a new instance of “Diagnos-
tic test” and initializes the fields “date”, “time”,
“place”, “examination type” and “examination
description”. The action requires the employee
to provide his/her function-role-key, so that the
keys required to access the reference fields of the
involved data sets (“Diagnostic test” of “Person”,
and “Payment information”, “Result” and “Proces-
sor trace” of “Diagnostic test”) can be automati-
cally retrieved from the key distribution centre.
Therefore the action is executed by means of the
method run() by specifying the identifier of the
employee, his/her FunctionRoleKey, the identifier
of the outpatient, the type and a description of the
diagnostic test, the date, the time and the place
of the examination. As in the previous scenario,
the system checks whether the employee is al-
lowed to execute the action. The action creates
a new instance of “Diagnostic test”, whose id,
once encrypted using the key associated with
the sensitive data “Diagnostic test”, is stored in
the homonymous reference of the instance of
“Person” representing the outpatient. The action
also creates an instance of “Payment informa-

256

Privacy Aware Systems

tion”, “Result”, and “Processor trace”. “Payment
information” specifies the total amount due for
the examination, while “Result” will be used by
the laboratory technician to store the results of
the examination. Finally, “Processor trace” is
used to keep track of the examination executors.
Notice that this action initializes only the field id
of “Result” and “Processor trace”, and the fields
id and total of “Payment information” while all
the other fields will be set during the execution
of other actions.

The values of id are encrypted with the keys
associated with sensitive data “Payment informa-
tion”, “Result” and “Processor trace”, respectively,
and the resulting values are stored in the homony-
mous reference fields of “Diagnostic test”.

When the execution completes, the diagnostic
test is booked.

Taking a Sample of Blood

The outpatient gives the id of the reservation to
the nurse in charge of taking the blood sample.
Once the blood sample is taken the nurse labels
the test tube with the id of the test (i.e., the value
of the attribute id of “Diagnostic test”). Then
he/she registers the test by invoking the action
“Log Processor”, which creates an instance of
“Processor trace” and initializes the value of the
field “executor” with the id of the nurse.

Notice that also in this scenario the system
checks whether the action is executed by an
authorized member of the staff (i.e., the nurse).
As usual this is done by means of the key associ-
ated with the pair Nurse-Processor that has to be
provided when executing the action.

Paying the Fee

The outpatient has to pay the fee for the execution
of diagnostic test. Hence, he/she provides the id
of the reservation to the payment office employee
that, in turn, registers the payment by invoking

the action “Pay the bill”. This action accesses
the field “examination type” of “Diagnostic test”
and the fields “examination type” and “price” of
“Price list”. The value of the field “examination
type” of “Diagnostic test” is used to calculate
the price associated with the examination. The
resulting value is used to update the field “paid”
of “Payment information”.

Examining the Sample

The laboratory technician executes the diagnostic
test on the sample of blood. Once done, he/she
executes the action “Log Processor” to keep trace
of the technician who did the test. The action uses
the id written on the label of the test tube and the id
of the technician. Finally, the technician stores the
results of the test by executing the action “Record
test results”, which sets the values of all the fields
of the data type “Result”.

At this point the outpatient may get the results
by providing the id of the “Diagnostic test” to
the employee. The employee checks whether the
outpatient paid the fee by means of the action
“Check payment”. During action execution the
key to decrypt the field “Payment information”
of “Diagnostic test” is retrieved. Once decrypted,
the value is used to verify whether the outpatient
has paid the amount due. If this is the case, the
employee invokes the action “Print Results”, oth-
erwise he/she notifies the outpatient that he/she
still owes some money to the diagnostic centre.

Action “Print Results” decrypts the reference
field “Result” of “Diagnostic test” to access the
instance of “Result” so that the complete report
can be printed and handed to the outpatient.

conclusion

Privacy is becoming more and more important in
many aspects of every day life, and therefore it is

257

Privacy Aware Systems

becoming a fundamental requirement in the devel-
opment of systems that handle individuals data.

In this chapter we presented an UML-based
conceptual model for the definition of general pri-
vacy policies, allowing one to define the concepts
needed to deal with privacy-related information.
The choice of using UML is motivated by the fact
that it is well known by a wide range of analysts,
modelers and programmers and therefore the
model can be easily understood. Moreover, UML
supports a model centric development process
and thus the different diagrams introduced in
this chapter provide different views showing the
main aspects of the whole model. Finally, UML
can be used for representing concepts at different
levels of abstraction. Even though the presented
model has a high level of abstraction, it can be
easily extended and adapted for specific applica-
tion domains;

This chapter also describes some design
solutions for specific privacy related recurrent
problems. More specifically, the chapter pres-
ents a general solution to implement anonymity,
to support the informed consent and to define
enforcement mechanisms.

The model provides the conceptual founda-
tions that are required by such problems, such
as the separation of sensitive from identifiable
data, and the classification of roles and actions.
The proposed solutions, represented by means of
design patterns, consist in concepts and guidelines
that drive the modeler towards the definition of
privacy aware systems. The solutions extend the
conceptual model by adding the elements, such
as data encryption, needed to support the above
mentioned requirements.

An example concerning the healthcare domain
presents the application of the patterns. The ex-
ample drives the reader through the classification
of users and actions, and shows how it is possible
to integrate the encryption mechanisms in order
to define anonymity and how it is possible to sup-
port the informed consent and the enforcement.

references

Agrawal, R., Bird, P., Grandison, T., Kiernan,
J., Logan, S., & Rjaibi, W. (2005). Extending
Relational Database Systems to Automatically
Enforce Privacy Policies. Int. Conf. on Data En-
gineering (ICDE 2005), (pp. 1013-1022). IEEE
Computer Society.

Anton, A. (1996). Goal-Based Requirements
Analysis. IEEE Int. Conf. on Requirements En-
gineering (ICRE 96), (pp. 136-144). Colorado
Springs CO.

Blakley, B., & Heath, C. (2004). Security Design
Patterns. Technical Guide, The Open Group.

Chung, E. S., Hong, J. I., Lin, J., Prabaker, M. K.,
Landay, J. A., & Liu, A. L. (2004). Development
and evaluation of emerging design patterns for
ubiquitous computing. Int. Conf. on Designing
Interactive Systems, New York: ACM Press.

Chung, L. (1993). Dealing with Security Require-
ments during the Development of Information
System. Int. Conference on Advanced Information
System Engineering (CAiSE ’93), Paris (France).

Coen-Porisini, A., Colombo, P., Sicari, S., &
Trombetta, A. (2007). A Conceptual Model for
Privacy Policies. In Proc. of Software Engineering
Application (SEA ’07). Cambridge, MS.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. M. (1994). Design Patterns: Elements of Re-
usable Object Oriented Software. Reading, MA:
Addison-Wesley.

Hafiz, M. (2006). A collection of privacy design
patterns. Int. Conf. on Pattern Languages of Pro-
grams Conference (PLOP). New York, NY, USA.

Kavakli, E., Kalloniatis, C., Loucopoulos, P., &
Gritzalis, S. (2008). Addressing Privacy Require-
ments in System Design: the PriS Method. [New
York: Springer]. Journal Requirements Engineer-
ing, 13(3), 241–255. doi:10.1007/s00766-008-
0067-3

258

Privacy Aware Systems

Lamsweerde, A. V., & Letier, Handling, E.
(2000). Obstacles in Goal-Oriented Requirement
Engineering. IEEE Transactions on Software En-
gineering, 26, 978–1005. doi:10.1109/32.879820

Liu, L., Yu, E., & Mylopoulos, J. (2002) Analyzing
Security Requirements as Relationships among
Strategic Actors. Symposium on Requirements
Engineering for Information Security (SREIS
’02). Raleigh, North Carolina, USA.

Mielikinen, T. (2004). Privacy Problems with
Anonymized Transaction Databases. Int. Conf. on
Discovery Science (DS 2004), Vol 3245 of Lecture
Notes in Computer Science 3245, Springer.

Mouratidis, H., & Giorgini, P. (2007). Secure
Tropos: A Security-Oriented Extension of the
Tropos methodology. [IJSEKE]. International
Journal of Software Engineering and Knowl-
edge Engineering, 17(2), 285–309. doi:10.1142/
S0218194007003240

Mouratidis, H., Giorgini, P., & Manson, G. A.
(2003b). An Ontology for Modelling Security:
The Tropos Approach. Int Conf. on Knowledge-
Based Intelligent Information & Engineering
Systems (KES 2003), Vol. 2773 of Lecture Notes
in Computer Science, (pp. 1387-1394). Springer.

Mouratidis, H., Giorgini, P., & Mason, G. A.
(2003a). Integrating Security and Systems Engi-
neering towards the Modelling of Secure Informa-
tion System. Int. Conf. on Advanced Information
System Engineering (CAiSE ’03), Vol. 2681 of
Lecture Notes in Computer Science, (pp. 63-78).
Springer.

Mylopolulos, J., Chung, L., & Nixon, B. (1992).
Representing and Using non Functional Require-
ments: a Process Oriented Approach. IEEE Trans-
actions on Software Engineering, 18, 483–497.
doi:10.1109/32.142871

Narayanan, A., & Shmatikov, V. (2005). Obfus-
cated Databases and Group Privacy. ACM Int.
Conference on Computer and Communications
Security (CCS ’05), (pp. 102-111). New York,
NY, USA. ACM Press.

Ni, Q., Trombetta, A., Bertino, E., & Lobo, J.
(2007). Privacy-aware Role-Based Access Con-
trol. ACM Symp. on Access Control Methods And
Technologies (SACMAT ’07). Sophia Antipolis,
France.

Romanosky, S., Acquisti, A., Hong, J., Cranor,
L., & Friedman, B. (2006). Privacy Patterns for
Online Interactions. Int. Conf. on Pattern Lan-
guages of Programs Conference (PLOP). New
York, NY, USA.

Schumacher, M. (2002) Security Patterns AND
Security Standards. European Conf. on Pattern
Languages of Programs (EuroPLoP), Kloster
Irsee, Germany

Schumacher, M., Fernandez-Buglioni, E., Hy-
bertson, D., Buschmann, F., & Sommerlad, P.
(2006). Security Patterns: Integrating Security
and Systems Engineering. John Wiley & Sons.

Schummer, T. (2004). The Public Privacy–Pat-
terns for Filtering Personal Information in Col-
laborative Systems, (Tech. Rep). Hagen, Germany:
FernUnivesität in Hagen.

Steel, C., Nagappan, R., & Lai, R. (2005). Core
Security Patterns: Best Practices and Strategies
for J2EE, Web Services, and Identity Manage-
ment. Prentice Hall.

Yoder, J., & Barcalow, J. (1997). Architectural
Patterns for Enabling Application Security. Int.
Conf. on Pattern Languages of Programs Confer-
ence (PLOP). Monticello, Illinois, USA.

259

Privacy Aware Systems

endnotes

1 Directive 95/46/EC of the European Parlia-
ment and of the Council of 24 October 1995
on the protection of individuals with regard
to the processing of personal data and on
the free movement of such data. Official
Journal of the European Communities of 23
November 1995 No L. 281 p. 31

2 http://www.hipaa.org
3 http://www.glba.org
4 The Platform for Privacy Preferences 1.1

(P3P1.1) Specification. W3C Working
Group Note, 2006 - http://www.w3.org/
TR/P3P11/

5 OMG. Unified Modeling Language:
Infrastructure, 2007. Ver. 2.1.1, for-
mal/2007-11-04 and OMG. Unified Mod-
eling Language: Superstructure, 2007. Ver.
2.1.1, formal/2007-11-02 - http://www.omg.
org/spec/UML/2.1.2/

6 Decreto Legislativo n. 196, 30 Giugno
2003, Codice in materia di protezione dei
dati personali, Gazzetta Ufficiale n.174 del
29-7-2003 - Suppl. Ord. n. 123.

7 http://web.mit.edu/kerberos

