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We propose a simple classical dynamical model of a thermoelectric sor thermochemicald heat engine based

on a pair of ideal gas containers connected by two unequal scattering channels. The model is solved analyti-

cally and it is shown that a suitable combination of parameters can be chosen such that the engine operates at

Carnot’s efficiency.
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In the frame of nonequilibrium thermodynamics a heat
engine is a machine generating work while exchanging heat
with two heat baths at different temperatures T1 and T2. The
usual goal in a construction of realistic heat engines is to
increase the efficiency as far as possible toward the theoret-
ical upper limit hcarnot=1−T1 /T2, assuming T2.T1. We are
here interested in an engine without moving mechanical
parts, i.e., which could operate in a nonequilibrium steady
state, such as a thermoelectric or thermochemical couple.
Such an engine—or a refrigerator if the operation is
reversed—would have immense practical advantages over

piston or compressor based engines for obvious reasons, also

due to possibilities of drastic miniaturization f1g.
Here we present an abstract model of a heat engine that

can mimic the essential features of a realistic heat engine

based on the thermoelectric effect f2–4g and which can be

treated and solved analytically. It is based purely on deter-

ministic classical dynamics and stochastic baths. The model

is composed of two thermochemical reservoirs of ideal gas

of equal point particles connected by two one-dimensional

wires indexed by iP h1,2j. In the middle of each wire we

place a deterministic and energy conserving scatterer, which

either reflects or transmits the particle depending on its ki-

netic energy e. This behavior is completely described by the

transmission function tisedP h0,1j of the ith scatterer. We

use units in which particle mass m, particle charge e, and

Boltzmann constant kB equal m=e=kB=1. In this Rapid

Communication we show that in the steady state a nonvan-

ishing circular particle current exists only if the transmission

functions are energy dependent. Then we show that for a

suitable combination of parameters the engine operates in a

reversible way with the Carnot’s efficiency.

The scheme of the heat engine is shown in Fig. 1. In the

wires we introduce bias forces EW i ssay electric fieldsd, which

can be described by bias voltages Ui or any other form of

external potential energy which can be used to extract useful

work. In the stationary state, at some temperature difference,

there is a nonzero scirculard particle current in the wires that,

by climbing against the electric potential, can perform useful

work. In the left srightd reservoir, the particles are at chemi-

cal potentials mL smRd and temperature TL sTRd shere we

assume TL.TRd and are effused into the wires with the in-

jection rates pigL spigRd into the first i=1 and the second i

=2 channel, respectively, where piP f0,1g, p1+p2=1, repre-

sent the relatives openings into the two channels. We note

that both in the reservoirs and in the channels the motion of

particles is assumed to be squasid one dimensional, so we

consider a single component of the velocity. The injection

rates are connected to the chemical potentials mn and inverse

temperatures bn=1 /Tn via the formula

mnbn = lnsCbngnd, n P hL,Rj , s1d

where C is a constant depending only on properties of par-

ticles and on geometry of the reservoir opening f4g. The

velocity v of effused particles is distributed in each side ac-

cording to a canonical distribution

Pnsvd = bnve−bnv
2
/2ussnvd , s2d

where usvd= s1:v$0;0 :otherwised is the unit step function,

and sL=1, sR=−1. In the steady state, the particle currents

jr,i within ith wire and the heat currents f2g exchanged with

the n-side bath and ith wire jq,i un are given by

jr,i = pisgLtL,i − gRtR,id , s3d
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FIG. 1. sColor onlined Schematic figure of the heat engine. The

possible deterministic scattering mechanisms are depicted symboli-

cally. Red slight grayd and blue sdark grayd circles schematically

represent hot and cold particles, respectively.
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jq,iuL = pifgLqL,i − gRsqR,i + tR,iUidg , s4d

jq,iuR = pifgLsqL,i − tL,iUid − gRqR,ig . s5d

Here we have introduced the transmission probability tn,i for

a particle to transit from the n side to the other side over the

ith wire, and its average kinetic energy qn,i, explicitly defined

in terms of the first two statistical moments of the energy

distribution of the effused particles transmitted through the

ith wire,

stL,i,qL,id = bLE
maxh0,Uij

`

dee−bLetiSe −
Ui

2
Ds1,ed , s6d

stR,i,qR,id = bRE
maxh0,−Uij

`

dee−bRetiSe +
Ui

2
Ds1,ed . s7d

The terms Ui /2 in the arguments of transmission functions ti

imply the assumption of linear potential and scatterers being

in the middle of each wire. However, different assumptions

ssay of bias potential steps at the left/right of each scattererd
could be treated straightforwardly. By imposing the condi-

tion of stationarity jr,1+ jr,2=0, we obtain, from Eq. s3d, the
injection rates gL and gR,

FIG. 2. sColor onlined The relative power sad Pp
/hcarnot

2 and the

relative efficiency sbd hp
/hcarnot as functions of the energy thresh-

olds ei for different sign configurations ss1 ,s2d sindicated on the

leftd at unit mean injection rate ḡ=1, equal channel openings pi

=1 /2, and bath temperatures TL=2 and TR=0.5.

FIG. 3. sColor onlined The density plot of the relative power sad
10Pp

/hcarnot
2 and the relative efficiency sbd hp

/hcarnot in the linear

response regime, at the bath temperatures TL=1.01 and TR=0.99.

sOther details the same as in Fig. 2.d
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1 −
gL

ḡ
=

gR

ḡ
− 1 =

p1stL,1 − tR,1d + p2stL,2 − tR,2d

p1stL,1 + tR,1d + p2stL,2 + tR,2d
, s8d

where ḡ= sgL+gRd /2 f5g. The resulting particle current in

the wires,

jr,1 = 2ḡp1p2

tL,1tR,2 − tL,2tR,1

p1stL,1 + tR,1d + p2stL,2 + tR,2d
, s9d

determines the working power P= jr,1sU1−U2d while the in-

going heat flux is equal to

Q = jq,1uL + jq,2uL,

=−

2ḡ o
i,j=1

2

pip jtL,itR,jsUi − SL,i + SR,jd

p1stL,1 + tR,1d + p2stL,2 + tR,2d
, s10d

where we have introduced the ratio Sn,i=qn,i / tn,i swhich is

shown below to be connected to the Seebeck coefficientd.
The efficiency of the heat engine is then defined as h
=P / uQu. Notice that the particle current jr,1, and so also the

power P, is proportional to the determinant of the matrix of

transmission coefficients D=dethtn,ij= tL,1tR,2− tL,2tR,1. The

optimal performance of the heat engine for a given configu-

ration of temperatures and scatterers is obtained by finding

appropriate fields U1 and U2 which maximize hsU1 ,U2d.
This can be done, in general, only numerically since it re-

quires a solution of coupled transcendental equations.

Note the following important observation: D=0, and

hence the currents vanish, despite nonvanishing temperature

difference, if the scatterers are energy independent tised
;const. This fact is a simple consequence of time-reversal

properties of individual deterministic trajectories which con-

nect the two baths and remains valid for scattering channels

in higher dimension se.g., like in Ref. f4gd.
Our ideas are demonstrated in a heat engine with bias

voltage only in the first wire sU2=0d and for the simplest

nontrivial, steplike, transmission functions

tised = ussise − eidd . s11d

The direction of the steps, at the energy thresholds ei, is

determined by the signs siP h1,−1j. Simple mechanical re-

alizations for both signs siP h1,−1j are schematically de-

picted in Fig. 1. We numerically determine the potential U1

that maximizes the efficiency for a given configuration of

scatterers. The optimal efficiency hp=maxU1
h and the cor-

responding power Pp are shown in Fig. 2. In the case s1
=s2=−1 the scatterers transmit only slow enough particles.

The regions of high power and high efficiency overlap and

are positioned almost symmetrically near the axes. The exact

symmetry is broken because the electric field is only applied

to the first wire. The cases s1=−s2=−1 and s1=−s2=1 de-

scribe a similar situation, where one scatterer transmits the

fast particles and the other scatterer transmits slower ones.

This case is the most efficient and h here may nearly ap-

proach hcarnot. However, as expected, the regions of high

efficiency and high power only slightly overlap. In the last

case s1=s2=1 the scatterers only transmit fast enough par-

ticles. The region of high efficiency is located parallel to

the line e1=e2. The highest power is obtained for energy

steps matching the bath temperatures e1=TL and e2=TR. A

detailed analysis of the relaxation process shows that the

convergence time to the nonequilibrium steady state is

strictly finite for nonvanishing bias potentials and is given by

tp,1 /minhuU1u , uU2uj.
In the following we show that the results drastically sim-

plify in the linear regime of small relative temperature dif-

ference. In this regime the meaningful bias potentials are also

small and we may approximate the exact particle and heat

fluxes in the wires with their linear expansions in the tem-

perature difference TL−TR, injection rate difference dg=gR

−gL, and potentials Ui. Expressing dg with the chemical

potential difference dm=mR−mL, setting mR+mL=0, we

write the particle and heat fluxes in the linear response limit

as

jr,i = piḡf− bgisUi + dmd + hidbg , s12d

jq,i = piḡf− bhisUi + dmd + kidbg , s13d

where b= sbL+bRd /2 and db=bR−bL. The expansion coef-

ficients gi, hi, and ki are statistical moments of a canonical

energy distribution of particles that are transmitted over the

ith wire,

sgi,hi,kid = bE
0

`

dee−betiseds1,e,e2d , s14d

and depend only on the transmission function and tempera-

ture. Notice that in the linear response limit the heat fluxes at

the left and right sides are equal in contrast to the general

snonlineard case fEqs. s4d and s5dg. The coefficients gi and hi

represent the average transmission probability of particles

across the ith wire and their average energy at zero bias

fields. Instead of hi and ki it is more convenient to work with

the average energy per particle Si=hi /gi and the coefficient

Ki=ki−giSi
2. Note that bpiḡgi, b2piḡKi, and bSi can be inter-

preted as the particle conductance, the heat conductance,

and the Seebeck coefficient, respectively. By imposing the

stationarity condition jr,1+ jr,2=0 we obtain the difference of

the chemical potentials between baths:

dm = −
jsp1g1S1 + p2g2S2d + p1g1U1 + p2g2U2

p1g1 + p2g2

, s15d

where j=−db /b is the relative temperature difference which

is related to the Carnot efficiency hcarnot= uju.
Let us now introduce the auxiliary quantities: difference

of energies per particle in the two wires DS=S2−S1, differ-

ence of potentials dU=U2−U1, transmission probability

through both wires G= fsp1g1d
−1+ sp2g2d

−1g−1, and the figure

of merit of the heat engine efficiency f6g

y =
GsDSd2

p1K1 + p2K2

. 0. s16d

We can now write the particle current in the first wire jr,1 and

the ingoing heat flux Q= jq,1+ jq,2 elegantly as
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jr,1 = bgGs− dU + jDSd , s17d

Q = bgGfDSdU − jsDSd2s1 + 1/ydg , s18d

whereby the power and the efficiency of the heat engine are

P= jr,1dU and h=P / uQu, respectively. Notice that all expres-

sions just depend on the potential difference dU. In the linear

response regime the potential that maximizes the efficiency

can be found analytically by solving the equation

]h /]sdUd=0. The explicit solutions are

dUp = jDSf1 − sÎ1 + y − 1d/yg , s19d

jr,1
p = jḡbGDSsÎ1 + y − 1d/y , s20d

Qp = − jḡbGsDSd2Î1 + y/y , s21d

yielding the optimal efficiency sequivalent to Eq. s14d of f6gd

hp =
Pp

uQpu
= hcarnotF1 +

2

y
s1 − Î1 + ydG , s22d

with the corresponding power Pp= jr,1
p dUp. The relative op-

timal efficiency hp
/hcarnot, as expected, depends only on y

and is monotonic in the latter. Therefore it is meaningful to

treat y as the figure of merit of heat engine efficiency. We

note that if the transmission functions are given by Eq. s11d,
results s19d–s22d are explicit as all the expressions are ex-

plicit rational functions of the moments of the Laplace trans-

form of the transmission functions s14d, which in turn are

simple algebraic functions of b ,ei and exps−beid. From Eqs.

s19d and s20d we can recognize that Pp~hcarnot
2 , and conse-

quently, in the linear response regime the power output is

rather small. The optimal efficiency and the corresponding

power as function of e1 and e2 in linear response regime are

shown in Fig. 3. They are quite similar to those obtained in

the nonlinear regime shown in Fig. 2. The important differ-

ence between nonlinear and linear regime results is that the

latter only depends on the difference dU of bias potentials

and can be made temperature independent by expressing the

energy steps in the transmission function tised with the pa-

rameters ri=bei. Consequently, the power Pp and the effi-

ciency hp as function of se1 ,e2d in the cases s1=−s2=1 and

s1=−s2=−1 are exactly symmetric with respect to exchange

of the parameters ei. These cases are also the most efficient.

The region of high efficiency is squeezed toward the e2 or e1

axes in the cases s1=−s2=1 and s1=−s2=−1, respectively.

We have performed exact analytical calculations of ex-

pressions s19d–s22d for the case of equal channel openings

pi=1 /2. In the cases s1=s2=1 and s1=s2=−1 the maximal

efficiency hmax=maxr1,r2.0 hp is reached at finite sr1 ,r2d
and is equal to hmax80.066hcarnot and hmax80.091hcarnot,

respectively. However, in the case s1=−s2=1 sand similarly

for s1=−s2=−1d we can reach the Carnot efficiency in

the limit r1→` following the curve r2
2
≍2 exps−r1d along

which the efficiency algebraically increases as hp
≍hcarnots1

−2r1
−1d, and the power exponentially decreases as

Pp
≍2hcarnot

2 ḡb−1e−r1sr1−1+
5

2r1
d.

In conclusion, we have proposed a simple exactly solv-

able classical-mechanical model of thermoelectric sor better

to say, thermochemicald heat engine. We presented closed

form solutions for the steady state of the engine in linear and

nonlinear regimes. A variable thermodynamic efficiency has

been found, as a function of the system’s parameters, which

can become arbitrarily close to Carnot’s in an appropriate

regime.

Finally we would like to draw the reader’s attention to the

following point: it is possible to argue that our model is quite

abstract in nature and therefore far from possible realistic

implementations. We think on the contrary that this is the

main advantage of our approach. After more than 50 years

during which thermoelectric efficiency did not substantially

increase we propose here to take a completely opposite point

of view. Starting from fundamental microscopic equations

and considering the most general schematized framework,

we hope to understand the basic dynamical mechanisms

which can lead to an increase in thermoelectric efficiency. In

this spirit, the model discussed here is a step in this direction.

In addition our model should be relevant for a theoretical

description of nanoscopic heat engines, for example, a pair

of thermoelectrically coupled quantum dots. However, our

model would be a good approximation to the real system

only in a rather restricted situation of sid noninteracting

charge carriers, siid negligible phonon contributions to heat

transport, and siiid coherence length longer than wires, which

sivd should be quasi-one-dimensional.
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