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The two-dimensional Heisenberg antiferromagnet on the square lattice with nearest sJ1d and next-nearest

sJ2d neighbor couplings is investigated in the strong frustration regime sJ2 /J1.1/2d. A new effective field

theory describing the long wavelength physics of the model is derived from the quantum Hamiltonian. The

structure of the resulting nonlinear sigma model allows us to recover the known spin wave results in the

collinear regime, supports the presence of an Ising phase transition at finite temperature, and suggests the

possible occurrence of a nonmagnetic ground state breaking rotational symmetry. By means of Lanczos diago-

nalizations we investigate the spin system at T=0, focusing our attention on the region where the collinear

order parameter is strongly suppressed by quantum fluctuations and a transition to a nonmagnetic state occurs.

Correlation functions display a remarkable size independence and allow us to identify the transition between

the magnetic and nonmagnetic region of the phase diagram. The numerical results support the presence of a

nonmagnetic phase with orientational ordering.

DOI: 10.1103/PhysRevB.73.094427 PACS numberssd: 75.10.Jm, 75.30.Kz

I. INTRODUCTION

Frustrated low-dimensional spin systems are still exten-
sively investigated since they show rich phase diagrams and
exhibit unusual quantum phases. A typical example is the
square-lattice J1-J2 model; a Heisenberg antiferromagnet
with competing couplings sJ1 ,J2.0d between nearest neigh-

bor skld and next-nearest neighbor skklld spins,

H = J1o
ki,jl

Ŝi · Ŝ j + J2 o
kki,kll

Ŝi · Ŝk, s1d

where Ŝi are spin operators. By varying the frustration ratio
a=J2 /J1, quantum phase transitions between magnetically
ordered and disordered phases can take place at T=0. The
interest in the 2D frustrated antiferromagnets has deep theo-
retical motivations in the characterization of disordered spin
liquids sor Bose liquidsd. Moreover, several magnetic mate-
rials have been synthesized nowadays where frustration
plays a dominant role.1 In particular, the specific interest on
the frustrated Heisenberg model on a square lattice raised
with the discovery of vanadate compounds, whose magnetic
behavior is likely to be described by the J1-J2 Hamiltonian.2

In the classical limit sS→`d at weak frustration, the

ground state sGSd has conventional Néel order with magnetic
wave vector Q= sp ,pd for a,0.5. Above this threshold, the

two sublattices are antiferromagnetically ordered but remain
free to rotate with respect to each other and the GS manifold
has an Os3d3Os3d degeneracy, larger than expected on the

basis of the Os3d symmetry of the Hamiltonian. Weak quan-

tum fluctuations, via the order by disorder mechanism, can
be included by use of spin wave theory, and are shown to
select a collinear ordered state with magnetic wave vector
Q= sp ,0d or s0,pd, reducing the GS degeneracy to Os3d
3Z2. In fact, the collinear state breaks both the Os3d spin

rotational invariance of the Heisenberg Hamiltonian and the
p /2 rotational symmetry of the square lattice sZ2d. In the S

→` limit, according to spin wave theory,3 the critical cou-
pling ac=1/2 marks the first order transition between the

collinear and the Néel phase. However, when quantum fluc-
tuations are taken into account beyond perturbation theory
sat leastd one intermediate phase is expected to separate the
two magnetically ordered phases.1

Nevertheless, on the basis of a very recent perturbative
numerical renormalization group analysis no evidence for an
intermediate phase has been found and it has been proposed
that a direct and unexpected second order phase transition
may occur at the classical critical point.4

The aim of this work is to investigate the quantum phase
transition occurring at T=0 as the frustration ratio a is de-
creased, i.e., when the collinear order is suppressed by quan-
tum fluctuations. To this purpose, the effective long-
wavelength action of the two-dimensional quantum model in
the regime of strong frustration is mapped into a nonlinear
sigma model sNLSMd in 2+1 dimension. This is the first
time that the mapping, originally proposed by Haldane for a
Heisenberg chain,5 is properly generalized to the strongly
frustrated J1-J2 model. On the basis of the symmetries of the

NLSM action, an Ising phase, breaking the
p

2 rotational sym-
metry of the square lattice and preserving the Os3d spin ro-

tational invariance, may exist both at low and zero tempera-
ture. While the stability of this phase at finite temperature
has been previously investigated,6–9 it has never been explic-
itly examined if such an Ising state is stable at zero tempera-
ture for some values of the frustration ratio lower than the
one corresponding to the onset of the collinear order. Lanc-
zos diagonalizations support this scenario via a careful ex-
amination of both the excitation spectrum and the correlation
functions. A nonmagnetic valence bond nematic phase with
orientational ordering is the most favorable candidate as a
ground state in a portion of the phase diagram.

II. NONLINEAR SIGMA MODEL FOR THE COLLINEAR

PHASE

Among the various theoretical approaches adopted for the
J1-J2 model in the regime of weak frustration, the NLSM
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method is particularly suitable for the study of the phase
transition between a magnetically ordered state and a disor-
dered phase. The 2D frustrated Heisenberg antiferromagnet
with a,ac is mapped to a Os3d NLSM in D=2+1

dimension,10,11 which indeed shows a second order squan-
tumd phase transition to a nonmagnetic state at T=0. When
frustration is strong and the GS is collinear, the mapping to a
3D classical model is still possible, but the effective long-
wavelength action is no longer a conventional Os3d NLSM.

Here we generalize the original mapping proposed by
Haldane for the microscopic derivation of the long-
wavelength, low-energy effective theory of one-dimensional
quantum antiferromagnets in the Néel phase,5 to the J1-J2
model in the strong frustration regime, where collinear order
is expected. By using the Trotter formula and a coherent state
basis in the spin Hilbert space, the partition function of the
system is written in a path integral representation as

Z =E DV̂ exps− SfV̂gd , s2d

where V̂istd is a classical Os3d vector field defined on each

lattice site, normalized to V̂i
2std=1 and S is the action at a

temperature b−1,

SfV̂stdg = − iSo
i

vfV̂istdg + E
0

b

dtHfV̂stdg . s3d

The first spurely imaginaryd term is the Berry phase5 and

HfV̂g is the expectation value of the Hamiltonian operator on

the coherent states basis,

HfV̂g = S2J1o
ki,jl

V̂i · V̂ j + S2J2 o
kki,kll

V̂i · V̂k. s4d

In the regime of strong frustration it is convenient to separate
the lattice in the two sublattices which will be labeled 1 and
2, respectively. Following Haldane,5 we split the spatially

oscillating spin state V̂i on the sublattice 1 s2d as the sum
of two orthogonal smooth vector fields, describing the local
Néel order n̂+ sn̂−d and the transverse fluctuations L+ sL−d,
satisfying the constraints n̂+

2=1 sn̂−
2=1d and n̂+ ·L+=0

sn̂− ·L−=0d. In order to carry out the splitting between the

uniform and staggered fluctuations keeping the right number
of independent variables, we proceed by partitioning the lat-
tice in plaquettes as shown in Fig. 1. Then we define the Néel

fields sn̂+, n̂−d and the associated fluctuations sL+ ,L−d in the

center of each plaquette as follows:

V̂Sx + h
a

2
,y + h

a

2
D = hn̂+srdÎ1 − UL+srd

S
U2 + L+srd

S
,

s5d

V̂Sx + h
a

2
,y − h

a

2
D = hn̂−srdÎ1 − UL−srd

S
U2 + L−srd

S
,

s6d

where h= ±1, a is the spacing of the original lattice and r

= sx ,yd is the coordinate of the plaquette centers which define

a square superlattice of spacing 2a. In the continuum limit, to
second order in space and time derivatives and keeping the
lowest order in 1/S, the partition function is written as

Z =E Dn̂±DL±dsn̂+ · L+ddsn̂− · L−de−S, s7d

where

S =E d2xE
0

b

dtL

and the Lagrangian is

L = LTAL − BTL + K1 + K2. s8d

Dn̂± and DL± mean integration over the Néel fields and the
fluctuations in both the sublattices and the six component
array LT= sL+ ,L−d gathers the sthreed components of the two

fluctuation fields L+
a and L−

a. The scalars K are defined as

K1 = − S2J1s]yn̂+ · ]yn̂− − ]xn̂+ · ]xn̂−d ,

K2 = S2J2o
k=±

fs¹n̂kd
2 + k]xn̂k · ]yn̂kg , s9d

while the 636 matrix A is written in block form as

A =
1

a2S2J2 J1

J1 2J2
D s10d

and the array BT= sB+ ,B−d is given by

B+ =
− i

2a2 sn̂+ 3 ]tn̂+d +
SJ1

a
gW− +

2SJ2

a
gW+,

B− =
− i

2a2 sn̂− 3 ]tn̂−d +
SJ1

a
gW+ +

2SJ2

a
gW−,

with

gW+ = ]xn̂+ + ]yn̂+, gW− = ]xn̂− − ]yn̂−.

To this order in derivatives the Berry phase contributions
ivfn̂+stdg and ivfn̂−stdg identically vanish.12 Performing the

Gaussian integration of the partition function with respect to
fluctuations needs some care due to the constraints n̂+ ·L+

=0 and n̂− ·L−=0 which limit the integration to the trans-
verse components of the spin fluctuations L+

' and L−
'. In

FIG. 1. Lattice of the J1-J2 model. The lattice spacing is a. Grey

and black circles denote 1 and 2 sublattice sites, respectively,

while white circles the center of each plaquette, where the fields n̂+,

n̂− and L+, L− are defined.
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order to release the constraint, we first multiply the partition
function by a constant factor F swhich does not affect the
physical properties of the modeld written as a Gaussian inte-
gral over two auxiliary scalar fields v+ and v−,

F =E Dv±e
−ed2xe0

b
dtsLidTALi

,

where L+
i
=v+n̂+ sL−

i
=v−n̂−d. By defining the vector L+

=L+
'+L+

i sL−=L−
'+L−

i d, the integral over fluctuations I in

Eq. s7d can be written as

I =E DL±e
−ed2xe0

b
dtfsL'dTAL'+sLidTALi

−BTL'g,

where L+
' is explicitly given by L+

'=L+− sL+ · n̂+dn̂+ sL−
'

=L−− sL− · n̂−dn̂−d. As a result, the partition function is writ-

ten as an unconstrained integral over the fields L± and n̂±.
The Lagrangian maintains the same formal structure s8d with
a modified matrix A and array B,

Ãik
ab = Aiksd

ab − ni
ani

b − nk
ank

b + 2sni · nkdni
ank

bd ,

B̃i
a = Bi

a − sBi · n̂idn̂i
a, s11d

where Latin indices i ,k=± identify the sublattice and Greek
superscripts run over the three spin components. In practice,
the Gaussian integration has been performed by diagonaliz-

ing the matrix Ã on its eigenvector basis hui
asldjl with l

=1, ¯ ,6 so that the effective Lagrangian density is ex-
pressed in terms of the eigenvalues hlljl

L = K1 + K2 −
1

4
o
l

ll
−1
bl
2, bl = o

i,a

B̃i
aui

asld . s12d

After tedious but straightforward calculations, the resulting
effective Lagrangian is written as

Lfn̂+,n̂−g = LS + LA + L3 s13d

with

LS = o
i=±
HS2J2

2
u¹n̂iu

2 +
J2

8a2D* s]tn̂id
2J ,

LA = −
S2J1

2
s]yn̂+ · ]yn̂− − ]xn̂+ · ]xn̂−d ,

L3 =
J1J2

2

2a2D
sn̂+ · ]tn̂−ds]tn̂+ · n̂−d +

J1
2J2

8a2D
fsn̂+ · ]tn̂−d2

+ s]tn̂+ · n̂−d2g −
J1

8a2D*ss]tn̂+ · ]tn̂−d ,

where D*=4J2
2−s2J1

2, D=D*s4J2
2−J1

2d, and s= n̂+ · n̂− is

the “Ising order parameter.” The Lagrangian density L pre-
serves the Os3d symmetry of the microscopic Hamiltonian

s1d but breaks the invariance of the model under p /2 lattice
rotation due to the adopted coarse graining procedure.6 How-
ever, the original rotational invariance reflects in the addi-
tional Z2 symmetry of our Lagrangian under the simulta-

neous action of p /2 rotation and inversion of one field:
sx ,yd→ s−y ,xd and n̂+→−n̂+. The global symmetry group of

the resulting field theory is therefore Os3d3Z2.

In order to check the correctness of the effective Lagrang-
ian density L, we compare the dispersion relation arising
from a saddle point evaluation of the partition function to the
known spin wave results. The saddle point configuration cor-
responds to the minimum of the action, i.e., to a homoge-
neous and static configuration characterized by two indepen-
dent unit vectors n̂+

0 and n̂−
0 which describe one of the

degenerate classical ground states. By expanding up to sec-
ond order in fluctuations n̂+= n̂+

0+dn̂+ sn̂−= n̂−
0+dn̂−d and per-

forming the Gaussian integration we get precisely the same
result of spin wave theory in the long wavelength limit.6,14

The low energy excitations are described by four branches
labeled by l= ±1 and h= ±1 whose dispersions are given by

v2skd = 4S2hkx
2s2J2 + hJ1ds2J2 + hJ1 cos ud + ky

2s2J2 + lJ1d

3s2J2 − lJ1 cos udj , s14d

where u is the angle between the two Néel fields: cos u
= n̂+

0 · n̂−
0. Accordingly, perturbation theory on the effective

action shows that the lowest free energy is attained when the
staggered magnetizations of the two sublattices n̂+

0 and n̂−
0 are

either parallel or antiparallel. The collinear order is stabilized
by quantum fluctuations. This picture is believed to be cor-
rect in the limit of large frustration ratio a. By lowering a,
fluctuations are enhanced and a quantum phase transition is
expected to occur at zero temperature before reaching the
sclassicald limiting value a=0.5. On the basis of the symme-
tries of the effective model, an intermediate regime charac-
terized by vanishing staggered magnetization kn̂+l= kn̂−l=0

and possibly a finite Ising order parameter ksl= n̂+ · n̂−Þ0

may be present. This hypothetical state would break the ro-
tational symmetry of the lattice preserving the SU s2d spin
symmetry. Due to the coarse graining carried out in the mi-
croscopic Hamiltonian, such a state may correspond either to
a translationally invariant “valence bond nematic” phase
where valence bonds display orientational ordering or to a
valence bond crystal sVBCd which breaks the translational
symmetry.

A low energy, long wavelength effective field theory for
collinear antiferromagnets was put forward in a seminal pa-
per by Chandra, Coleman, and Larkin.6 At variance with our
approach, in that work, quantum fluctuations were integrated
out by use of a perturbative spin-wave approximation and the
analysis was limited to the finite temperature domain. In this
way, CCL predicted a finite temperature Ising transition in
two dimensions: Even if at T=0 both sublattices display fi-
nite staggered magnetization in zero field, long-range Néel
order disappears at any finite temperature, since thermal fluc-
tuations are known to restore the continuous symmetries in
two spatial dimensions.15 CCL suggested that the previously
defined Ising order parameter s may preserve long-range
order up to a nonzero critical temperature. Recently the pres-
ence of such a finite temperature transition has been the sub-
ject of several investigations.7–9

The CCL approach, however, cannot be directly applied
to the study of the zero temperature limit because the effects
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of quantum fluctuations are considered only within perturba-
tion theory. In order to clarify the relationship between our
effective field theory and the CCL approach, it is convenient
to specialize the Lagrangian Lfn̂+ , n̂−g to a class of field con-

figurations of the form n̂sr , td+= n̂srd+
0+dn̂sr , td+ sn̂sr , td−

= n̂srd−
0+dn̂sr , td−d characterized by weak fluctuations

sdn̂sr , tdd on top of a slowly varying time independent si.e.,
classicald configuration sn̂srdd. Expanding L to second order

in the fluctuations and performing the gaussian integration,
by use of the result s14d, we recover the CCL result. This
approach can be justified at large frustration ratios a si.e.,
deep in the collinear regimed where quantum fluctuations are
not able to severely affect the classical ground state. How-
ever, in order to analyze the quantum transition between col-
linear order and a disordered phase at T=0, it is necessary to
take into account the effects of quantum fluctuations beyond
the spin wave approximation, i.e., we have to study the full
effective Lagrangian s13d.

III. LANCZOS DIAGONALIZATIONS

By means of Lanczos diagonalizations sLDd we try to
clarify if an Ising state can be stabilized when the long range
collinear order fades away, as suggested by the field theoret-
ical approach.

Lanczos diagonalizations have been performed on the 4
34 and 636 square clusters for spin S=1/2. By means of
LD we obtain the energy spectrum, providing indications of
possible changes in the nature of the GS which occur by
increasing the frustration ratio.16,17 In the collinear phase,
due to the spatial symmetry breaking, four classes stowersd
of states with different spatial symmetries are expected to
become degenerate: the lowest representative of these classes
are an s-wave and a d-wave singlet at momentum s0,0d and
two triplets at momenta s0,pd and sp ,0d. The low energy

spectrum as a function of the frustration ratio is shown in
Fig. 2. While the behavior of the model for a,0.5 has been

the subject of several investigations1 and is still a debated
problem, here we will concentrate on the GS properties in
the regime of larger frustration a*0.6. A clear tendency to
break the rotational symmetry is suggested by the quaside-
generacy of the s-wave and d-wave singlets which actually
cross each other in the 636 cluster. However, this does not
rule out the possible occurrence of the collinear phase down
to a=0.6, since the energy gap of the triplet at s0,pd is
shown to decrease with the lattice size. The sp ,0d singlet gap
also decreases with size although it remains considerably
larger than the lowest singlet gap and in fact comparable to
the sp ,pd triplet gap which is believed to be finite in the
thermodynamic limit for a.0.5. The sp ,pd singlet snot
shown in figured is much higher in energy. Therefore, from
the ordering of the low energy states we may conclude that:
sid rotational symmetry is broken for a*0.6; siid triplet
states are gapped for a&0.62; siiid the columnar VBC phase
is unlikely to occur, at least for a*0.62; and sivd other VBC
phases, like a plaquette state,11,18,19 are not compatible with
the observed ordering of levels in the energy spectrum.20

The quasidegeneracy between the s-wave susld and

d-wave sudld singlets in the extended range 0.6,a,0.7 al-

lows us to consider the two real linear combinations of these
states as good representations of the symmetry broken
phases which are physically realized in the thermodynamic
limit. This is particularly convenient since in a non rotation-
ally invariant state, like susl± udld /Î2, the rotational order

parameter Ôr= Ŝr · Ŝr+ŷ− Ŝr · Ŝr+x̂, swhere x̂ and ŷ are the two
primitive vectors of the latticed may acquire a nonzero value.

If the two singlets are degenerate and kÔrl remains finite in

the thermodynamic limit, rotational symmetry breaking oc-
curs in the model.21 In the thermodynamic limit, this proce-
dure would be fully equivalent to the usual way to evaluate
order parameters in terms of the asymptotic behavior of cor-

relation functions kÔrÔ0l. However, in small clusters, we

believe that our approach is less affected by finite size ef-
fects. The two squasid degenerate states have vanishing mo-

mentum and then the order parameter kÔrl is translationally

invariant i.e. independent of r. The numerical results are dis-
played in Fig. 3 together with the probability of finding next
neighbor singlets both on horizontal Px and vertical Py

bonds.
A strong anisotropy is present: The order parameter is

large and the singlet probability strongly differs in the two
spatial directions. Remarkably, around a,0.60, Py,0.25 is
compatible with a disordered configuration, while Px gets
close to the limit characterizing the Heisenberg chain. In
essence, the whole system seems to behave as a collection of
spin chains weakly coupled in the transverse direction. As a
grows, Px stays almost constant, while Py decreases, leaving
room to the formation of vertical triplets; the system is mov-
ing toward the collinear phase.

In order to better characterize the phase diagram we also
investigated the behavior of spin correlations. The Fourier
transform Sskd of kS0

zSn
zl along a closed path in the Brillouin

zone has been calculated both for the s-wave and d-wave
singlet and the results are shown in Fig. 4. The close simi-
larity between the spin correlations in the two states indeed

FIG. 2. Low energy states referenced to the GS as a function of

the frustration ratio a=J2 /J1 in the 434 supper paneld and 636

slower paneld cluster.
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confirms that they both contain the same physics. At J2
=0.55J1 Sskd exhibits a peak at momentum sp ,pd suggest-

ing that the dominant sshort ranged correlations are still
antiferromagnetic.22 In the range 0.60&a&0.62 Sskd is re-

markably flat and does not show significant size dependence.
Instead it seems that for larger frustration a the system is
going to sustain a transition to a collinear phase. Finally, at
a=0.7 the sp ,0d peak in fact grows quite substantially with

the size, signaling the onset of the collinear order parameter.
A remarkable common feature of the LD results is the col-
lapse of the 434 and 636 data on the same smooth curve
except spossiblyd at a single wave vector, which identifies the
dominant periodicity in the spin correlations. The LD data
then allow for an accurate evaluation of the full momentum

dependence of the magnetic structure factor; we performed a

fit of the numerical data salso shown in Fig. 4d with a param-

eterized form inspired by the spin wave theory results.23 The

chosen function represents quite accurately the numerical

data except at the single wave vector where the order param-

eter sets in and a singular contribution develops in the ther-

modynamic limit.

IV. CONCLUSIONS

In this paper we derived, for the first time, the long wave-

length, low energy effective field theory describing quantum

and thermal fluctuations in the collinear phase of frustrated

2D antiferromagnets. The resulting NLSM is written in terms

of two fields describing the local Néel order parameter of the

two sublattices and is invariant under the Os3d3Z2 symme-

try group. On the basis of this formalism we are led to pre-

dict the possible occurrence of a nonmagnetic ground state

breaking rotational symmetry for suitable values of the frus-

tration ratio. In order to investigate this possibility, we also

performed Lanczos diagonalizations. By a careful inspection

of the numerical results we found evidence for the occur-

rence of the predicted valence bond nematic ground state in

a region around a,0.6. The evaluation of the magnetic

structure factor in small clusters also showed that the short

range spin correlations of the J1-J2 model are remarkably

size independent. This observation may be very useful in the

interpretation of accurate neutron scattering data on frus-

trated 2D antiferromagnets.

According to spin wave theory the J1-J2 model displays a

first order phase transition at ac=0.5 between a Néel and a

collinearly ordered region in the classical limit sS→`d.
When quantum fluctuations are taken into account an inter-

mediate SUs2d invariant phase is stabilized. Many different

candidates have been proposed as possible ground states in

this region: gapped or gapless spin liquids,22,24 VBC’s with

columnar16,19,20,25 or plaquette patterns.11,18,19

At any finite temperature, the continuous spin rotational

symmetry, broken in the collinear phase, is restored and only

the breaking of the symmetry corresponding to the order

parameter s= n̂+ · n̂− can in principle survive up to a finite

critical temperature defining a phase transition which lies in

the 2D Ising universality class.6 The hypothesis that as T

→0 the transition line ends in a point different from the one

corresponding to the onset of the collinear order can not be
excluded a priori. In such a case, the ground state in a por-
tion of the intermediate SUs2d invariant region may be a
valence bond nematic phase with some orientational order-
ing. This possible scenario is consistent with the suggestions
of the analytical results based on the NLSM action and has
been confirmed by a LD analysis.

Because of the quasidegeneracy in the energy spectrum in
a region around a,0.60, a state characterized by an orien-
tational symmetry breaking is very likely to occur, ruling out
the fully symmetric spin liquid. Similarly, the ordering of
excited states is not compatible with the plaquette VBC.

FIG. 3. Properties of the symmetry broken state: Ising order

parameter Ô strianglesd; Probability to find next neighbors singlets

in a given direction; Pm=k1− 1

2
sŜr+ Ŝr+m̂d2l. Empty dots: Px, Full

dots: Py. Dashed line: Px for independent Heisenberg chains.

FIG. 4. Magnetic structure factor along a closed path in the

Brillouin zone from G= s0,0d to M= s0,pd, to X= sp ,pd and back

to G. Full semptyd triangles: Sskd evaluated on the lowest s-wave

sd-waved singlet for a 434 cluster; Full semptyd dots: Sskd evalu-

ated on the lowest s-wave sd-waved singlet for a 636 cluster.
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A careful analysis of the low energy spectrum and of the
correlation functions suggests that a zero temperature transi-
tion takes place at ac,0.62. The transition separates the
large a collinear phase and an intermediate gapped regime
breaking the p /2 rotational symmetry of the lattice. Thus on
the basis of our investigations we argue that such a phase
may be conveniently thought of as “nematic” ordering of
valence bonds and anticipates an isotropic spin liquid sor a
VBCd which is likely to occur at lower a.

A direct transition between the collinear phase and a VBC
should be of the first order, the two phases having different
order parameters. Instead the transition to the Ising phase
may be of second order being related just to the vanishing of
the sublattice staggered magnetization. Our analysis is not
able to discriminate between second order and weakly first
order transition; Monte Carlo simulations of the NLSM ac-
tion derived here will be helpful to supplement LD data in
order to clarify this issue.
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