
Tolman-Oppenheimer-Volkoff equations in the presence of the Chaplygin gas:
Stars and wormholelike solutions

V. Gorini and U. Moschella

Dipartimento di Scienze Fisiche e Mathematiche, Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy
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Service de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette, France

A.A. Starobinsky

L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow, Russia
(Received 17 July 2008; published 25 September 2008)

We study static solutions of the Tolman-Oppenheimer-Volkoff equations for spherically symmetric

objects (stars) living in a space filled with the Chaplygin gas. Two cases are considered. In the normal

case, all solutions (excluding the de Sitter one) realize a three-dimensional spheroidal geometry because

the radial coordinate achieves a maximal value (the ‘‘equator’’). After crossing the equator, three scenarios

are possible: a closed spheroid having a Schwarzschild-type singularity with infinite blueshift at the

‘‘south pole’’, a regular spheroid, and a truncated spheroid having a scalar curvature singularity at a finite

value of the radial coordinate. The second case arises when the modulus of the pressure exceeds the

energy density (the phantom Chaplygin gas). There is no more equator and all solutions have the geometry

of a truncated spheroid with the same type of singularity. We also consider static spherically symmetric

configurations existing in a universe filled with only the phantom Chaplygin gas. In this case, two classes

of solutions exist: truncated spheroids and solutions of the wormhole type with a throat. However, the

latter are not asymptotically flat and possess curvature singularities at finite values of the radial coordinate.

Thus, they may not be used as models of observable compact astrophysical objects.
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I. INTRODUCTION

Because of the nowadays accepted existence of cosmic
acceleration [1,2], the study of spherically symmetric so-
lutions of the Einstein equations [3,4] in the presence of
dark energy is of much interest. This study has already
been undertaken for instance in [5–9].

One of the simplest models for dark energy is the
Chaplygin gas [10,11]. The model is based on a perfect
fluid satisfying the equation of state p ¼ �A=�, where p is
the pressure, � is the energy density, and A is a positive
constant. Some studies have already appeared where the
problem of finding spherically symmetric or wormholelike
solutions of Einstein’s equations in the presence of the
Chaplygin gas have been addressed [6,7].

Here we study static solutions of the Tolman-
Oppenheimer-Volkoff (TOV) equations for spherically
symmetric objects living in a space filled with the
Chaplygin gas. Results obtained appear to be very different
from the apparently similar problem of stars in the pres-
ence of a cosmological constant [5]. Indeed, in the latter
case the exterior solution of the TOV equations is nothing
but the well-known Schwarzschild-de Sitter geometry,

while the interior problem essentially coincides with the
standard TOV case. The only difference is that the pressure
does not vanish at the star surface; on the contrary, it is
negative and its absolute value is equal to the cosmological
constant.
Instead, the Chaplygin gas strongly feels the presence of

the star, and consequently the solution acquires quite un-
usual features. These features are the existence of a maxi-
mal value of the radial coordinate, dubbed ‘‘equator,’’ and
the appearance of curvature singularities at some finite
values of the radial coordinate r. We also find that for the
case of the phantom Chaplygin gas when the absolute value
of the pressure is greater than the energy density (jpj> �),
wormholelike solutions with a throat exist. However, these
solutions cannot be identified with the usual Morris-
Thorne-Yurtsever wormholes [12] because they are not
asymptotically flat. Moreover, they possess curvature sin-
gularities at finite values of r as well.
The structure of the paper is as follows. In Sec. II, we

write down the TOV equations in the presence of the
Chaplygin gas and describe two exact solutions.
Section III is devoted to the analysis of the normal case
where jpj< �. In Sec. IV, we study the phantom case with
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jpj> �, and we consider the starlike configurations analo-
gous to those studied in Sec. III. In Sec. V, we consider the
solutions of the TOVequations existing in a universe filled
exclusively with the phantom Chaplygin gas. Section VI
contains conclusions and discussion.

II. TOLMAN-OPPENHEIMER-VOLKOFF
EQUATIONS IN THE PRESENCE OF THE

CHAPLYGIN GAS

We suppose that the universe is filled with a perfect fluid
with energy-momentum T�� ¼ ð�þ pÞu�u� � g��p and

consider a static spherically symmetric interval

ds2 ¼ e�ðrÞdt2 � e�ðrÞdr2 � r2ðd�2 þ sin2�d�2Þ: (1)

Then the Einstein system reduces to the following pair of
equations:

e��

�
1

r

d�

dr
� 1

r2

�
þ 1

r2
¼ 8��; (2)

e��

�
1

r

d�

dr
þ 1

r2

�
� 1

r2
¼ 8�p; (3)

plus the energy-momentum conservation equation

dp

dr
¼ �d�

dr

�þ p

2
: (4)

Solving Eq. (2) with the boundary condition e��ð0Þ ¼ 1
gives

e�� ¼
�
1� 2M

r

�
(5)

where, as usual,MðrÞ ¼ 4�
R
r
0 drr

2�ðrÞ: This is equivalent
to

dM

dr
¼ 4�r2�; Mð0Þ ¼ 0: (6)

Equation (3)–(5) together give rise to the TOV differential
equation [3,4]

dp

dr
¼ �ð�þ pÞðMþ 4�r3pÞ

rðr� 2MÞ : (7)

Complementing Eqs. (6) and (7) with an equation of state
relating p and � one has a closed system of three equations
for the three variables p, �, and M. In this paper, we
investigate the case in which the fluid is the Chaplygin
gas whose equation of state is

p ¼ ��2

�
: (8)

Then Eqs. (6) and (7) give rise to the following system of
first-order differential equations for p and M:

dp

dr
¼ ð�2 � p2ÞðMþ 4�r3pÞ

prðr� 2MÞ ; (9)

dM

dr
¼ � 4��2r2

p
: (10)

We denote the radius of the star by rb. As usual we suppose
that the pressure is continuous at the surface of the star. The
‘‘exterior’’ problem amounts to considering a system (10)
in the interval r > rb with some properly chosen boundary
conditions pðrbÞ and MðrbÞ at r ¼ rb. It is easy to see that
at r > rb the system admits two exact solutions with
constant pressure. The first solution

p ¼ �� ¼ ��; M ¼ 4
3��r3; (11)

describes the geometry of the de Sitter space with

e� ¼ e�� ¼ 1� r2

r2dS
; rdS ¼

ffiffiffiffiffiffiffiffiffiffiffi
3

8��

s
: (12)

The second solution is the Einstein static universe

p ¼ � �ffiffiffi
3

p ; � ¼ ffiffiffi
3

p
�; M ¼ 4

ffiffiffi
3

p
��r3

3
(13)

with the radius

rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
p
8��

s
¼ rdS

31=4
: (14)

III. THE NORMAL CASE: jpj < �

We now consider solutions with a nonconstant pressure.
Some additional constraints have to be imposed on the
boundary conditions:

��< pðrbÞ< 0; (15)

MðrbÞ< rb
2
: (16)

First of all, note that the pressure p cannot attain the values
p ¼ 0 and p ¼ �� in the region where 2MðrÞ< r.
Indeed, for 2MðrÞ< r the right-hand side of (9) is negative,
while in order to approach p ¼ 0 starting from negative
values of p, it is necessary to have dp=dr > 0. In addition,
let us rewrite Eq. (9) as follows:

d lnð�2 � p2Þ ¼ �2dr
ðMþ 4�r3pÞ
rðr� 2MÞ ; (17)

and suppose that p ! �� as r ! r1, with r1 > 2Mðr1Þ.
Then, upon integration of Eq. (17), we get a divergence on
the left-hand side and a regular expression on the right-
hand side, a contradiction.
Thus, as long as the condition 2MðrÞ< r is satisfied we

have ��< pðrÞ< 0 and �ðrÞ>�. This means that the
mass MðrÞ is growing at least as fast as r3, so that at some
radius r ¼ r0 the equality

Mðr0Þ ¼ r0
2

(18)
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is achieved. Then at r ¼ r0 we must have pðr0Þ ¼ p0 ¼
� 1

8�r2
0

. Indeed, let us expand the relevant quantities around

r0:

r ¼ r0 � "; (19)

MðrÞ ¼ r0
2
� ~Mð"Þ; (20)

pðrÞ ¼ p0 þ ~pð"Þ; (21)

where ~Mð"Þ and ~pð"Þ tend to zero when " ! 0.
Equation (9) has the following asymptotic form:

d~p

d"
¼ ð�2 � p2

0Þð1þ 8�r20p0Þ
2"ðp0 þ 8�r20�

2Þ ; (22)

from which it is easily seen that ~p� ln" when " ! 0,
unless p0 ¼ � 1

8�r20
.

We now determine a lower and an upper bound for the
radius r0. First, note that since p0 >�� we have

r0 >

ffiffiffiffiffiffiffiffiffiffiffi
1

8��

s
: (23)

On the other hand, since �ðrÞ>�, Eq. (6) implies that of

MðrÞ> 4��r3

3 so that

r0 <

ffiffiffiffiffiffiffiffiffiffiffi
3

8��

s
: (24)

The asymptotic equation for ~p has the form

d~p

d"
¼ ~p

2"
þ C0 (25)

where

C0 ¼ 1

8�r30

�
3

2
� 32�2�2r40

�
; (26)

and its solution is

~p ¼ A
ffiffiffi
"

p þ 2C0" (27)

where A is an arbitrary coefficient. Thus, the family of the
solutions pðrÞ, MðrÞ can be characterized by the two
parameters r0 and A which, in turn, are determined by
the boundary conditions MðrbÞ; pðrbÞ on the surface of
the star.

However, the coordinates which we have used so far are
not convenient for the problem under consideration since
the metric coefficient grr ¼ e� ¼ ð1� 2M=rÞ�1 has a
fictitious (coordinate) singularity at r ¼ r0. Therefore, in-
stead of the coordinate r, we introduce a new coordinate �
defined by r ¼ r0 sin�, so that the corresponding metric
becomes

ds2 ¼ e ��ð�Þdt2 � e ��ð�Þd�2 � r20sin
2�ðd�2 þ sin2�d�2Þ:

(28)

Then the tt component of the Einstein equations has the
form

e� ��ð ��0 cot�þ 2� cot2�Þ þ 1

r20sin
2�

¼ 8�� (29)

where prime denotes differentiation with respect to the
variable �. Integration with the boundary condition

e� ��ð0Þ ¼ 1=r20 gives

e� �� ¼ 1

r20cos
2�

�
1� 8�r20

sin�

Z �

0
�ð�Þsin2� cos�d�

�
:

(30)

From Eqs. (6) and (18) it follows that

r20 ¼
1

8�
R�=2
0 �ð�Þsin2� cos�d�

(31)

that implies the positivity and finiteness of the expression
(30).
For latter purposes we also write down the �� compo-

nent of the Einstein equations:

e� ��ðcot2�þ ��0 cot�Þ � 1

r20sin
2�

¼ 8�p: (32)

The energy-momentum conservation equation now
reads

�� 0 ¼ � 2p0

pþ �
; (33)

and for the case of the Chaplygin gas it can be easily
integrated to give

e �� ¼ A0

�2 � p2
(34)

where A0 is some positive constant which fixes the choice
of the time scale.
Combining Eqs. (29), (32), and (33) one gets

p0 ¼ � cos�ðpþ �Þð �Mþ 4�r30sin
3�pÞ

sin�ðr0 sin�� 2 �MÞ (35)

where

�Mð�Þ ¼ 4�r30

Z �

0
�sin2� cos�d� (36)

and

�M 0 ¼ 4�r30�sin
2� cos�; �Mð0Þ ¼ 0: (37)

Relation (18) can be rewritten as

r0 ¼ 2 �Mð�=2Þ; (38)

and for the Chaplygin gas Eqs. (35) and (37) acquire the
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forms

p0 ¼ cos�ð�2 � p2Þð �Mþ 4�r30sin
3�pÞ

p sin�ðr0 sin�� 2 �MÞ ; (39)

�M 0 ¼ � 4�r30�
2sin2� cos�

p
; (40)

respectively.
We study these equations in the vicinity of the equator

(� ¼ �=2) by introducing a small positive variable � such
that

� ¼ �

2
� �; (41)

and the functions ~pð�Þ and ~Mð�Þ:

p ¼ � 1

8�r20
þ ~pð�Þ; (42)

�M ¼ r0
2
� ~Mð�Þ: (43)

A simple calculation shows that

~M ¼ 16�2r50�
2�2 þ � � � ; (44)

while for ~pð�Þ one can write down the following asymp-
totic equation

d~p

d�
¼ ~p

�
þ C1�; (45)

where

C1 ¼
3
2 � 32�2r40�

2

8�r20
: (46)

The solution of Eq. (45) is

~p ¼ B�þ C1�
2; (47)

with B an arbitrary constant. This solution can be contin-
ued to negative values of the parameter � that corresponds
to the equator crossing. Thus, all trajectories intersecting
the equator � ¼ �=2 can be characterized by two parame-
ters, which could be chosen as r0 and B. The static Einstein
solution corresponds to the values B ¼ 0 and C1 ¼ 0, the
latter condition being equivalent to r40 ¼ 3=64�2�2.

In order to investigate the behavior of the trajectories
after crossing the equator, we find it convenient to intro-
duce a new variable

y � 1

sin�
; (48)

so that 1 � y <1. In terms of this variable Eqs. (39) and
(40) can be rewritten as

dp

dy
¼ �ð�2 � p2Þð �My3 þ 4�r30pÞ

py3ðr0 � 2 �MyÞ ; (49)

d �M

dy
¼ 4��2r30

py4
: (50)

Now one can show that the expression r0 � 2 �My in the
denominator of the right-hand side of Eq. (49) is always
positive at y > 1. In order to prove this statement, we first
show that it is true if p >��.
To this end we introduce the function

fðyÞ � r0 � r0yþ 8��r30ðy3 � 1Þ
3y2

: (51)

Since p >��, it satisfies the inequality

fðyÞ � r0 � 2 �MðyÞy: (52)

We have

fð1Þ ¼ 0 (53)

and

f0ðyÞ ¼ �r0 þ 8��r30
3

þ 16��r30
3y3

; (54)

so that

f0ð1Þ ¼ r0ð8��r20 � 1Þ ¼
�

�

jpðr0Þj � 1

�
> 0: (55)

Now assume that the function r0 � 2 �MðyÞy becomes equal
to zero at some y ¼ y1 > 1. This means that at some value
y ¼ y2 � y1, the function fðyÞ vanishes. In turn, this last
condition requires the vanishing of the derivative f0ðyÞ at
some value y ¼ y3 < y2. From Eq. (54) one finds

y3 ¼
�

16��r20
3� 8��r20

�
1=3

; (56)

and the requirement y3 > 1 is equivalent to

1< 8��r20 < 3: (57)

The vanishing of the function r0 � 2 �My at the point y1
implies also the vanishing of the expression �My3 þ 4�r30p
at this point, i.e. the vanishing of the numerator of the
expression in the right-hand side of Eq. (49). Thus, the
values of the functions �M and p at the point y1 are given by

�Mðy1Þ ¼ r0
2y1

; pðy1Þ ¼ � y21
8�r20

: (58)

It follows from the condition p >�� that

y21 < 8��r20; (59)

while from y3 < y1 we find

y23 < 8��r20: (60)

Substituting the expression (56) into the inequality (60) we
get that this inequality is satisfied provided
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8��r20 > 4 (61)

that contradicts the condition (57).
Finally, looking at Eq. (49) one can see that the pressure

can, in principle, achieve the value p ¼ �� at some value

y ¼ y� only if r0=y� ¼ 2 �Mðy�Þ and ð8��r20
y2
�

� 1Þ> 0. A

simple analysis similar to the one carried out above shows
that this is impossible as well. Thus, we have shown that
the expression r0 � 2 �MðyÞy cannot vanish at any value of y
in the range 1< y <1.

We now study the behavior of the pressure at y > 1.
Here we find three families of solutions (geometries). The
first one contains trajectories arriving at the south pole of
the three-dimensional spatial manifold (y ¼ 1; � ¼ �)
with some value 0>pð1Þ>��. Looking at Eq. (49)
we see that the necessary condition for such solutions to
exist is the convergent behavior of the integral

Z
dy

�My3 þ 4�r30p

y3ðr0 � 2 �MyÞ (62)

at y ! 1 that implies the vanishing of the function �M at
y ! 1. Indeed, assume �Mð1Þ ¼ M0 � 0. Then M0 > 0
contradicts the positivity of the expression r0 � 2 �My,
while M0 < 0 implies the integral (62) to diverge logarith-
mically. Thus, the only value �Mð1Þ compatible with
pð1Þ>�� is �Mð1Þ ¼ 0. Then it follows from Eq. (50)
that the asymptotic behavior of �M at y ! 1 is

�M ¼ m

y3
; (63)

where

m ¼ � 4��2r30
3pð1Þ : (64)

Substituting the value of m into the integrand of the right-
hand side of Eq. (49), we see that the sign of the derivative
dp=dy at y ! 1 is determined by the sign of the expres-

sion ð�2 � 3p2ð1ÞÞ. If p <��=
ffiffiffi
3

p
this derivative is

negative, while it is positive for p >��=
ffiffiffi
3

p
.

Thus, there exists a two-parameter family of regular
space-time geometries for which the spatial manifold rep-
resents a three-dimensional spheroid parameterized by the
two parameters r0 and pð1Þ, and the metric coefficient gtt
given by the formula (34) is always positive.

The second family of geometries includes those where
the value of the pressure p becomes equal to zero. Let us
describe basic features of such geometries. We suppose
that pðy0Þ ¼ 0 at y0 > 1. The function �MðyÞ cannot be-
come negative at y ¼ y0 because in this case the derivative
dp=dy would be negative and it would be impossible to
reach the value pðy0Þ ¼ 0. Hence we consider the case
when �Mðy0Þ ¼ M0 where 0<M0 <

r0
2y0

. We assume that in

the neighborhood of the point y0 the pressure behaves as

pðyÞ ¼ �Dðy0 � yÞ� (65)

where D and � are some positive constants. Substituting
the expression (65) into Eq. (49), one gets

� ¼ 1

2
; D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2M0

r0 � 2M0y0

s
: (66)

Consider also the case in which �Mðy0Þ ¼ 0. In this case, we
look for the expressions describing the behavior of p and
�M in the vicinity of y ¼ y0 in the form

�MðyÞ ¼ M1ðy0 � yÞ	; (67)

pðyÞ ¼ �Eðy0 � yÞ
; (68)

where M1 and E are positive and 0<	< 
. Substituting
expressions (67) and (68) into Eqs. (49) and (50) one finds
the following values for the parameters 	; 
;M1 and E:

	 ¼ 1

3
; 
 ¼ 2

3
;

E ¼
�
18��4r20

y40

�
1=3

; M1 ¼ 2r0
3�2

E2:

(69)

Note that in this case the values of the of the parameters
M1 and E are uniquely fixed by the value of y0. In the case
of Mðy0Þ> 0 considered above one has a one parameter
family of geometries parameterized by the value of M0 or
by the value of D. Thus, it seems that one has a three-
parameter family of geometries corresponding to p ! 0
and these parameters are r0; y0 andM0. However, Eqs. (66)
or (69) describe necessary conditions which should be
satisfied to provide the existence of the geometry having
the maximal radius r0 and the pressure p vanishing at y ¼
y0. Not all the solutions satisfying the relations (66) or (69)
correspond to ‘‘initial conditions’’ at y ¼ 1, i.e. �Mðy ¼
1Þ ¼ r0=2. Moreover, taking into account the monotonic
behavior of the function MðyÞ one can believe that at least
one value of the parameter �Mðy0Þ corresponds to a geome-
try with the desirable initial and final conditions. Thus, the
family of solutions (geometries) ending with p ¼ 0 is also
two parametric and can be parameterized by the two
parameters r0 and y0.
An interesting feature of the geometries described above

consists in the presence of the singularity at y ¼ y0.
Indeed, the Chaplygin gas equation of state implies an
infinite growth of the energy density when the pressure
tends to zero that in turn determines the divergence of the
scalar curvature. Thus, the space-time under consideration
cannot be continued beyond y ¼ y0 or, in other terms,
beyond � ¼ �� arcsiny�1

0 .

The third family of possible geometries includes those
for which the pressure p tends to the value �� when y !
1 (� ! �). In this case the acceptable behavior of the
function �M is �Mð1Þ ¼ �M2, whereM2 > 0. The behavior
of the pressure at y ! 1 can be represented as

pðyÞ ¼ ��þ �pðyÞ (70)
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where �pðyÞ is a positive function vanishing at y ! 1.
Substituting (70) into Eq. (49), one gets an asymptotic
equation

d �p

dy
¼ � �p

y
; (71)

with the solution

�p ¼ F

y
(72)

where F is a positive constant. This constant does not
depend on the value of the parameterM2. Thus, the family
of the geometries with p ! �� at y ! 1 appears to be
described by the three parameters r0, F, andM2. However,
as in the case of the family of geometries described above
with the pressure vanishing at some of y ¼ y0, we are not
free in the choice of the value ofM2 after the values r0 and
F are fixed. Indeed, due to the monotonic behavior of the
function �MðyÞ, at least one value of the parameter M2

corresponds to a solution �MðyÞ satisfying the initial condi-
tion �Mð1Þ ¼ r0=2. Thus, one has a two-parameter family
of geometries defined by fixing the values of r0 and F.
These geometries have a singularity of the Schwarzschild-
type at y ¼ 1 (� ¼ �, r ¼ 0) due to the nonvanishing
mass �M ¼ �M2. They have another curious feature: the

metric coefficient gtt ¼ e ��ð�Þ given by the formula (34)
tends to infinity as p ! �� and, hence, intervals of the
proper time d� ¼ ffiffiffiffiffiffi

gtt
p

dt tend to infinity. So, one has an

infinite blueshift effect in contrast to the well-known red-
shift effects in the vicinity of the Schwarzschild and
de Sitter horizons.

Summarizing, solutions of the Tolman-Oppenheimer-
Volkoff equations in the presence of the Chaplygin gas
have the following curious features:

(1) All the spatial sections of the space-time manifolds
(excluding a special case of the de Sitter space-time)
are closed.

(2) Some geometries have a divergent scalar curvature
invariant at a finite value of r.

(3) Some geometries manifest an infinite blueshift
effect.

Unfortunately, the relations between the boundary con-
ditions pb, Mb, the parameters characterizing the crossing
of the equator r0, B, and the ‘‘final parameters’’ character-
izing the three family of geometries with qualitatively
different behaviors at �> �=2 cannot be found analyti-
cally and should be studied numerically.

IV. THE PHANTOM CASE: jpj > �

Now consider the system of Eqs. (9) and (10) with the
boundary condition

pðrbÞ<��: (73)

In this case jpj>� that corresponds to phantom dark
energy and, in principle, to a possibility of creation of

wormholes. If the condition (73) is satisfied, two cases
are possible.
Case A:

MðrbÞ þ 4�r3bpðrbÞ< 0: (74)

In this case, the pressure p is decreasing and its absolute
value is growing. Correspondingly, the energy density is
also decreasing and hence the mass M grows slower than
r3. Then the left-hand side of the expression (74) is de-
creasing, too, so the expressions ðMþ 4�r3pÞ, ðr� 2MÞ,
and ðp2 ��2Þ cannot change their signs.
We examine three possible subcases:
(1) p tends to some finite value �1< p1 <�� when

r ! 1;
(2) p tends to �1 when r ! 1;
(3) p grows indefinitely when r tends to some finite

value r1.
Subcase 1 cannot take place because the left-hand side

of Eq. (9) is regular while its right-hand side diverges as r2

when r ! 1.
Likewise, subcase 2 cannot be realized. Indeed, suppose

that p ¼ �p1r
�, �> 0, p1 > 0 when r ! 1. Then

Eq. (74) becomes

dp

dr
¼ �4�p2r; (75)

which implies

�� 1 ¼ 2�þ 1 (76)

or � ¼ �2 which contradicts the positivity of �.
We are left with subcase 3 which can be realized with

p ¼ � p1

r1 � r
; p1 > 0; when r ! r1: (77)

Substituting expression (77) into Eq. (9), we have the
following relation:

p1

ðr1 � RÞ2 ¼ p2
1

ðr1 � rÞ2 �
4�r21

r1 � 2M1

; (78)

from which we find the value of parameter p1 as a function
of the radius r1 and the mass Mðr1Þ ¼ M1:

p1 ¼ r1 � 2M1

4�r21
: (79)

Thus, we obtain a two-parameter family of solutions in
which one encounters a singularity at r ¼ r1 because the
scalar curvature R diverges there.
Case B:

MðrbÞ þ 4�r3bpðrbÞ> 0: (80)

In this case, the pressure grows with r. Then, in the right-
hand side of Eq. (9) we have three decreasing positive
terms ðp2 ��2Þ, ðMþ 4�pr3Þ, and ðr� 2MÞ. The prob-
lem is which term vanishes before the others, if any.
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The above terms cannot simultaneously remain positive
as r ! 1 because in this case jpj>�>�, and the ex-
pression ðMþ 4�pr3Þ would unavoidably change sign.

The case in which p ¼ �� while the other two expres-
sions remain positive is also excluded. Indeed, if p ! ��
as r approaches some finite value, the left-hand side of
Eq. (17) has a logarithmic divergence while its right-hand
side is regular. On the other hand, if p ! �� as r ! 1,
the expression ðMþ 4�pr3Þ will change its sign.

If ðp2 ��2Þ and ðr� 2MÞ vanish at some r ¼ r0,
Eq. (17) takes the form

d lnðp2 ��2Þ ¼ � dr

r� r0
(81)

which implies

p2 ��2 � 1

r0 � r
(82)

contradicting the hypothesis. Thus, the pressure cannot
achieve the value p ¼ ��.

As shown in the preceding section, the denominator ðr�
2MÞ at the right-hand side of Eq. (9) can only vanish at
some r ¼ r0 simultaneously with ðMþ 4�pr3Þ and the
pressure at r ¼ r0 should be equal p ¼ � 1

8�r2
0

(equator).

Let us prove that it is impossible to achieve the equator if
p <��. Indeed, the formula (10) shows that in this case

r� 2M ¼ r0 þ ðr� r0Þ � 2Mðr0Þ � 2M0ðr0Þðr� r0Þ
¼ ðr� r0Þð1� 64�2�2r40Þ (83)

as r ! r0. The difference ðr� 2MÞ should be positive as
r ! r0 from below, so the expression ð1–64�2�2r40Þ
should be negative. However, at jpj>� this expression
is positive—a contradiction.

Thus, if (80) is satisfied, p grows until some maximum
value pmax <�� when the expression ðMþ 4�pr3Þ
changes sign while the terms ðp2 ��2Þ and ðr� 2MÞ
are positive, and we are led back to case A.

So, we have proved that only two regimes are possible
for a starlike object immersed into the phantom Chaplygin
gas. If initial conditions satisfy (74), the pressure is de-
creasing and diverges at some finite value of r. Then the
space-time acquires a scalar curvature singularity there. On
the other hand, if initial conditions satisfy (80), then the
pressure grows with the r until some maximum value p ¼
pmax where the expression in the right-hand side of Eq. (9)
changes sign. After that we come back to case A: the
pressure decreases and explodes according to (77) at
some finite value of the radial coordinate r. No equator
and no horizon are attained in the case of the phantom
Chaplygin gas: the quantity ðr� 2MÞ is always positive.
As in the case of the nonphantom Chaplygin gas, the
relation between the initial values of the parameters func-
tions pðrbÞ and MðrbÞ and the parameters r1 and Mðr1Þ
cannot be found analytically.

We can summarize the results of the above considera-
tions in the following theorem: In a static spherically
symmetric universe filled with the phantom Chaplygin
gas, the scalar curvature becomes singular at some finite
value of the radial coordinate and the universe is not
asymptotically flat.

V. STATIC SPHERICALLY SYMMETRIC
UNIVERSE FILLED EXCLUSIVELY WITH THE

PHANTOM CHAPLYGIN GAS

Now we study spherically symmetric static solutions for
a universe filled exclusively with the phantom Chaplygin
gas. The theorem above is valid in this case, too. This
situation is of much interest because when the weak energy
condition is violated, �þ p < 0, wormholes may appear
(though not necessarily; see [9] in this connection).
Suppose that at some finite value of the radial variable r ¼
rb, the factor rb � 2MðrbÞ is positive and pðrbÞ<��.
Then, as in the preceding analysis, one can consider the
evolution of the functions MðrÞ and pðrÞ in accordance
with Eqs. (9) and (10) but with a decreasing value of the
radial variable r. Now only two possibilities may be real-
ized: one can arrive at the value r ¼ 0 keeping always a
positive value of the factor r� 2M, or one can encounter a
situation when at some finite value of r ¼ r0 this factor
vanishes.
Consider first the case in which ðr� 2MÞ is positive for

all values r > 0. Here, one can imagine two different
regimes as r approaches zero. In the first one the mass in
the vicinity of r ¼ 0 is positive and behaves as M� r�,
�> 0. In the second regime the mass tends to a negative
constant when r ! 0. A detailed analysis shows that only
the first regime is compatible with the TOV Eqs. (9) and
(10) in the presence of the phantom Chaplygin gas.
Precisely, in the vicinity of r ¼ 0 the pressure and the
mass functions have the form

p ¼ p0 � 8�2ð3p2
0 ��2Þðp2

0 ��2Þr2
3p2

0

; (84)

M ¼ � 4��2r3

3p0

(85)

where p0 is an arbitrary number such that p0 <��. Being
regular at the center r ¼ 0, this static configuration devel-
ops a singularity at some finite value of the radius r1, where
the pressure becomes equal to minus infinity. Thus, we
have a one-parameter family of static spherically symmet-
ric solutions of the Tolman-Oppenheimer-Volkoff equa-
tions in a world filled with the phantom Chaplygin gas.
This family is parameterized by the value of the pressure at
the center r ¼ 0.
Now suppose that the factor r > 2MðrÞ vanishes at some

value r ¼ r0. An analysis similar to the one carried out in
Sec. III shows that this is positive only if also the expres-
sionMþ 4�pr3 in the numerator of the right-hand-side of
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Eq. (9) vanishes at r0. In Sec. III, the surface r ¼ r0 was
called equator because it corresponded to the maximal
value of the radial variable r. Now it corresponds to the
minimal value of r, and it is nothing but a throat. Just like
in the case of the equator considered in Sec. III, the throat
can be achieved only at p ¼ � 1

8�r2
0

. In the phantom case

p <��, hence, there is a restriction on the size of the
throat

r0 <

ffiffiffiffiffiffiffiffiffiffiffi
1

8��

s
: (86)

In order to describe the crossing of the throat, it is
convenient to introduce the hyperbolic coordinate � in-
stead of the radius r,

r ¼ r0 cosh�; (87)

which plays a role similar to that played by the trigono-
metrical angle � in the description of the equator.

Now the TOV equations look like

dp

d�
¼ ð�2 � p2ÞðMþ 4�pr30cosh

3�Þ sinh�
p cosh�ðr0 cosh�� 2MÞ ; (88)

dM

d�
¼ � 4��2r30cosh

2� sinh�

p
: (89)

The solution of (89) at small values of � is

M ¼ r0 þ 16�2�2r50�
2: (90)

Representing the pressure as

pð�Þ ¼ � 1

8�r20
þ ~pð�Þ; (91)

one can rewrite Eq. (88) in the neighborhood of the throat
as

d~p

d�
¼ ~p

�
þ CT� (92)

where the negative constant CT is equal to

CT ¼ 64�2�2r40 � 3

16�r20
: (93)

The solution of Eq. (92) is

~p ¼ D�þ 1
2CT�

2 (94)

where D is an arbitrary constant.
Thus, geometries with a throat constitute a two-

parameter family, characterized by the value of the throat
radius r0 and by the value of the parameter D. From
Eq. (94) we see that when the hyperbolic parameter �
grows, the negative term 1

2CT�
2 starts dominating, while

the pressure decreases and achieves an infinite negative
value at a finite value of the radius r where we encounter a
curvature singularity. The peculiarity of this configuration
with a throat consists in the fact that these singularities are
achieved at both sides of the throat or, in other words, at

one positive �1 > 0 and one negative �2 < 0 values of the
hyperbolic parameter. The values �1 and �2 correspond to
values r1 ¼ r0 cosh�1 and r2 ¼ r0 cosh�2 of the radial
parameter. If D ¼ 0 one has r1 ¼ r2. The solutions with
a throat could be seen as wormholelike, but in contrast with
the Morris-Thorne-Yurtsever wormholes [12], they do not
connect two asymptotically flat regions.
We summarize the preceding considerations concerning

solutions of the Tolman-Oppenheimer-Volkoff equations
in the universe filled with the phantom Chaplygin gas as
follows. Suppose we start from an initial condition �r�
2Mð�rÞ> 0 and pð�rÞ<�� for some given value �r of r.
Then letting the functions MðrÞ and pðrÞ evolve to values
r > �r, we unavoidably arrive to an infinite negative value
of the pressure at some finite value rf of the radius r, thus

encountering a singularity. Instead, for r < �r two qualita-
tively different situations may arise: either we arrive to r ¼
0 in a regular way, or we may discover a throat at some
finite value r ¼ r0, this being the generic situation. Upon
passing the throat, an observer finds itself in another patch
of the world and then, with the radius increasing, stumbles
again upon a curvature singularity at some finite distance
from the throat.
Note that in the traditional view of wormholes, one

supposes that there is a minimal value of the radial pa-
rameter characterizing a throat, and the space-time at both
sides of the throat is either asymptotically flat, or has some
other traditional structure (for example, wormholes could
also connect two expanding asymptotically Friedmann
universes). Here we have found a different kind of worm-
holelike solutions: those connecting two space-time
patches which have a scalar curvature singularity at some
finite value of r.
We conclude this section with the brief comment on the

results of paper [7] where the problem of the existence of
wormhole solutions supported by the phantom Chaplygin
gas was studied. The main part of this paper is devoted to
the consideration of the so called ‘‘anisotropic’’ Chaplygin
gas, i.e. a fluid whose radial pressure satisfies the
Chaplygin gas equation of state, while the tangential pres-
sure can be arbitrary. Then the system of TOVequations is
underdetermined and its solution contains one arbitrary
function. Choosing this function in a convenient way, one
can construct a lot of solutions, satisfying the desired
properties. However, this fluid is not the Chaplygin gas
and, moreover, is not a barotropic fluid. The case of the
isotropic Chaplygin gas is also considered in Ref. [7]. The
author studies numerically the behavior of metric coeffi-
cients in the vicinity of the throat without considering the
problem of continuation of this solution to larger values of
the radial coordinate. However, the general theorem proved
at the end of Sec. IV of the present paper states that all
spherically symmetric solutions supported by the phantom
Chaplygin gas (with or without a throat) have a curvature
singularity at some finite value of the radial coordinate and
hence cannot be asymptotically flat.
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VI. CONCLUSION

In this paper, we have studied the Tolman-Oppenheimer-
Volkoff equations for static spherically symmetric objects
immersed in the space filled with the Chaplygin gas. Both
cases, phantom and nonphantom, were considered. In the
nonphantom case all solutions (excluding the de Sitter one)
represent a spheroidal geometry, where the radial coordi-
nate achieves a maximal value (equator). After crossing the
equator, depending on the boundary conditions, three types
of solutions can arise: a closed spheroid having a
Schwarzschild-type singularity with infinite blueshift at
the ‘‘south pole’’, a regular spheroid, and a truncated
spheroid having a scalar curvature singularity at a finite
value of the radial coordinate.

For the case of the phantom Chaplygin gas, the equator
is absent and all starlike external solutions have the ge-
ometry of a truncated spheroid having a scalar curvature
singularity at some finite value of the radial coordinate.
Besides, we have also considered the static spherically
symmetric configurations existing in a universe filled ex-
clusively with the phantom Chaplygin gas. Here two cases
are possible: geometries which are regular at the center r ¼
0 and having a scalar curvature singularity at some finite
value of r, and geometries containing throats connecting
two patches of the world which again have scalar singu-

larities at some finite values of the radius. Because of these
singularities, the construction of stable, traversable, and
asymptotically flat wormholes using the phantom
Chaplygin gas is prohibited, in spite of breaking the
weak energy condition in this case.
Finally, we note that many of the solutions of the TOV

equations studied above possess singularities arising at
some finite values of the radial coordinate, while intuitively
it is more habitual to think about singularities arising at the
point characterized by the vanishing of this coordinate.
Something similar happens in the study of isotropic and
homogeneous cosmological models, too. Here, in addition
to the traditional big bang and big crunch singularities, an
intensive study of the singularities which take place at
finite or at infinite values of the cosmological scale factor
is under way (see e.g. [13]).
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