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The glycosaminoglycan hyaluronan (HA) modulates cell prolif-
eration and migration, and it is involved in several human vascular
pathologies including atherosclerosis and vascular restenosis. Dur-
ing intima layer thickening, HA increases dramatically in the
neointima extracellular matrix. Aging is one of the major risk fac-
tors for the insurgence of vascular diseases, in which smooth mus-
cle cells (SMCs) play a role by determining neointima formation
through their migration and proliferation. Therefore, we estab-
lished an in vitro aging model consisting of sequential passages of
human aortic smooth muscle cells (AoSMCs). Comparing young
and aged cells, we found that, during the aging process in vitro, HA
synthesis significantly increases, as do HA synthetic enzymes (i.e.
HAS2 and HAS3), the precursor synthetic enzyme (UDP-glucose
dehydrogenase), and the HA receptor CD44. In aged cells, we also
observed increased CD44 signaling that consisted of higher levels
of phosphorylated MAP kinase ERK1/2. Further, aged AoSMCs
migrated faster than young cells, and such migration could be mod-
ulated by HA, which alters the ERK1/2 phosphorylation. HA oligo-
saccharides of 6.8 kDa and an anti-CD44 blocking antibody pre-
vented ERK1/2 phosphorylation and inhibited AoSMCs migration.
These results indicate that, during aging, HA can modulate cell
migration involving CD44-mediated signaling through ERK1/2.
These data suggest that age-related HA accumulation could pro-
mote SMC migration and intima thickening during vascular
neointima formation.

Hyaluronan (HA)? is a linear, unsulfated glycosaminoglycan
(GAG) that is composed of repeating units of b-glucuronic acid
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and N-acetylglucosamine linked together through alternating
1,4 and 1,3 glycosidic bonds. The amount and the molecular
weight of HA are important factors that regulate the physio-
pathological effects that this molecule displays on cells (1). In
mammals, three specific HA synthases (HAS1, -2, and -3) and
three hyaluronidases (HYAL1, 2, and PH20) regulate HA syn-
thesis and degradation with specific biochemical properties and
distributions in adult as well as in embryonic tissues (2, 3).
Therefore, these enzymes have a critical role in HA metabolism
and are responsible for HA balance in the extracellular matrix
(ECM).

Hydrated HA makes the ECM an ideal environment in which
cells can move and proliferate. Moreover, HA is an important
space filling molecule as is evident in the vitreous humor, the
dermis and the synovial fluid of joints. Besides its chemical and
mechanical properties, HA interacts with several receptors at
the cellular level that specifically trigger various signal trans-
duction responses (4). The HA receptor CD44 is expressed on
the surface of most cells, including immune system cells, and it
mediates cell adhesion, proliferation and migration (5). Recep-
tor for HA-mediated motility (RHAMM) mediates cellular
motility (6). Lyve-1 is the specific HA receptor of the lymphatic
system although very recent evidences indicate a more complex
function of this protein unrelated to HA (7). HA Receptor for
Endocytosis (HARE) mediates the endocytosis of HA (8, 9).
Recently, Toll Like Receptors 4 and 2 (TLR4/2) were shown to
recognize HA fragments (10) and modulate the inflammation
response in the lung (11). Although it has a simple structure, it
is clear that HA can modulate many cellular responses, and the
amount of this GAG has to be strictly regulated. Cells during
different stress responses synthesize HA cable-like structures
that have a role in inflammation, acting as an adherent for
monocytes and other immune system cells (12-15). A large
body of evidence describes a direct correlation between the
amounts of HA and degree of malignancy in cancers. Consid-
ering the role of HA in cell proliferation and migration, the
correlation between malignancy and HA content opened a new
insight in tumor biology (16).

In vascular pathology, HA accumulates during the formation
of neointima, which reduces the vessel diameter and is a crucial
event for the pathological outcome (17). In the first steps of its
formation, neointima tissue is composed mainly of proliferat-
ing smooth muscle cells (SMCs) that migrated from the tunica
media of the vessel after a mechanical or other undefined
injury. In this context, HA and CD44 have a pivotal role to
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induce SMC proliferation and migration (18). Transgenic mice
overexpressing HAS2 have high HA levels in the vasculature
and developed more serious atherosclerotic lesions compared
with controls (19). Moreover, in other experiments, CD44
knock-out mice showed slower SMC proliferation rates than
control mice and less severe atherosclerotic lesions (5).

As aging is one of the major risk factors for the insurgence of
vascular pathology (20), we have established a cell model for in
vitro aging in order to investigate age related modifications in
gene expression and cellular migration in primary human aor-
tic SMCs (AoSMCs). Recently, we used this aging model to
describe age related changes in expression and activity of
matrix metalloproteinase 2 (21). In this study, we describe the
age-related changes in HA content, including the gene expres-
sion of enzymes involved in HA metabolism, and its effect on
the migration properties of young and aged AoSMCs. The data
obtained suggest that HA can regulate cell migration through a
CD44 pathway that modulates ERK1/2 phosphorylation.

EXPERIMENTAL PROCEDURES

Cell Culture—Human primary aortic smooth muscle cells
(AoSMCs, donor age 17, male) were purchased from Cambrex
and grown in SmGm?2 complete culture medium (Cambrex)
supplemented with 5% fetal bovine serum (FBS). This cell cul-
ture medium was used in all the experiments. The cultures were
maintained in an atmosphere of humidified 95% air, 5% CO, at
37 °C. Whenever cultures became nearly confluent, the cells
were trypsinized, counted using trypan blue exclusion, and sub-
cultured. Population doublings (PDs) were determined at each
passage and were calculated as follows: PD = log (number of
cells obtained/initial number of cells)/log 2. In the experiments,
4 PD and 18 PD cells were used and are referred to as young and
aged AoSMCs, respectively.

HA Quantification—HA and chondroitin sulfate were quan-
tified by means of fluorophore-assisted carbohydrate electro-
phoresis (FACE) and HPLC analysis (22). Briefly, GAGs were
purified starting from 300 ul of conditioned culture medium of
young and aged AoSMCs by proteinase K (Fynnzyme) digestion
and ethanol precipitation. GAGs associated with the cell layer
were analyzed by resuspending the AoSMCs in 0.1 M ammo-
nium acetate, pH 7, disrupting the cells with sonication, digest-
ing with proteinase K, and recovering the GAGs by ethanol
precipitation. GAGs were digested with hyaluronidase SD
(Seikagaku) and by chondroitinase ABC (Seikagaku). Disaccha-
rides obtained by the enzymatic digestions were fluorotagged
with 2-aminoacridone (AMAC, Molecular Probes). AMAC-
tagged disaccharides were separated and quantified with FACE
and HPLC.

Determination of HA Molecular Size—Gel filtration chroma-
tography was done on AMAC derivatized GAGs purified from
young and aged AoSMC conditioned culture media as previ-
ously described (23) using an FPLC (Amersham Biosciences)
apparatus. Sample peaks were identified and quantified by
comparing the absorbance at 280 nm with standard proteins.
The identification and quantification of GAGs was done on
eluted fractions (2 ml each) by digestion with hyaluronidase SD
and chondroitinase ABC and analysis as described above.
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HA Localization—Immunofluorescence experiments were
done as previously described by de la Motte et al. (12). Briefly,
young and aged AoSMCs grown on coverslips were fixed in
cold methanol for 15 min. The coverslips were preincubated
with PBS containing 2% FBS and then incubated in the same
solution containing biotinylated HA-binding protein (Seika-
gaku) (5 ug/ml) and a CD44 monoclonal antibody (clone A3D8,
Sigma; 10 pug/ml) overnight at 4 °C. The coverslips were washed
with PBS, and then incubated with a solution containing fluo-
rescein-tagged streptavidin (1:500) and Texas Red-conjugated
anti-mouse Ig (H+L) (1:500) in PBS containing 2% FBS. After
washing in PBS, the coverslips were mounted using mounting
medium containing 4,6-diamidino-2-phenylindole (DAPI)
(Vector Laboratories). The slides were then sealed with nail
polish and images were obtained using a fluorescence micro-
scope (Olympus).

Quantitative and Semiquantitative RT-PCR—Total RNA
from both young and aged AoSMCs was extracted using TRIzol
reagent (Invitrogen) following the manufacturer’s protocol.
Total RNA from human normal fetal aorta (Stratagene) and
total RNA from human adult aorta (Ambion) were used to
quantify the gene expression in vivo. To remove DNA contam-
ination, DNase (Ambion) treatment was done in all samples.
One pg of total RNA was retrotranscribed using the High
Capacity cDNA synthesis kit (Applied Biosystems) for 2 h at
37 °C. Quantitative RT-PCR was done on an Abi Prism 7000
instrument (Applied Biosystems) using Tagman Universal PCR
Master Mix (Applied Biosystems) following the manufacturer’s
instructions. Probes and primers were from TaqMan gene
expression assay reagents (Applied Biosystems). The following
TagMan gene expression assays were used: HASI1
(Hs00155410), HAS2 (Hs00193435), HAS3 (Hs00193436),
HYAL2 (Hs00186841), PH20 (Hs00162139), smooth muscle
a-actin  (Hs00224622), ICAM (Hs00164932), VCAM
(Hs00174239), CD44 (Hs00174139), RHAMM (Hs00234864),
UDP-glucose dehydrogenase (UGDH) (Hs00163365) and
RNAseP (Hs00706565_s1). Fluorescent signals generated dur-
ing PCR amplifications were monitored and analyzed with Abi
Prism 7000 SDS software (Applied Biosystems). Comparison of
the amount of each gene transcript among different samples
was made using RNAseP as the reference. In order to determine
the efficiency of each Tagman gene expression assay, standard
curves were generated by serial dilution of cDNA, and quanti-
tative evaluations of target and housekeeping gene levels were
obtained by measuring threshold cycle numbers (Ct). As the
differences among efficiencies of each Tagman gene expression
assay were <0.1, we used the relative quantification method
AACts to quantify gene expression (24).

The Tagman assay for HYAL1 detects mRNAs coding for
both the active and the inactive splicing variants. Therefore, we
designed two primers (5'-ACTTTCTAAGCCCCAACTA-
CACC-3" and 5'-GGTTCTTGTATTTTCCCAGCTC-3') to
detect only the active HYAL1 wild-type transcript (25) in
canonical semiquantitative RT-PCR experiments using RED-
Taq (Sigma). Moreover, to detect HYAL3 we designed
5'-TGTCCCAGGATGACCTTGTG-3" and 5'-TCTAC-
CCCTCAGGGATTCCA-3'-specific primers, and to detect
HYAL4 we designed 5-GCGCCCAGTTACCTTCACTT-3'
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and 5'-GCAACTTAAATATTCCAATAAGGAGGA-3' prim-
ers. For standardization, B-actin was also amplified by using
5'-GGCACCCAGCACAATGAAG-3" and 5'-GCCGATCCA-
CACGGAGTACT-3' primers.

Detection of Hyaluronidase Activity by Zymography—Cell
lysates from young and aged AoSMC cultures were obtained by
disrupting the cells with sonication in PBS with 0.1% Triton
X-100. Medium samples were concentrated 10X in a filtration
apparatus with a cut-off of 10,000 Da. Aliquots of these samples
were electrophoresed in a 12% polyacrylamide gel containing 1
mg/ml of HA (26). The gel was rinsed for 2 h in 2.5% Triton
X-100 and incubated overnight at 37 °C in 50 mM citric acid-
Na,HPO,, 0.15 M NaCl, pH 5, or in 0.1 M sodium formate, 0.15
M NaCl, pH 3.5. Each gel was treated with 0.1 mg/ml Pronase in
20 mM Tris-HCI, pH 8.0 for 2 h at 37 °C and stained with Alcian
Blue.

The electrophoretic assay of hyaluronidase activity was also
used as described (27). Briefly, 50 ug of HA from human umbil-
ical cord (Sigma) was incubated with young or aged AoSMC-
conditioned medium or with 30 ug of cell lysate proteins pre-
pared by exposing young or aged AoSMC cultures to a PBS
buffer containing 0.5% Triton X-100. After incubation at 37 °C
at pH 3.5 (using formate buffer, see above) or at pH 5 (using
citricacid-Na,HPO, buffer, see above), the samples were boiled
and electrophoresed in standard 0.5% agarose Tris acetate-
EDTA gels, and HA was stained with 0.005% Stains-All (Sigma).

Migration Assay—Cell migration was measured with the
Transwell (Costar) system, which allows cells to migrate
through 8-um pore size polycarbonate membranes as
described previously (21). Briefly, 10 cells were resuspended in
serum-free SmGm2 and added to the upper chamber of Tran-
swells. The lower chamber was filled with 1.5 ml serum-free
SmGm?2 or 1.5 ml serum-free SmGm?2 containing 10 ug/ml of
purified, low endotoxin 34-mer HA oligosaccharide (28), or 10
pg/ml of high molecular weight HA (Healon, Amersham Bio-
sciences), or anti CD44 monoclonal antibodies (clone A3D8 at
15 ug/ml or clone BRIC235 at 5 ug/ml), or 15 ug/ml of an
isotype-matched control antibody against tubulin (clone
DMI1A, Sigma), or 15 um (final concentration) of U0126
(Sigma), or 10 ng/ml of PDGEF-BB (Euroclone), or 20% FBS
(Euroclone). In control experiments, HWHA was digested with
30 milliunits of chondroitinase ABC (Seikagaku) at 37 °C for
16 h to obtain HA disaccharides. After 6 h, filters were removed,
and cells remaining on the upper surface of the membrane were
removed with a cell scraper. The cells present beneath the
membrane were fixed with cold methanol and stained with
Crystal violet. Cells were counted in 10 high-power microscope
fields.

Western Blotting—Young and aged AoSMC cultures were
lysed in ice-cold PBS buffer containing 0.5% Triton X-100, and
a phosphatase and protease inhibitor mixture (Roche Applied
Science) by means of sonication. Total protein contents were
determined by the Bradford method. 30 ug of proteins were
separated by SDS-PAGE under reducing conditions and blot-
ted onto a polyvinylidene difluoride membrane (Millipore).
Membranes were probed with specific anti-phospho-ERK1/2
or anti-ERK1/2 antibodies (Cell Signaling Technology) at the
dilutions reported by the manufacturer. Signals were revealed
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using secondary peroxidase-conjugated antibodies, and the
bands visualized by chemoluminescence (Amersham Bio-
sciences). Developed films were scanned using a GS-700 Imag-
ing Densitometer (Bio-Rad) and quantified using Quantity One
software (Bio-Rad).

Statistical Analyses—Unpaired Student’s ¢ tests were done
for statistical analyses. Probability values of p < 0.01 were con-
sidered statistically significant. Experiments were done in trip-
licate, and data are expressed as means = S.E.

RESULTS

HA Quantification and Characterization—As previously
described (21), we cultured commercial AoSMCs (Cambrex) in
complete-SmGm2 medium (Cambrex) for several population
doublings (PD) and consider as “young,” cells with 4 PD after
thawing, and as “aged,” cells with 18 PD after thawing. During
cell passages, AoSMCs began to show senescence associated
B-galactosidase activity, which is considered a typical senes-
cence marker (29), increasing from about 10% in young
AoSMCs to about 90% in aged cells indicating a substantial
absence of senescence in the cells that we defined as young (21).
Moreover, the expression of cyclin p16™%**, another senes-
cence marker, was significantly higher in aged than in young
AoSMCs (21). Moreover, we exclude any dedifferentiation
events because a SMC specific marker, « SM actin, and the
distribution of actin filaments did not change during cell pas-
sages (21).

By FACE analyses, we found that aged cells secrete more HA
into the culture medium (Fig. 1A4). These findings were con-
firmed by quantitative HPLC analyses of disaccharides, which
measured a significant 20% increase of HA secreted into the
culture medium of aged relative to young AoSMCs (Fig. 1B).
Moreover, the HPLC analyses also showed that the ratios of
disaccharides obtained from chondroitin 4 and 6 sulfate (ACS-
4S/ACS-6S) decreased during aging from 7.0 = 0.5 in young
AoSMCs to 5.4 = 0.4 in aged cells (data not shown). The rela-
tive increase of chondroitin 6-sulfate is known to be linked with
the aging process as well as with growth relative to puberty in
cartilage (30, 31).

Qualitative assessment of immunofluorescence of cultures
showed that HA associated with AoSMCs was higher in aged
than in young cells (Fig. 1C). Interestingly, some HA in aged
AoSMCs was distributed in spots within cells, as previously
reported in mitotic rat aortic SMCs (14, 32).

Asthe HA molecular weight is an important factor in HA cell
responses, we characterized the size distribution of HA released
in cell culture medium by young and aged AoSMC cultures
with gel filtration. The average HA molecular weight was about
2.2 X 10° Da in the medium of both young and aged cells
(results not shown).

Gene Expression Studies of the HA-metabolizing Enzymes—
Quantitative RT-PCR was used to characterize the differences
in the expression of HA metabolizing enzymes between young
and aged AoSMC cultures. We quantified transcripts coding
for the HA synthetic enzymes (HAS1, -2, and -3) and the
degrading enzymes (HYALL, -2, and PH20) using Tagman gene
expression assays. In young AoSMCs, HAS3 mRNA is the most
abundant transcript for the HA synthetic enzymes, and is
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FIGURE 1. A, representative FACE analysis of AMAC-labeled disaccharide of
HA (AHA), chondroitin 0-sulfated (ACS-0S), chondroitin 6-sulfated (ACS-6S),
and chondroitin 4-sulfated (ACS-4S) (standard lanes). AMAC-labeled disac-
charides from the GAGs in the culture media conditioned by 10° young or
aged AoSMCs (Young and Aged lanes, respectively) were prepared as
described under “Experimental Procedures.” B, HPLC quantification of AHA
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expressed about 10-fold higher than HAS2 mRNA (Fig. 24,
white bars). HAS2 mRNA, in turn, was expressed about 10-fold
higher than HAS1 mRNA. In aged AoSMCs, HAS3 mRNA is
expressed only about 1.2-fold higher than HAS2 mRNA, which
is expressed about 10-fold higher than HAS1 mRNA (Fig. 24,
black bars). Fig. 2B shows a statistically significant increase of
HAS2 mRNA and HAS3 mRNA expression in aged compared
with young AoSMCs.

Another protein involved in the onset of atherosclerosis is
CD44, the HA receptor (4). This receptor may have a role in
vascular cell activation and could mediate inflammatory cell
recruitment (5). To verify whether CD44 expression during
aging could be altered, we quantified its mRNA level by quan-
titative RT-PCR and found a statistically significant increase
(~3X) in aged AoSMCs (Fig. 2B). Western blot analyses of
proteins extracted from young and aged AoSMC cultures con-
firmed the gene expression data (results not shown). The
mRNA expression of the other HA receptor RHAMM did not
change during AoSMC aging (Fig. 2E).

We quantified the gene expression of the enzyme that syn-
thesizes the UDP-sugar precursor, UDP-glucuronic acid (UDP-
glucose dehydrogenase, UGDH) and found a significantly
higher mRNA expression (~4X) in aged AoSMCs (Fig. 2B).

To verify whether our in vitro cell aging system represents
the gene expression in vivo, quantitative RT-PCR was done on
human normal aorta RNA prepared from healthy donors of
different ages. As a young sample, we used a pool of 5 different
fetal aorta RNAs purchased from Invitrogen; as an adult sample
we used a pool of 5 different aorta RNAs from donors of >65
years old (Ambion). Fig. 2C highlights the relative ratios for
HAS]I, -2, and -3 and Fig. 2D shows a statistically significant
increase in the expression of mRNA coding for HAS1 enzymes
in aged aorta, whereas HAS2 mRNA and HAS3 mRNA appear
to be unchanged. Interestingly, in aorta samples, UGDH and
CD44 expressions resembled those obtained in the cells aged in
vitro (Fig. 2, B and D).

Because SMCs in the atherosclerotic lesion change from a
contractile to a synthetic phenotype (5), we investigated
whether during in vitro aging AoSMCs undergo such a pheno-
typic transition. The expression of critical genes (a-SM actin,
VCAM, and ICAM) characteristic of the synthetic phenotype
were quantified by quantitative RT-PCR. All three of these
genes did not change their expression significantly between
young and aged AoSMCs, even though a slight, but not statis-
tically significant, decrease of a-SM actin was found in aged
AoSMCs (Fig. 2E). These data indicate that during in vitro aging
no contractile to synthetic phenotype occurs.

To confirm that the increase of HA in aged AoSMCs could be
due to an up-regulation of HAS genes rather than a down-
regulation of HYAL genes, we checked the expression of hyalu-
ronidases in AoSMC cultures. HYAL2 mRNA expression was
not statistically different in aged compared with young

secreted into the culture medium by young (open bar) and aged (black bar)
AoSMCs. The graph represents the means = S.E. of three different GAG sam-
ple determinations. *, p < 0.01 young versus aged. C, immunolocalization of
HA (green), CD44 (red), and nuclei (blue) on young and aged AoSMCs. The
microphotographs show representative results of different independent
experiments. Original magnification X400. Scale bar is equal to 30 um.
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AoSMCs both in vitro and in vivo (Fig. 3A). For a control,
mRNA coding for PH20, a testis specific hyaluronidase, was
quantitated; and, as expected, no signals were found both in
young and aged cells (results not shown). HYAL1 mRNA can be
alternatively spliced to generate a wild-type functional isoform
(HYALI1wt) and five nonfunctional isoform variants
(HYAL1v1-5) (25), and the commercial Tagman assays cannot
specifically quantify the transcript coding only for the func-
tional enzyme. Hence, we designed two primers that amplified
specifically the mRNA for HYAL1wt in a semi quantitative RT-
PCR analysis. As shown in Fig. 3B, the band corresponding to
HYALIwt was present only in the BC8701 carcinoma cell line
RNA (positive lane), a cell line that possesses hyaluronidase
activity in zymography (see Fig. 3, C and D), whereas neither
young nor aged AoSMCs express the mRNA coding for the
functional enzyme.

The human genome possesses other HYAL genes coding for
HYALS3, whose function is still unknown, and HYAL4, a pseu-
dogene transcribed but not translated in humans (34). We did
not observe any bands corresponding to HYAL3 mRNA or
HYAL4 mRNA in RT-PCR experiments indicating that, if they
were expressed, their transcript levels were below the detection
limit of RT-PCR (Fig. 3E).

Hyaluronidase zymography at pH 3.5 (Fig. 3C) and electro-
phoretic analysis of hyaluronidase activity on soluble commer-
cial HA (27) (Fig. 3D) clearly indicate that no hyaluronidase
activity can be detected in either the conditioned culture media
or in cell extracts of young and aged AoSMC cultures. Similar
results were obtained when the hyaluronidase zymography was
done at pH 5 (results not shown). These results suggest that the
age related HA accumulation is due to an up-regulation of HA
synthetic enzymes (i.e. HAS2 and 3) rather than a down-regu-
lation of degrading enzymes.

AoSMCs Behavior during Aging—One of the most preco-
cious events during the onset of atherosclerosis or restenosis is
SMC migration toward the intima layer. As it is known that
CD44 promotes atherosclerosis (5), we focused our attention
on AoSMC migration during aging in relation to HA, CD44 and
the effects of CD44 on the MAP kinase ERK1/2 phosphoryla-
tion signaling pathway (35). We hypothesized that the high
CD44 expression in aged cells could mediate higher levels of
phosphorylated ERK1/2 protein. Phosphorylation of p44/42
MAP kinase (ERK1/2) at residues Thr202 and Tyr204 activates
the protein, which triggers several cellular events including

expression as reference. B, quantification of the transcripts coding for the HAS
enzymes, CD44 and UGDH by RT-PCR in young (open bars) and aged (black
bars) AoSMCs. The mRNA expression of each gene in young samples is used as
reference, the lowest value of five different determinations of young samples
was set to one, and the S.E. is shown on each bar. C, quantification of the
transcripts coding for the HAS enzymes by RT-PCR in fetal aorta (open bars)
and adult aorta (black bars). The Y axis is in log scale. The results of the relative
quantification are calculated using aged HAS1 expression as reference.
D, quantification of the transcripts coding for the HAS enzymes, CD44 and
UGDH by RT-PCR by using cDNA derived from fetal (open bars) and adult aorta
(black bars) total RNA. The expression of each gene in young samples is used
as reference as reported above. E, quantification of the transcripts coding for
a-SM actin (SMA), ICAM, VCAM, and RHAMM by RT-PCR in young and aged
AoSMCs. The expression of each gene in young samples is used as reference
as reported above. Relative expression is expressed in arbitrary units. #, p <
0.01 young versus aged. Data represent mean = S.E. of three different exper-
iments. Asterisks indicate arbitrary units.
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FIGURE 3. A, quantification of the transcripts coding for HYAL2 enzyme by
RT-PCRin young AoSMCs or fetal aorta (open bars) and aged AoSMCs or adult
aorta (black bars). The expression of HYAL2 gene in young or fetal samples is
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FIGURE 4. Western blot analysis to detect ERK1/2 phosphorylation in young
and aged AoSMCs (upper panels). 30 g of proteins were loaded in each lane
and were prepared from 80% confluent cultures of young and aged AoSMCs
grown in SmGm2 complete culture medium supplemented with 5% FBS.
Anti-phosphorylated ERK1/2 antibody was used to detect the active MAP
kinase. After stripping, the membrane was probed with anti-total ERK1/2 to
visualize the total amount of MAP kinase. The photograph shows represent-
ative results of three independent experiments. The lower panel shows den-
sitometric analyses of Western blot bands.

=t

pERK/ERK

cell migration. Western blot analysis of protein extracts
from young and aged AoSMC cultures showed higher levels
of phosphorylated ERK1/2 protein in aged cells (Fig. 4). We
repeated the experiment several times and always found
about a 2-fold increase of ERK1/2 phosphorylation in aged
cells compared with young cells. By using a Transwell sys-
tem, we assessed the migration of young and aged AoSMCs
as previously described (21). Without covering the Tran-

used as reference as described in the Fig. 2 legend. Asterisk indicates arbitrary
units. B, semiquantitative RT-PCR analysis of young and aged AoSMCs total
RNA (young and aged lanes, respectively) using primers that amplified only
the catalytically active isoform of HYAL1. As a control, 3 actin was also ampli-
fied. Total RNA from BC8701 cells was used as a positive control (positive lane).
Negative controls were done by amplifying young and aged total RNA with-
out the reverse transcription step (no RT lanes). C, hyaluronidase zymography
done on 10X concentrated young or aged AoSMCs conditioned culture
medium (Young CM and Aged CM lanes, respectively) and on 50 g of pro-
teins extracted from young or aged AoSMCs (young extract and aged extract
lanes, respectively). As controls, concentrated human urine (urine lane) and
the conditioned cell culture medium of BC8701 cell line (positive lane) were
loaded in the gel. The gel was incubated at pH 3.5, and the bands were visu-
alized by Alcian Blue staining. The photograph shows a representative result
of several independent experiments. D, hyaluronidase activity in 30 ug of
proteins extracted from young AoSMCs (lane 1), aged AoSMCs (lane 2),
BC8701 (lane 3, positive controls) on commercial HA at pH 5 at the indicated
incubation times. Lanes 4 contain no protein extracts (negative controls).
Lane M contains A DNA digested with BstEll as a molecular marker. HA in the
agarose gel is visualized by Stains-All staining. E, semiquantitative RT-PCR on
cDNA synthesized from young and aged AoSMCs total RNA. Primers were
used to amplify Hyal3 and Hyal4. Positive controls were done detecting
cytoskeletal actin.
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swell with any matrix molecules, aged AoSMCs showed
higher migratory capability than young AoSMCs (Fig. 5, A
and B and Fig. 6A).

To assess the effect of HA on AoSMC migration, we added
different concentrations of high molecular weight HA
(HWHA) (Healon, average MW ~ 4000 kDa) to the lower
chamber of the Transwell. Young AoSMCs did not change
motility whereas HWHA stimulated aged AoSMC migration in
a dose-dependent manner (Fig. 54). A statistically significant
effect was seen at 10 ug/ml HWHA, and this concentration was
used for further experiments. To control the specificity of HA
effects on migration, chondroitinase ABC-digested HWHA
was added to AoSMCs. The treatment with digested HWHA
did not alter the migratory capabilities of the cells compared
with cells tested in the absence of HWHA. On the other hand,
control experiments using HWHA treated with heat inacti-
vated chondroitinase ABC showed the same induction of cell
migration as obtained with cells in the presence of HWHA (Fig.
5A). These controls indicate that the alteration in migration of
the aged AoSMC:s is specific for the HWHA and not due to a
contaminant.

PDGEF-BB, a standard molecule used to induce cell migration
(36), at 10 ng/ml, induced a statistically significant increase in
migration of young AoSMCs whereas aged AoSMCs showed a
significant reduction of motility (Fig. 5B). The simultaneous
treatment of HWHA and PDGEF-BB did not change migraton of
young AoSMCs compared with untreated cells, whereas they
significantly reduced the motility of aged AoSMCs. Interest-
ingly, the treatment with BRIC235, a monoclonal blocking anti-
body against CD44 that inhibits HA-CD44 binding (37),
restored the migration level induced by PDGEF-BB in young
AoSMCs. On the other hand, the BRIC235 treatment signifi-
cantly decreased the migraton of aged AoSMCs (Fig. 5B). Sim-
ilar effects were observed also using the A3D8 anti-CD44
monoclonal antibody that did not inhibit specifically HA-CD44
binding (38) (data not shown). An isotype control mono-
clonal antibody did not alter migration of either young or
aged AoSMCs (data not shown). Interestingly, without any
treatment, a statistically significant increase of cell motility
of aged compared with young AoSMCs was always observed
(Fig. 5, A-C).

of HWHA (10 wg/ml), PDGF-BB (10 ng/ml), and anti-CD44 blocking antibody
(BRIC235, 5 ug/ml) on the migration of young and aged AoSMCs using a
Transwell apparatus. C, effects of PBS (control) or 10 wg/ml 34-mer HA oligo-
saccharide (oligo) or 10 ug/mlI HWHA (HWHA) on the migration of young and
aged AoSMCs using a Transwell apparatus. In all these experiments, AoSMCs
were seeded in the upper chamber of the apparatus and treated by adding
test reagents in the lower chamber of the Transwell. After 6 h of incubation at
37 °C, migrated cells were counted in six independent microscope fields. Y
axis represents the number of migrated cells/field. White bars represent
young AoSMC samples, and black bars represent aged AoSMC samples. Data
represent mean =+ S.E. of three independent experiments. D, Western blot
analysis of phosphorylation of ERK1/2 proteins in young and aged AoSMCs
treated with PBS (control) or 10 wg/ml 34-mer HA oligosaccharide (oligo) or
10 wg/ml HWHA (HWHA) using anti-phospho-ERK1/2 to detect the active
MAP kinase. After stripping, the membrane was probed with anti-total-
ERK1/2 to visualize the total amount of MAP kinase (upper panels). The pho-
tographs show representative results of three independent experiments.
Densitometric analyses of Western blot bands (lower panel). #, p < 0.01
untreated young versus untreated aged cells, **, p < 0.01 untreated versus
treated samples.
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FIGURE 6. A, migration of young and aged AoSMCs using a Transwell appara-
tus. AoSMCs were seeded in the upper chamber of the apparatus and treated
with or without 10 ug/ml HWHA, 15 um of U0126, 15 ug/ml of monoclonal
anti CD44 antibody (BRIC235) or 15 ug/ml of a control isotype monoclonal
antibody (Ab) as described in the Fig. 5 legend. White bars represent young
AoSMC samples, and black bars represent aged AoSMC samples. Data repre-
sent mean * S.E. of three independent experiments. #, p < 0.01 untreated
versus treated samples. B, Western blot analyses of phosphorylation of ERK1/2
proteins in young and aged AoSMCs treated with or without 10 wg/mI HWHA,
15 umof U0126, 15 wg/ml of monoclonal anti-CD44 antibody (BRIC235) or 15
ng/ml of a control isotype monoclonal antibody. The photographs show rep-
resentative results of three independent experiments. Densitometric analy-
ses of Western blots bands (lower panel).

As HA of different molecular weight can modify cell
migration (38), we added a 34-mer HA oligosaccharide (a
kind gift from Akira Asari) or HWHA to the Transwell. As
shown in Fig. 5C, 34-mer oligosaccharide reduced the migra-
tion of both young and aged AoSMCs. In contrast, as
described above, HWHA did not significantly change the
migration of young cells, but increased the migration of aged
AoSMCs about 2-fold.
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The migratory capability of the cells could depend upon
phosphorylation of ERK1/2 protein. Thirty minutes treatment
of young and aged AoSMCs with 10 ug/ml of 34-mer oligosac-
charide or 10 pg/ml of HWHA altered ERK1/2 phosphoryla-
tion (Fig. 5D). In young AoSMCs, the 34-mer oligosaccharide
caused a decrease in ERK1/2 phosphorylation whereas HWHA
did not modify ERK1/2 phosphorylation. Similarly, 34-mer oli-
gosaccharide caused a decrease in ERK1/2 phosphorylation in
aged cells, whereas, interestingly, the treatment of aged
AoSMCs with HWHA induced a marked increase of phospho-
rylation of ERK1/2 (Fig. 5D).

As the expression of CD44 varied during cell aging, we tested
whether migration that is modulated by HA and ERK1/2 phos-
phorylation could be due to CD44 signaling. As shown in Fig. 6,
A and B, by adding U0126, an inhibitor of ERK1/2 phosphoryl-
ation, at a final concentration of 15 uMm, there was a clear reduc-
tion of cell migration and ERK1/2 phosphorylation both in
young and aged AoSMCs. Similarly, adding the BRIC235 anti-
CD44 blocking antibody reduced ERK1/2 phosphorylation and
migration. Similar results were obtained using the A3D8 anti-
body (results not shown). As a control, adding an isotype-
matched antibody did not induce any difference in migration or
in ERK1/2 phosphorylation. Interestingly, U0126 and anti-
CD44 blocking antibody inhibited ERK1/2 phosphorylation in
both young and aged AoSMCs (Fig. 6B). In young AoSMCs, the
addition of HWHA did not significantly change either migra-
tion or ERK1/2 phosphorylation.

DISCUSSION

There is a clear correlation between aging and the probability
for onset of cardiovascular diseases (20). For this reason, we
studied HA metabolism in AoSMCs during in vitro aging to
verify whether they could modify their matrix environment
with aging and acquire a more susceptible phenotype that could
promote vascular diseases. It is well known that cell behavior
depends upon their surroundings through physical contacts
with other cells or ECM. We focused our attention on human
AoSMCs as this cell type is involved in neointima formation. In
response to incompletely known stimuli or injuries, AoSMCs
proliferate and migrate from the media to the intima layer dur-
ing early development of vascular disease. We established an in
vitro aging model based on cell senescence. It was reported that
during aging the percentage of senescent cells also increased at
the vascular level (39). In our previous work, we demonstrated
that the cells that we defined as “young” did not express any
marker of senescence whereas the cells that we defined as
“aged” were positive for senescent associated B-galactosidase
staining and for p16™%* cyclin (21). Moreover, as cells were
cultivated for a long time and many passages, we excluded any
dedifferentiation events by quantifying and studying the cellu-
lar distribution of SM actin filaments, which did not change
with aging in vitro (21).

Comparing young and aged AoSMCs, we found a significant
increase of HA released into the culture medium of aged
AoSMCs. Moreover, the cellular distribution revealed an
increase in HA inside the aged cells similar to that observed in
dividing SMCs by other investigators (14, 32). As the amount of
each cellular component is determined by the balance between
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its synthesis and degradation, we quantified the relative expres-
sion of anabolic and catabolic HA enzymes by quantitative RT-
PCR and found that the HA accumulation during aging is likely
to be the result of increased expression of synthetic enzymes
rather than a down-regulation of degrading enzymes.

We also compared the gene expression obtained in the in
vitro model with RNA from human donors. The gene expres-
sion experiments carried out in vivo on fetal and adult aortic
tissue showed an increase of UGDH and CD44 in adult samples,
showing the same findings that we obtained in in vitro experi-
ments comparing young and aged AoSMCs. We previously
demonstrated that high levels of UGDH, the enzyme that cata-
lyzes the oxidation of UDP-glucose to UDP-glucuronic acid,
induced an increase of HA synthesis (40). Therefore, the
increase of UGDH during aging is in agreement with the accu-
mulation of HA in aged cells.

During in vivo aging we found an up-regulation of HAS1
rather than HAS2 and HAS3. Although in vivo the up-regulated
gene was a different enzyme of the HAS family, this result con-
firms that the expression of HA synthetic enzymes increased
both in vivo and in vitro aging. Nevertheless, the different iso-
form expression may reflect that the simpler in vitro model
differs from the in vivo complex environment inducing cells to
express a different synthase enzyme. Moreover, it is to be con-
sidered that young cells for the in vitro data came from a young,
but mature donor whereas RNA for the in vivo experiments
came from fetal tissues. Previous work showed that HAS1
together with HAS2 are the more abundant HAS isoforms
expressed in saphenous vein, whereas SMCs isolated from the
same vessel expressed mainly HAS2 and HAS3 (41). Even if a
clear correlation is not reported in the literature between age
and GAG content in the ECM of vessels (30), other studies
reported an age increase of HA in aorta bifurcation (42) and in
cerebral arteries (43). During rat aging, a significant increase of
HA is observed at the vascular level (44). In a mouse model of
Hutchinson-Gilford progeria syndrome, a pathology character-
ized by a precocious senility, there is a clear HA accumulation
in the aorta (45). This information supports the hypothesis that
during aorta aging an accumulation of HA occurs.

In our study, HA accumulation is not dependent on hyalu-
ronidase activity. We were not able to detect any hyaluronidase
activity in either the conditioned media or in cell extracts. RT-
PCR and zymography demonstrated that both young and aged
AoSMCs did not express mRNA for HYAL1wt nor for HYAL3
and 4. Moreover, HYAL2 mRNA expressions in young and aged
AoSMCs and in fetal and aged aorta were not statistically dif-
ferent. Although HYAL2 was reported to have a hyaluronidase
activity (27, 34), several researchers were not able to detect
hyaluronidase activity even after HYAL2 cDNA transfections
(47). These data suggest that this protein could possess a differ-
ent function, such as a virus receptor (46). Another possibility
to explain the lack of hyaluronidase activity is that HYAL2
could require an activation process or possesses a cellular
inhibitor that prevents its function. It could also be noted that
this enzyme may generate large fragments of HA that would not
be detected by the methods used.

As CD44 and RHAMM can influence SMC behavior (6), we
found that only the expression of CD44 was significantly
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increased in both aged cells and adult aorta RNA. The accumu-
lation of HA in the ECM and the CD44 overexpression suggest
that during aging a modification in the expression of HA syn-
thetic and signaling genes can occur that could induce AoSMCs
to be more proliferative, as Cuff et al. (5) demonstrated in 2001,
and more migratory. Other researchers reported that CD44-
modulated cell motility may have a role in several pathologies
(48). The migration assay showed that aged cells increased their
migration capacity, and CD44 is expressed more in aged cells.
Nevertheless, the size of the HA appears critical for this modu-
lation as low molecular weight HA had different effects on
migration than high molecular weight HA.

Our data also support the hypothesis that CD44 clusteriza-
tion is a crucial condition to obtain efficient transduction sig-
nals (35). The phosphorylation of MAP kinase ERK1/2, a pro-
tein in the CD44 internalization pathway that includes also
PI3K, ERB, and AKT (49), is clearly involved in cell motility
(50). In our experimental model, we found that ERK1/2 phos-
phorylation is triggered by CD44 and large molecular weight
HA interactions. Therefore, increased ERK1/2 phosphoryla-
tion in aged AoSMCs combined with increased migration
capacity likely depends on both augmented HA synthesis and
higher expression of CD44 since treatment with HA oligosac-
charide of 34-mer and the CD44 blocking antibody reduced
both ERK1/2 phosphorylation and cell migration. Interestingly,
the A3D8 anti CD44 antibody that did not block HA binding to
CD44, inhibited cell migration in our model and in other mod-
els (12, 51), probably by preventing CD44 conformation
changes induced by HA binding. However, in other systems it
did not affect migration (53). Other pathways involving VCAM
and ICAM proteins could control the migratory capability of
AoSMCs. However, there were no differences in VCAM and
ICAM mRNA expression between young and aged AoSMCs.
Therefore, HA can control AoSMC migration through interac-
tions with CD44 and subsequent ERK phosphorylation.

These findings correlate well with the observation obtained
in vivo that the response of vessel injury is much greater in
vessels of older animals (54). The different behavior between
young and aged vessels could be ascribed to a different response
to signaling molecules as previously described for bFGF and
PDGF (55).

We found that PDGF-BB enhanced young AoSMC migra-
tion, but it reduced aged AoSMC motility and that HWHA
strongly modulated the responses. In young AoSMCs, HWHA
inhibited PDGF-BB stimulated migration, and this effect could
be reversed by blocking HA-CD44 interactions, similar to
results recently obtained by Li et al. (46). They reported that the
induced PDGF-BB migration in fibroblasts was reduced by HA
through a mechanism involving PDGFR-B phosphorylation.
On the other hand, in the case of aged AoSMCs, PDGF-BB
reduced cell migration induced by HWHA, and this effect was
independent of HA-CD44 interactions as shown by blocking
experiments using anti-CD44 antibodies. Further, quantitative
RT-PCR showed that young AoSMCs expressed 2-fold more
PDGFRP than PDGFRa whereas, in aged AoSMCs, the ratio
was inverted (results not shown). This indicates that the aging
of AoSMCs may alter the PDGF receptor chain ratio on the cell
membrane.
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The high migratory capability of aged AoSMC:s fits well with
their high expression of CD44. However, it is not clear whether
cells extracted from aged animals have higher migration rates
than cells extracted from young animals. Controversial results
were obtained from SMCs prepared from young and aged
human or animal models. Aged human SMCs showed a limited
migration (33) whereas aged rat SMCs showed an increase of
migration (52). However, it is possible that the microenviron-
ment surrounding cells influences the cell behavior. For exam-
ple, we previously reported that the migration of aged AoSMCs
on a gelatin rich matrix was different due to differences in met-
alloproteinase 2 activity (20). The absence of an external matrix
in the model used in the experiments described in this report
highlights the specific role of HA in AoSMC migration.

In conclusion we demonstrated that during in vitro aging,
AoSMCs accumulate HA by increasing HA synthetic enzymes.
Moreover, we provided evidence that HWHA induces migra-
tion of aged AoSMCs probably through a CD44-mediated path-
way by controlling the activity of MAP kinase ERK1/2.
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