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Variational Monte Carlo calculation of dynamic multipole polarizabilities and van der Waals
coefficients of the PsH system
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The first three dynamic multipole polarizabilities for the ground state of hydrogen, helium, hydride ion, and
positronium hydride PsH have been computed using the variational Monte Carlo~VMC! method and explicitly
correlated wave functions. Results for the static dipole polarizability by means of the diffusion Monte Carlo
method and the finite field approach show the VMC results to be quite accurate. From these dynamic polar-
izabilities van der Waals dispersion coefficients for the interaction of PsH with ordinary electronic systems can
be computed, allowing one to predict the dispersion energy for the interaction between PsH and less exotic
atoms and molecules.
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While experimentalists rely every day on positrons a
positronium atoms~Ps! to collect information about micro
scopic features of macroscopic systems like solutions, p
mers and crystals, much less effort has been devoted to
theoretical understanding of the complex interactions t
take place between ordinary matter and positrons. Am
the explored avenues of this field, we mention the interes
predicting the stability of classes of compounds likee1M
andMPs@1–9#, whereM represents an atomic or molecul
system, and the calculation of the cross sections in the s
tering process ofe1 and Ps on a molecule or an atom@10–
16#.

On the contrary, the evaluation of the interaction ene
betweene1M or MPs and a molecule or atom is an almo
unexplored issue@17#. We believe this fact is primarily due
to the need of a very accurate trial wave function to desc
correctly the correlated motions of electrons and positro
So far, only variational calculations with explicitly correlate
Gaussians@1,5# or Hylleraas-type functions@7–9#, and the
diffusion Monte Carlo~DMC! method@2–4# have shown to
be able to adequately recover the correlation energy
positron-containing systems.

Related to the calculation of the interaction energies is
calculation of second-order properties of positron-contain
systems, a problem whose surface has been barely scra
in the past@6#. These properties, specifically the dynam
polarizabilities, are strictly related to the van der Waals
efficients that describe the long-range interaction betw
systems@18#, representing a way to tackle the problem of t
asymptotic intermolecular interactions. Recently, Caffa
and Hess showed that these properties can be compute
means of quantum Monte Carlo simulations@19# connecting
the imaginary-time-dependent dynamics of the unpertur
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system with the transition probabilities of a reference dif
sion process. In this paper we apply a modified version
their method to compute dynamic multipole polarizabiliti
for PsH, H, He, and H2 as a way to understand the behavi
of these systems when interacting with an external field,
as a first step towards the definition of the interaction pot
tial between PsH and the ordinary matter.

As far as we know, the work by Le Sech and Silvi@6# is
the only one reporting calculations on the effect of a const
electric field on PsH. In that work they computed both t
static dipole polarizability, 123 a.u., and the behavior of t
annihilation rateG2g versus the intensity of the field employ
ing explicitly correlated wave functions, numerical integr
tion, and a variation-perturbation approach. As a by-prod
of our calculations of the potential-energy curve of t
e1LiH system@20#, we obtained an estimation of the stat
dipole polarizability of 49~2! a.u., a value quite differen
from the one computed by Le Sech and Silvi. Since we
lieve this difference to be too large to admit an explanat
based on the different accuracy of the methods used to c
pute this value, we plan to solve this puzzle in this pape

In the method by Caffarel and Hess@19# the frequency-
dependent second-order correction to the ground-state
ergy is written as a sum of the two time-centered autoco
lation functions of the perturbing potentialV

E6
(2)~v!52E

0

`

e6tvCVV~ t !dt, ~1!

where the autocorrelation functionCVV(t) is given by

CVV~ t !5^V~0!V~ t !&C
0
22^V~0!2&C

0
2. ~2!

Here, ^ . . . &C
0
2 indicates that the average has to be tak

using the Langevin dynamics that samples the square of
exact ground-state wave function of the unperturbed syst

Caffarel and Hess@19# showed that it is possible to com
puteCVV(t) employing an optimized trial wave function an
©2001 The American Physical Society03-1
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BRIEF REPORTS PHYSICAL REVIEW A 63 024503
the pure-diffusion Monte Carlo~PDMC! method, an alterna
tive algorithm to the commonly used DMC with branchin
where each walker explicitly carries its own weight along
the simulation@21#.

In their work on He and H2, Caffarelet al., @22# reported
that the autocorrelation functionCVV(t) becomes dominated
by the noise at large times, and this fact might be due to
fluctuations of the walker weights that increase during
PDMC simulation, while the value of the autocorrelatio
function itself becomes smaller. While the second effec
intrinsic to the stochastic method, the first can be redu
employing a more accurate trial wave function that is able
reduce the weight fluctuations. Another possibility, giving
the exactness of the method~i.e., not sampling the exac
C0

2), is represented by the sampling of a quite accurate
wave function without carrying around the weight for ea
walker, a method we call perturbation theory variation
Monte Carlo~PT-VMC!. This algorithm can be useful fo
those systems whose autocorrelation function has a large
caying time, as in the case of H2 and PsH. This large decay
ing time will increase the fluctuations of the carried weigh
and hence the statistical noise in the autocorrelation fu
tions in the long-time region.

As a test of the correctness of our computer program
of the accuracy of the method, we computed the first th
autocorrelation functions, and hence the dynamic polariza
ities up to the octupolar one, for the two systems H and
The analytical forms of the perturbing potentials were tak
from Ref. @22#. While for H we employed the exact ground
state wave function and compared with the analytic value
the multipole polarizability@18#, for the He case we used
25-term Hylleraas-type wave function optimized by mea
of the standard energy minimization@23#. We fitted the nu-
mericalCVV(t) results of our simulations with a linear com
bination of three exponential functions

CVV~ t !.(
i 51

3

aie
2l i t ~3!

in order to have an analytical representation of the auto
relation functions at all the times. Since it is important
reproduce accurately the long-time behavior ofCVV , the
smallestl i in Eq. ~3! was independently calculated fittin
ln@CVV# in the long-time region with a first-order polynomia
This choice was found to improve sensibly the goodnes
the total fitting in this time range.

These analytical representations ofCVV allow us to com-
pute easily the integrals in Eq.~1! and to obtain simple ex
pressions ofa(v). The parameters obtained by the fittin
procedure are available from the authors upon requests.

For both systems we found excellent agreement of
static polarizabilities (Hadip54.495 a.u., aquad
515.034 a.u., aoct5133.105 a.u.; Headip51.382 a.u.,
aquad52.401 a.u.,aoct510.367 a.u.) with the exact re
sults for H @18#, with PDMC results by Caffarelet al. @22#,
with Glover and Weinhold upper and lower bounds for H
@24#, and with the accurate results by Yanet al. @25#.

At this point we would like to stress that, although in th
PT-VMC method the walkers carry always a unitary weig
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because the branching process is absent, similarly to
PDMC method the time step has to be chosen short eno
to produce only a small time step bias. For these two syst
we found the time step of 0.01 hartree21 to be adequate to
compute statistically exact results.

As a check of the ability of the PT-VMC method to als
compute polarizabilities for highly polarizable system
whose exact wave function is more diffuse than the one
He and H, we selected the hydride ion as test case. For
system we optimized a five-term Hylleraas-type wave fu
tion whose average properties are shown in Table I toge
with the accurate results obtained in Ref.@26#. Table I also
contains the multipole static polarizabilities computed in t
paper employing a time step of 0.01 hartree21, and the static
polarizability computed by Glover and Weinhold@24#. Com-
paring the mean values in Table I, one can notice that
five-term wave function gives lower values than the on
obtained in Ref.@26# except for^r 2&. This fact may explain
the underestimation of theadip by PT-VMC, that recovers
92~2!% of the accurate value. Nevertheless, this result rep
sents a fairly good estimation of the static dipole polarizab
ity for H2, a quantity that appears difficult to compute ev
with more complex approaches@27#.

As far as PsH is concerned, we computed the autoco
lation functions using two different trial wave functions, in
cluding 1 (CT

1) and 28 (CT
28) terms@3#. The choice of two

trial wave functions to guide the Langevin dynamics w
aimed at testing the dependency ofCVV(t) on the quality of
the wave function itself.

Employing the PT-VMC method and our wave functio
for PsH, we computed the autocorrelation functions for th
perturbation potentials:

V15x11x22xp , ~4!

V25
3~x1

21x2
22xp

2!2~r 1
21r 2

22r p
2!

2
, ~5!

V35x1
31x2

32xp
32

3@x1~y1
21z1

2!1x2~y2
21z2

2!2xp~yp
21zp

2!#

2
, ~6!

TABLE I. Mean values for observables of the ground-state1S
of H2. All values are in atomic units.

VMC a Hylleraasb

^E& 20.52701(2) 20.52775b

^V& 21.0448(2) 21.0555b

^r 2& 2.7262 2.7102b

^r 2
2 & 11.844 11.915b

^r 22& 4.4119 4.4127b

^r 22
2 & 24.957 25.20b

adip 189.30 206~3! c

aquad 5761.5
aoct 450758

aThis paper~five term wave function!.
bReference@26#.
cReference@24#.
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BRIEF REPORTS PHYSICAL REVIEW A 63 024503
where the subscripts 1 and 2 indicate the two electrons, w
the subscriptp indicates the positron. These potentials a
the Cartesian forms of the dipole, quadrupole, and octup
moment operators for the PsH system. Figure 1 shows
averaged correlation functions forV1 , V2, and V3 as ob-
tained by the VMC method employing the 28-term trial wa
function. Each value of the correlation functions was co
puted employing roughly 1010 configurations. From Fig. 1
one can note the effect at large evolution times of the disp
sion of the ‘‘trajectories’’ used to compute the autocorre
tion function. This effect makes difficult the reproduction
the long-time regime of these functions due to the expon
tial decay and the roughly constant statistical error int
duced by the method. Moreover, the statistical error stron
depends on the perturbation potential whose autocorrela
function is computed, i.e., more specifically on the disp
sion of its mean value over theCT

2 distribution.
The results for the static multipole polarizabilities, i.e., f

v50, computed with both trial-wave-functions, are show
in Table II. While for the dipole polarizabilities there is
good agreement between the two values, larger differen
are present for the higher multipole polarizabilities. This fa
is an indication of the different accuracy of the two functio
in approximating the exact wave function at large distan
from the nucleus. In fact it can be shown that if one appro
mates the autocorrelation functions taking care only of
excitation to the first state of the appropriate symmetry,
autocorrelation function is proportional tôVi

2&2^Vi&
2,

whereVi is the perturbing potential. Comparing the dipo
results with the value obtained by Le Sech and Silvi@6#,

FIG. 1. Logarithm of the correlation functions of the perturbi
potentials.

TABLE II. Static multipole polarizabilities for the ground-stat
2,1S of the PsH computed with 1-term (CT

1) and 28-term (CT
28)

wave functions. All values are in atomic units.

CT adip aquad aoct

CT
1 43.66~3! 972.7~2! 39178~32!

CT
28 42.99~4! 876.9~3! 34848~71!
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again the large difference of the computed polarizabilities
apparent. As a final check for this problem, we computed
energy of the PsH when immersed in a weak static elec
field F by means of standard DMC simulations adding t
linear potentialF(x11x22xp). To make our simulations
stable, i.e., to avoid the dissociation of the PsH, we trunca
the effect of the linear potential atuxi u515 bohr. We fitted
the DMC results by means of the simple polynomiala
2adipF2/2, whereadip is the static dipole polarizability, ob
taining adip542.3(8) a.u. We believe that this result, st
tistically indistinguishable from theadip obtained by the PT-
VMC method, gives the definitive answer to the problem
the PsH polarizability. Nevertheless, the discrepancy
tween our PT-VMC and DMCadip and the one computed b
Le Sech and Silvi@6# remains puzzling. In our experienc
@3#, to compute the matrix elements they needed, millions
configurations must be used even for systems like PsH
avoid being fooled by a false convergence. Unfortunately,
Sech and Silvi did not report any information about the nu
ber of configurations they used to compute the integrals
we cannot judge the numerical accuracy of their results.

An attempt to estimate the total accuracy of oura results
can be made comparing the polarizability values obtained
the two wave functions. These differ by 10% at most, a va
that we feel might give a conservative estimate of the rela
errors for the higher multipolar fields.

As stated previously, although dynamical polarizabiliti
are interesting on their own, they represent the basis to c
pute van der Waals dispersion coefficients for the interac
between different systems. Therefore, following Ref.@25#,
we present the calculation of theC6 , C8, andC10 dispersion
coefficients between H, He, and PsH as a first effort to ob
accurate information on the interaction between positro
systems and ordinary matter in the framework of the Bo
Oppenheimer approximation and second-order perturba
theory.

Using the fitted parameters for H, He, and PsH we co
puted the coefficients for the interaction between the o
nary systems and between these and PsH. The values
reported in Table III. Since the values for the H-H, H-H
and He-He coefficients are accurately known@25#, we use
them as a test of the accuracy of our approach: all the va
differ from the accurate results by Yanet al. @25# at most by
one part over hundreds.

TABLE III. Computed dispersion coefficients. All values are
atomic units.

C6 C8 C10

H-H 6.480 125.23 3318.2
6.499a 124.39a 3285.8a

H-He 2.813 41.671 866.33
2.821a 41.836a 871.54a

He-He 1.454 13.880 177.01
1.461a 14.117a 183.69a

H-PsH 40.30 2596.1 86292
He-PsH 15.718 950.80 23490

aReference@25#.
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Comparing theCn’s for the ordinary systems with th
ones for the interaction with PsH, it strikes us that these
are more than an order of magnitude larger than the form
These features, due to the larger PsH polarizability, indica
that positronic systems strongly interact with ordinary ma
even at large distances. Unfortunately, nothing can be
about location and depth of the total potential minimu
This strongly depends also on the effect of the repuls
between the positron cloud and the H and He nuclei, so
we believe a supermolecule approach is needed. In a p
ous work@17# we computed the interaction energy betwe
H and PsH, showing that this system could have a metast
ys

J.

ta-

02450
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state. Although the dispersion coefficients for the interact
between He and PsH are smaller than those for PsH an
they might be large enough to give rise to a potential w
that could support at least a stable state. If this turns out to
the case, the He-PsH system could be the lightest van
Waals ~i.e., bound by means of dispersion forces! stable
dimer.
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