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Abstract. The celebrated Brouwer’s Fixed Point Theorem is dated in 1912. Its
extension to compact set setting in Banach spaces due to Schauder appeared in
1930. Immediately it raised the question whether the Theorem can be extended
to noncompact setting. The works of Kakutani, Klee, Benyamini and Sterfeld,
Sternfeld and Lim solved the qualitative part of the problem. Lack of compactness
makes the statement of the theorem false. However, there are some quantitative
aspects of the question. The two basic are called minimal displacement problem,

and optimal retraction problem. The aim of this article is to present the historical
back ground and possibly, up to date state of investigations in this field. A list of
open problems with comments will be discussed.
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1. Elements of History

The history of the Brouwer’s Fixed Point Theorem has almost one hundred years.
The officially most cited paper is [9] from 1912. However historians of mathematics
and interested specialists found that the main ideas behind this theorem has been
known to some time before Brouwer announced his result. It is believed that the fact
was known to Poincaré. The result equivalent to Brouwer’s Theorem but formulated
in a different form can be found in the paper by Bohl [6]. It is not our aim to
discuss the beginnings of the theory. The aim of this article is to present a direction
of research which has its roots in Brouwer’s Theorem but appeared later with the
development of functional analysis and investigations of spaces of infinite dimension.

In the most commonly used present mathematical language the classical theo-
rem reads:

Milan J. Math. Vol. 78 (2010) 371–394
DOI 10.1007/s00032-010-0135-2
Published online October 2, 2010
© 2010 The Author(s)
This article is published with open access at Springerlink.com

Milan Journal of Mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università dell'Insubria

https://core.ac.uk/display/53546676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


372 Emanuele Casini and Kazimierz Goebel Vol.78 (2010)

Theorem 1 (Brouwer’s Fixed Point Theorem). The unit ball Bn ⊂ R
n has topological

fixed point property.

It means that for any continuous mapping T : Bn → Bn there exists a point
x ∈ Bn such that x = Tx, a fixed point of T. This property, (generally abbreviated
as fpp) is topologically invariant. All sets homeomorphic to Bn share the fixed point
property. Since any closed convex and bounded subset C of a finite dimensional
Banach space X is homeomorphic to a ball of certain dimension all such sets have
fpp. Also this property is inherited by all the retracts of C. Let us recall that a
subset D ⊂ C is a retract of C if there exists a continuous mapping (a retraction)
r : C → D such that x = rx for all x ∈ D. In other words if the identity mapping
on D can be continuously extended to a mapping r : C → D.

The original Brouwer’s proof was based on the degree theory, the method which
was still not so well developed at that time. The very clear and rigorous proof has
been given by Knaster, Kuratowski and Mazurkiewicz [23]. The method was based
on combinatorial Sperner’s Lemma and on a topological fact known today as KKM-
Lemma. Later other proofs appeared. The most recent and the most elementary
ones, based on relatively simple analytical methods, can be found in [27], [18], [24],.

Soon after Brouwer’s Theorem has been announced the new questions appeared.
It was the time of the vigorous development of methods of functional analysis, so
the natural problem raised was about the possibility of the extension of this result
to the case of infinitely dimensional spaces.

The most famous result is:

Theorem 2 (Schauder’s Fixed Point Theorem). Any convex and compact subset C
of a Banach space X has topological fixed point property.

The obvious difference is that in infinite dimensional Banach spaces, bounded
and closed sets do not need to be compact. Especially it is the case of balls. The proof
of Schauder’s Theorem is based on the fact that any continuous self-mapping of C
can be uniformly approximated by finite dimensional mappings for which Brouwer’s
Theorem works.

The aim of this article is to discuss the next step. What happens in the noncom-
pact setting? It occurs that both results become false. But, for many years a lot of
nontrivial questions has been raised and some of them are still open. In what extend
the lack of compactness influence existence of continuous fixed point free mappings?
How “regular” such mappings can be? How far they can move all the points? How
much the numerous equivalents of Brouwer’s Theorems fail in infinite dimensional
Spaces? Can we measure “the rate of failure?

We shall try to introduce the reader to the present state of the subject keeping
more or less historical order. We often resign from the rigorous proofs giving the
reader only directions and hints for the methods used. Also we often resign from
presenting in details the best results and estimates. Instead we show examples which
seem to be simple but represent well the flavour of the field. Chapters devoted to
the subject containing more detailed discussion can be found in the following books:
[13], [19], [10].
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2. Preliminaries

Let X be a Banach space of finite or infinite dimension. Let B stays for the unit ball
and S for the unit sphere. If the dimension X is finite dimX = n we use B = Bn

and S = Sn−1.
The Brouwer’s Theorem has a number of equivalent statements. We shall need

two of them. A larger collection of equivalents is to be found in [12]

Theorem 3 (No retraction theorem). Sn−1 is not the retract of Bn.

Equivalence of this two facts is proved by the following observations. First,
suppose that R : B → S would be a retraction of the ball Bn onto the sphere Sn−1.
Then the mapping T = −R : B → B must be fixed point free On the other hand,
suppose that T : B → B is such that for all x ∈ Bn, x �= Tx. Then we can extend
this mapping to the doubled unit ball 2Bn by putting

Tx = (2 − ‖x‖)T
(

x

‖x‖
)

for x ∈ 2B \B. (2.1)

Now, the modified mapping T : 2Bn → Bn is again fixed point free and transforms
the doubled sphere 2Sn−1 into the origin. Modifying the mapping again by setting
T̃ x = 1

2T (2x) we get the fixed point free mapping T̃ : Bn → Bn satisfying T̃ (S) =
{0} and consequently the retraction R : Bn → Sn−1,

Rx =
x− T̃ x∥∥∥x− T̃ x

∥∥∥ .
The second equivalent formulation is:

Theorem 4 (Non contractibility theorem). The sphere Sn−1 is not contractible to a
point.

The above means that identity mapping on Sn−1 is not homotopic to a constant
map. More precisely, there is no homotopy H : [0, 1] × Sn−1 → Sn−1 such that
H (0, x) = x for all x ∈ Sn−1 and H (1, x) = z where z is a given point in Sn−1.

The equivalence of noncontractibility and the lack of retractions comes from
the following. Suppose there is a retraction R : Bn → Sn−1 then the formula

H (t, x) = R ((1 − t)x)

defines the homotopy joining the identity map with the constant map H (1, x) = z =
R (0) . On the other hand, supposing that H : [0, 1] × Sn−1 → Sn−1 is a homotopy
joining the identity with a constant map H (1, x) = z, we can construct a retraction
R : Bn → Sn−1. This, for any 0 ≤ r < 1 can be defined by the formula

Rx =

{
z if ‖x‖ ≤ r

H
(
1−‖x‖
1−r , x

‖x‖
)

if r < ‖x‖ ≤ 1
.

To end the preliminaries, let us observe that all the constructions presented
above do not use the fact that we are working in the finite dimensional space R

n.
Actually we can formulate a statement called by some specialists “trivial theorem”.
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Theorem 5 (trivial theorem). For any Banach space X the following three statements
are equivalent:

A) The unit ball B has the fixed point property,
B) The unit sphere S is not the retract of B,
C) S is not contractible.

The equivalence itself, as it was shown , is a simple matter. The classical result
of Brouwer implies that all three statements are true for X = R

n and consequently
for all the Banach spaces of finite dimension. The rest of the article is devoted to
the discussion of the fact that all three statements fail to be true for if dimX = ∞.
We shall discuss and justify variants and modifications of the following

Theorem 6. For any Banach space X of infinite dimension the following three state-
ments are true and equivalent:

A) There exists a continuous mapping T : B → B without fixed points
B) The unit sphere S is the retract of B,
C) S is contractible.

Equivalence has been already shown. The validity of three statements was
proved step by step within several years by several authors.

3. Ulam’s question and Kakutani’s solution

The first questions about the failure of Brouwer’s Theorem were probably raised
just after Schauder’s Theorem has been published in 1930. There are not many in-
formations about examples, constructions and ideas of mathematicians of that time.
Probably the first written sign that mathematicians at that time were interested in
the problem is the question raised by S. Ulam around 1935. In the famous collection
of mathematical problems known as “The Scottish Book” (for references see [26])
Ulam asked: “Can one transform continuously the solid sphere of a Hilbert space
into its boundary such that the transformation should be the identity on the bound-
ary of the ball”. There is also a note saying: “There exists a transformation with
the required property given by Tychonoff”. Unfortunately the mentioned example
is not described and probably unpublished, it was only known to a narrow circle of
people.

The first widely known examples solving this problem come from the paper of
S. Kakutani published in 1943 [17]. There are two steps in Kakutani’s construction.
First step is to prove that there are continuous mappings T : B → B having no fixed
points.

Example 1. Consider the standard model of a Hilbert space, the space l2. Define the
mapping T : B → S ⊂ B by putting for any x = (x1, x2, x3, . . .) ∈ l2,

Tx =
(√

1 − ‖x‖2, x1, x2, x3, . . .
)
.
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The mapping is fixed point free, since Tx = x implies x = 0 = (0, 0, 0, . . .) but
T0= e1 = (1, 0, 0, . . .) .

The above mapping is obviously continuous and even more, it’s continuity is
uniform. The modulus of continuity can be easily evaluated from the easily justified
inequality,

‖Tx− Ty‖ ≤
√

2 ‖x− y‖ + ‖x− y‖ .
The structure of the mapping T is simple. It is an isometry (shift) perturbed by a
one dimensional mapping. It is also a technicality to check that T has the minimal
displacement zero, or in other words, an approximate fixed point which means that

inf [‖x− Tx‖ : x ∈ B] = 0.

There are some modifications of this example toward finding fixed point free
mappings being “more regular” For example, defining for any 0 < ε ≤ 1 the mapping

Tεx = (ε (1 − ‖x‖) , x1, x2, x3, . . .) ,
we get the same conclusion but the mapping is lipschitzian,

‖Tx− Ty‖ ≤
√

1 + ε2 ‖x− y‖ .
Once we have a fixed point free mapping T : B → B we can construct a retraction
R : B → S applying the following recipe. For any x ∈ B, find Tx and follow the
straight half line beginning at Tx and passing through x until you reach a point on
the the sphere S. Define the value of the retraction Rx as this point. More precisely
put,

u (x) =
x− Tx

‖x− Tx‖
and

Rx = x + λ (x)u (x) , (3.1)

where the coefficient λ (x) ≥ 0 is selected to satisfy ‖Rx‖ = 1. Simple calculations
show that,

λ (x) = − (x, u (x)) +
√

1 − ‖x‖2 + (x, u (x))2.

The natural question arises. Can one repeat the same argument and prove that
in any Banach space the unit sphere S is the retract of the unit ball B. The basic
question is, can one define a continuous mapping T : B → B with no fixed points?
Once we have it we still can not use directly the scheme proposed by Kakutani. The
unit sphere in a Banach space can contain convex subsets of positive diameter. It
may happen that for a point x ∈ S the whole segment joining x and Tx is contained
in S. In such a case the recipe from Kakutani’s example described by (3.1) does
not work directly. However, after a simple modification it works. First we can use
the formula (2.1) to define the fixed point free mapping T̃ : B → B such that
T̃ (S) = {0} . Then we can follow Kakutani’s construction of R : B → S. Since, in
the case of arbitrary Banach space, we do not get exact formula for λ (x) , the only
technicality is to prove its continuity.
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Also, once we have a fixed point free mapping T̃ : B → B which sends S into
the origin, we can define the retraction of the ball onto sphere in a simpler way. It
is enough to put

R̃x =
x− T̃ x∥∥∥x− T̃ x

∥∥∥ .
Thus the only task to define a retraction of B onto S is to find a fixed point

free self-mapping on the ball. In what follows we will show some concrete examples.
Now let us pass to the general result.

4. Klee’s results

The full solution to the Ulam’s question came in years 1953 and 1955 after two
papers by V. Klee [20] and.[21] Two basic facts can be selected from a number even
more general contained in these papers.

Theorem 7. For any infinitely dimensional Banach space X the unit ball B and
punctured unit ball B \ {0} are homeomorphic and there exists a homeomorphism
H : B → B \ {0} such that H is the identity on the unit sphere S, for all x ∈ S,
x = Hx.

Theorem 8. For any infinitely dimensional Banach space X and for any convex,
closed, bounded but noncompact subset C ⊂ X there exists a fixed point free, contin-
uous mapping T : C → C.

The first result gives an immediate answer to the retraction problem. Having
a mapping H : B → B \ {0} satisfying the above condition we can easily construct
the retraction R : B → S by putting

Rx =
Hx

‖Hx‖ .

The only disadvantage of this result is that we do not have any control on regularity
of H and consequently R. These mappings are not uniformly continuous.

The proof of the second theorem is based on the fact that noncompact convex set
C must contain a homeomorphic image of the unbounded interval [0,∞) imbedded
in C as a closed subset. More precisely, there exists an invertible continuous function
γ : [0,∞) → C having continuous inverse γ−1. Then, Γ = γ ([0,∞)) is a closed subset
of C. The function γ−1 : Γ → [0,∞) can be, by virtue of Titze’s Theorem extended
to the continuous function γ̃−1 : C → [0,∞) such that γ̃−1 (x) = γ−1 (x) for all
x ∈ Γ. Now, two observations can be made.

First that Γ is the retract of C. Indeed the retraction r : C → Γ can be defined
as

r (x) = γ
(
γ̃−1 (x)

)
.
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Second, that the fixed point free mapping S : Γ → Γ shifting each point x ∈ Γ,
x = γ (t) to the point Sx = γ (t + 1) can be extended as the fixed point free mapping
to the whole set C by the formula

S̃ (x) = γ
(
γ̃−1 (x) + 1

)
.

Observe that the final mapping S̃ maps the bounded set C onto the curve
γ ([1,∞)) ⊂ Γ of infinite lengths. Thus S̃ can not be uniformly continuous.

Tricks with curves of infinite lengths embedded as a closed set in a bounded
convex subset of Banach space can show also other singular behaviors of mappings.
Here are sample examples, based on construction from([16]), which illustrate some
possibilities.

Example 2. Let X be a nonreflexive Banach space. It is known that nonreflexivity is
equivalent to existence of a linear functional f ∈ X∗ which does not attain its norm
on the unit ball. If we assume that ‖f‖X∗ = 1 then we have

−1 = inf [f (x) : x ∈ B] < f (x) < sup [f (x) : x ∈ B] = 1.

Define the function Φ : X → (0,∞) by setting

Φ (x) = 1 + f (x) + 2 max [0, ‖x‖ − 1] .

It is easy to check that Φ is positive, continuous, convex, with inf [Φ (x) : x ∈ X] =
inf [Φ (x) : x ∈ S] = 0 and lim‖x‖→∞Φ (x) = ∞. Moreover, when restricted to the
unit ball B, Φ is affine, Φ (x) = 1 + f (x) for x ∈ B. Also Φ does not take value 0
at any point of X and Φ (B) = Φ (S) = (0, 2) . Now, select a sequence {xn} , n =
0, 1, 2, . . . , xn ∈ S such that Φ (xn) = 2−n. Such sequences exist and do not have
cluster points. Otherwise Φ would take value 0. Consider now the piecewise linear
curve γ : (0, 1) → X defined by

γ (t) =
{

(1 − s)xn + sxn+1 for t = (1 − s) 2−n + s2−(n+1),
t+1
2 x0 for t ≥ 1.

and put Γ = γ((0,∞)). Observe that the above parametrization is invertible and
that Φ (γ (t)) = t. For any r > 0, let Cr denotes the sub-level set Cr = [x : Φ (x) ≤ r]
and Lr the strict level set Lr = [x : Φ (x) = r] . Thus, all sets Cr are bounded closed
and convex with ∩r>0Cr = ∅. For any s ∈ (0, 1) define the mapping Ts : Cr →
Γ ∩ Csr ⊂ Cr,

Tsx = γ (sΦ (x)) .
All mappings Ts, s ∈ (0, 1) are continuous. Also, since Φ (Ts (x)) = sΦ (x) < Φ (x) .
all mappings Ts are fixed point free. Moreover, one can observe that the family Ts

forms a semigroup
Tst = Ts ◦ Tt.

Example 3. With all the notations of the example above proceed with the following
recipe. Take arbitrary a > 0 and for any x ∈ X consider the half line l (t) , t ≥ 0
defined as

lx (t) = x + t

(
γ

(
1
2
Φ (x)

)
− x

)
= x + t

(
T 1

2
x− x

)
.
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Since Φ is convex and lim‖x‖→∞Φ (x) = ∞, there exists unique t = t (x) > 0 such
that Φ

(
lx
(
t
))

= Φ(lx (0)) + a = Φ(x) + a. Define the mapping Ha : X → X � Ca

by putting
Hax = lx

(
t (x)

)
.

Observe that the procedure defining Ha is invertible and H−1
a (X � Ca) = X. Prov-

ing the continuity of Ha and H−1
a is just a technicality. This proves that the whole

space X is homeomorphic with the punctured space X � Ca. Since C2 contains the
unit ball B, slight modification of the construction leads tho the conclusion that
X is homeomorphic to X � B. Further one can observe that X � B,so also X, is
homeomorphic to the space punctured by one point X � {0} .We leave the proofs of
last statements to the reader.

Example 4. Follow the construction from the last example with a = 0. This way,
we get the continuous map T = H0 : X → X satisfying T 2x = x, for all x ∈ X.
Thus T is an involution on X, T 2 = I or in other words T = T−1 on X. The
mapping T is fixed point free. Indeed, the segment joining x and Tx contains the
point y = γ(12Φ (x)) which differ from both in view of Φ (y) = 1

2Φ (x) = 1
2Φ (Tx) .

The constructions of the above type have one disadvantage. Since the bounded
set is mapped onto a curve of infinite length the mappings under concern can not
be uniformly continuous. We do not have any control on regularity of constructed
mappings.

5. Statement of quantitative questions

It is believed that the first quantitative questions has been raised in 1973 in ([11]).
It was observed that in the all known examples of fixed point free mappings either
we have

inf [‖x− Tx‖ : x ∈ C] = 0

or we do not have any control of this quantity. The first examples shown in ([11]) have
led to quantitative questions. The first is called the minimal displacement problem
and the second the optimal retraction problem. The third, the optimal homotopy
problem is not so often mentioned but has strong connection with first two.

5.1. Minimal displacement problem

For any mapping T : C → C the minimal displacement of T is defined as

d (T ) = inf [‖x− Tx‖ : x ∈ C] .

Instead of looking for fixed points of T we can restrict ourselves to the problem of
finding or evaluating d (T ) .If F is a family of mappings we can try to find uniform
evaluation

d (F) = sup [d (T ) : T ∈ F ] .
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The basic and the most exploited is the case of the class L of all lipschitzian
mappings. Let L (k) ⊂ L, k ≥ 0 denotes the class of all mappings satisfying the
Lipschitz condition with a given constant k

‖Tx− Ty‖ ≤ k ‖x− y‖ .
If k < 1, T has a unique fixed point and obviously d (T ) = 0. Thus, the case of our
interest is k ≥ 1. Let T ∈ L (k) , z ∈ C and ε > 0 be given. Consider the equation

x =
(

1 − 1
k + ε

)
z +

1
k + ε

Tx.

The transformation defined by the right hand side of the above is the contraction of
class L

(
k

k+ε

)
. Thus there is unique x satisfying the equation. Then we have

‖x− Tx‖ =
(

1 − 1
k + ε

)
‖z − Tx‖ ≤

(
1 − 1

k + ε

)
sup[‖z − y‖ : y ∈ C].

Abstracting of the selection of z ∈ C and ε > 0 we get

d (T ) ≤
(

1 − 1
k

)
r (C) ,

where
r (C) = inf

z∈C
sup [‖z − y‖ : y ∈ C]

is the Chebyshev radius of C. Following the introduced notation we can write

T ∈ L (k) =⇒ d (T ) ≤
(

1 − 1
k

)
r (C) or more d (L (k)) ≤

(
1 − 1

k

)
r (C) .

Observe now, that if the set D is a shifted multiple of C, D = u+ aC, then r (D) =
ar (C) and for any T : C → C the mapping F : D → D defined by

Fx = aT

(
x− u

a

)
+ u

is also of the class L (k) with d (F ) = ad (T ) . Thus without loss of generality, from
now on, we can always assume that we are dealing with sets C of Chebyshev radius
one, r (C) = 1.

The minimal displacement problem for the whole family L is finally formalized
as follows. For any set C we can define the characteristic of minimal displacement.
It is the function ϕC : [1,∞) → [0, r (C)] defined by

ϕC (k) = sup [d (k) : T : C → C, T ∈ L (k)] .

Consequently, for the whole space X define the characteristic of the whole space as

ϕX (k) = sup [ϕC (k) : C ⊂ X, r (C) = 1] = sup
[
ϕC (k)
r (C)

: C ⊂ X

]
.

To point out the special role of the case of the unit ball B ⊂ X we usually use the
special notation

ψX (k) = ϕB (k) .
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If it is clear from the context we skip the lower indices indicating the set or the
space:

Let us list here some basic properties, common for all characteristics ϕ and ψ:

• the ratio ϕ(k)
k−1 decreases with k,

• the ratio kϕ(k)
k−1 increases with k,

• the derivative ϕ′ (1) exists and 0 < ϕ′ (1) ≤ 1,
• ϕ′ (1)

(
1 − 1

k

) ≤ ϕ (k) ≤ 1 − 1
k .

• ϕ (k) = 1 − 1
k if and only if ϕ′ (1) = 1,

• limk→∞ ψ (k) = 1.

The minimal displacement problem for the class L is the task to find in the
open form or to evaluate functions ϕ and ψ for concrete sets or spaces.

From our initial considerations we always have

ψX (k) ≤ ϕX (k) ≤ 1 − 1
k
.

Let us conclude with the example showing that the above estimate is, in some
spaces sharp.

Example 5. Let X = c0 and let for t ∈ [0,∞], α (t) = min [t, 1] . Define the mapping
T : B → B as

Tx = T (x1, x2, x3, . . .) = (1, α (k |x1|) , α (k |x2|) , α (k |x3|) , . . .) .
Thus, T ∈ L (k) and for any x = (x1, x2, x3, . . .) ∈ B, ‖x− Tx‖ > 1 − 1

k . Indeed,
the reverse inequality implies x1 ≥ 1

k and α (k |x1|) = 1. Thus x2 ≥ 1
k , α (k |x2|) = 1

and consequently for the same reason xi ≥ 1
k for all i = 1, 2, 3, . . ., which contradicts

x ∈ c0. It shows also that the minimal displacement of T, d (T ) = 1 − 1
k is not

achieved by T at any point of B.

Further examples and informations about the properties of function ϕ are going
to be shown in the coming sections.

5.2. Optimal retraction problem

Suppose for have a space X and the unit ball B. Suppose we have found a lipschitzian
mapping T : B → B with d (T ) > 0. Using the trick presented in Section 2 we
can construct a retraction R : B → S. It is only a technicality to prove that the
retraction obtained is, in this case, lipschitzian. Possibly, there are many other ways
to construct such retractions.

The optimal retraction problem is the task to find or evaluate the constant
characterizing given space X, traditionally denoted k0 (X) and defined as

k0 (X) = inf [k : There exists a retraction R : B → S of class L (k)] .

The problem was for the first time set again in ([11]). Since 1973 a number
authors tried to get good estimates. The progress is very slow. Here, we conclude
with, probably the simplest known, example.
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Example 6. Let X = C [0, 1] . The mapping A : B → C [0, 1] defined by

(Af) (t) = |f (t) + 1 − 2 (1 − ‖f‖) t| − 1 + 2 (1 − ‖f‖) t
is lipschitzian, A ∈ L (5) and for all f ∈ S, we have Af = f. We leave to the reader
to check that for all f ∈ B, ‖f‖ is separated from zero. More precisely one can prove
that

inf [‖Af‖ : f ∈ B] =
1
7
.

Now, we can define the retraction R : B → S as

Rf =
Af

‖Af‖ = P (7Af) ,

where P : C [0, 1] → B stands for radial projection. Since P ∈ L (2) and A ∈ L (5) ,
we get R ∈ L (70) .

In the terminology introduced above we can conclude with the observation that
k0 (C [0, 1]) ≤ 70. Obviously, this estimate is not precise. More detailed discussion is
presented in Section 8.

5.3. Optimal homotopy problem

Once we have a retraction R : B → S, using the way indicated in Section 2 one
can define the homotopy H : [0, 1] × S → S joining identity with a constant map,
H (t, x) = R ((1 − t)x) . If R ∈ L (k) such homotopy is satisfies

‖H (t, x) −H (s, y)‖ ≤ k (|t− s| + ‖x− y‖) .
The optimal homotopy problem deals with finding , for various spaces, homo-

topies H : [0, 1] × S → S satisfying

‖H (t, x) −H (s, y)‖ ≤ A |t− s| + B ‖x− y‖ .
with relatively small constants A,B.

The problem is discussed among specialists, but there are not many works
dedicated to it. However, some tricks with such homotopies are used in connection
with finding optimal retractions. Let us present here an example of such homotopy
taken from ([13]).

Example 7. Let X = L1 (0, 1) . For any c ∈ [0, 1] and f ∈ S , define

tf (t) = sup
[
t :

∫ t

0
|f | dt = c

]
.

Set

H (c, f) (t) =
{ |f (t)| if t ≤ tf (c)

f (t) if t > tf (c) .

This homotopy joins each function f ∈ S with its absolute value |f | , H (0, f) = f
and H (1, f) = |f | . The word “homotopy” is justified by the fact that

‖H (c, x) −H (d, y)‖ ≤ 2 |c− d| + 2 ‖x− y‖ ,



382 Emanuele Casini and Kazimierz Goebel Vol.78 (2010)

which we leave to prove to the reader. The homotopy H keeps all the nonnegative
functions invariant. If f ∈ S+ = [f ∈ S : f ≥ 0] then H (c, f) = f for all c ∈ [0, 1] .
Since S+ is a convex subset of the sphere S, it is contractible to any of its point g
by the natural homotopy G (c, f) = (1 − c) f +cg. Gluing up two homotopies H and
G we get a homotopy joining identity on S with a constant map. We leave to the
reader showing that such homotopy is lipschitzian and finding constants A and B.

6. Solutions of qualitative questions

Most of the problems, ideas and discussions presented in the Sections above were
based on intuition coming from individual examples. The first general breakthrough
came in 1979 after the paper of B. Nowak ([28]). The result stated that for certain
class of Banach spaces (those admitting weakly continuous duality mapping) there
are lipschitzian retractions of the ball onto sphere. In our terminology, if X belongs
to this class then k0 (X) < ∞.

The complete much stronger solution came 4 years later in ([5]),

Theorem 9 (Y. Benyamini and Y. Sternfeld). For any Banach space X, there exists
a lipschitzian retraction R : B → S.

In our terminology it means that for any Banach space X, k0 (X) < ∞. The
title of the paper states the result in indirect form. Spheres in infinitely dimensional
Banach spaces are Lipschitz contractible. Then the solution of retraction problem
is obtained by standard tricks. The proof is very technical but universal. It works
for all the Banach spaces regardless of regularity. Following this result, the “trivial
theorem” and its consequences presented in Preliminaries, take much stronger form:

Theorem 10. For any Banach space X of infinite dimension the following five state-
ments are true and equivalent:

A) For any k > 1 there exists a k-lipschitzian mapping T : B → B with d (T ) > 0,
B) ψX (k) > 0 for all k > 1,
C) The unit sphere S is the lipschitzian retract of B,
D) k0 (X) < ∞,
E) S is Lipschitz contractible.

It is not clearly mentioned in ([5]) but it was noticed by other authors working
in the field that there is something more in the proof. The proof is constructive and
close analysis of it allows to formulate much stronger

Conclusion 1. There exists an universal constant k0 such that for any Banach space
X there exists a retraction R : B → S with k (R) ≤ k0. In other words, sup k0 (X) <
∞ where supremum is taken over the whole category of Banach spaces.

Final step concerning not only unit ball but all closed convex and bounded sets
has been made by P.K. Lin and Y. Sternfeld ([25]):
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Theorem 11 (P.K. Lin and Y. Sternfeld). For any Banach space X, any closed,
bounded, convex but noncompact set C ⊂ X and any k > 1 there exists a mapping
T : C → C of class L (k) such that d (T ) > 0.

In our terminology it means that for such sets C we have ϕC (k) > 0 for all
k > 1.

The above results close, in some sense, the qualitative part of the theory. All
the proofs are so technically complicated that do not allow to make estimations,
neither for the size of k0 (or k0 (X) for particular space X ) nor for ψ (k) (or ϕC (k)
for particular set C ). Good estimates require individual approach. In what follows
we will present some constructions.

7. Results concerning minimal displacement

Once we know that ϕC (k) > 0 for k > 1 and all noncompact convex sets C, the main
question in the field is to evaluate this function. For simplicity we shall concentrate
mostly on the case of unit ball B and the function ψX . As it was shown above we
have

ψX (k) ≤ 1 − 1
k

and (see Example 5)

ψc0 (k) = 1 − 1
k
.

In general we call the set C extremal (with respect to minimal displacement) if

ϕC (k) =
(

1 − 1
k

)
r (C) .

In this terminology the unit ball in c0 is extremal. There are many other spaces hav-
ing extremal balls. Among them are spaces of continuous functions C [a, b] , contin-
uously differentiable functions Cn [a, b] with standard and modified uniform norms.
Also it is known (see [7], unpublished) that all the subspaces of C [a, b] of finite
codimension are of extremal balls. Here are three examples of extremal sets and
balls.

Example 8. Let X = C [0, 1] and let K ⊂ C [0, 1] be the closed convex set defined
by

K = [x : 0 = x (0) ≤ x (t) ≤ x (1) = 1] .

We have r (K) = diamK = 1. Let e ∈ K be the identity function, e (t) = t for
t ∈ [0, 1] and let α ∈ K be chosen arbitrary with α �= e. Define the mapping
Tα : K → K by

Tαx (t) = (α ◦ x) (t) = α (x (t)) .

The regularity of Tα is determined by α. If α is lipschitzian with constant k,
|α (t) − α (s)| ≤ k |t− s| then Tα ∈ L (k) . Now, we observe that since each x ∈ K
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takes all the values between 0 and 1, we have

‖x− Tαx‖ = max [|x (t) − α (x (t))| : t ∈ [0, 1]]

= max [|s− α (s)| : s ∈ [0, 1]] = ‖e− α‖ = const > 0.

Thus, all mappings Tα have constant positive displacement d (Tα) = dα = ‖e− α‖ .
If, for any k > 1 we select the function αk (t) = min [kt, 1] and define Tk = Tαk

,we
get, Tk ∈ L (k) and for all x ∈ K,

‖x− Tkx‖ = ‖e− αk‖ = 1 − 1
k
.

This means that K is extremal. It is also worth to observe that the family Tk, k >
1 of mappings realizing the extremal minimal displacement form the semigroup,
Tk ◦ Tl = Tkl.

There are many constructions showing that in general ψC[a,b] = 1− 1
k . We leave

to the reader justification of the next example.

Example 9. Let

β (t) =

⎧⎨⎩
−1 for t ≤ −1
t for − 1 ≤ t ≤ 1
1 for t ≥ 1

and let y : [a, b] → (−∞,+∞) be an arbitrary function such that y (a) ≤ −2 and
y (b) ≥ 2. Then, for k > 1, the mapping T : B → B defined as

Tx (t) = β (k (x (t) + y (t)))

is of class L (k) with d (T ) = 1 − 1
k .

One more example of an extremal set is in L1 (0, 1) .

Example 10. Let S+ be the positive part of the unit sphere,

S+ =
[
f : f ≥ 0,

∫ 1

0
f (t) dt = 1

]
.

Clearly S+ is closed convex with r (S+) = 2. For any k > 1 and f ∈ S+ define the
point tf ∈ (0, 1) ,

tf = inf
[
t :

∫ t

0
f (s) ds = 1 − 1

k

]
.

It is a technicality to show that the mapping

Tf (t) =
{

0 for 0 ≤ t < tf
kf (t) for tf ≤ t ≤ 1

is k-lipschitzian and that for all f ∈ S+

‖f − Tf‖ = d (T ) = 2
(

1 − 1
k

)
.

Thus S+ is extremal.
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There are many other examples of extremal sets and balls. The nonextremal
case is more complicated. It is known that some spaces have balls which are not
extremal. For example such are all uniformly convex spaces. However, so far, there
is not known a space X which is not extremal and for which the exact formula for
ψX is determined in the open form. Two spaces are of special interest; the Hilbert
space H and l1. The Hilbert space, being geometrically the most regular should have
relatively small, if not the smallest function ψH .

The following evaluation can be found in ([11]),

ψH (k) ≤
(

1 − 1
k

)√
k

k + 1
< 1 − 1

k
.

For over 35 years it was not shown if this estimate is sharp and no one better was
found. In our opinion answering this question is one of the most important challenge
in the field.

The case of l1 is special. In many aspects of the geometry of Banach spaces
l1 is considered to be irregular and have “very square” balls. It can be shown (see
[10],[13]) that, as in L1,(see Example 10) the positive part S+ in l1 is extremal.
However the whole unit ball B is not. The following estimate holds,

ψl1 (k) ≤
{

2+
√
3

4

(
1 − 1

k

)
for 1 ≤ k ≤ 3 + 2

√
3

k+1
k+3 for k > 3 + 2

√
3

Consequently ψ′H (1) ≤ 1√
2

and ψ′l1 (1) ≤ 2+
√
3

2 .

The above estimates are related to the early questions which has been raised
in [11]. Does there exist a space Z such that ψZ ≤ ψX for all spaces X? Does there
exist a space Z such that ψ′Z (1) ≤ ψ′X (1) for all spaces X? Again, for over 35 years
the progress in answering such questions is almost nil.

Some special subclasses of L (k) were also considered in relation to the optimal
retraction problems. Let us mention two which will be used in the next section. For
details see [10].

First, let us restrict ourselves to the class of mappings T transforming the unit
ball into its boundary, the unit sphere S, T : B → S. Define the characteristic of
minimal displacement for this class as:

ψB→S (k) = sup [d (T ) : T : B → S, T ∈ L (k)] .

In some spaces like c0, C [a, b] we have ψB→S (k) = ψ (k) = 1 − 1
k (see examples

above). However it is not so in more regular spaces. For example for Hilbert space
H, we have

ψB→S (k) ≤
(

1 − 1
k

) 3
2

with ψ′B→S (1) = 0 < ψ′ (1) .
Second, consider the class of all transformations T : B → X sending all the

boundary points to the origin, T (S) = {0} . Again the characteristic of minimal
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displacement can be defined as

ψS→0 (k) = sup [d (T ) : T : B → X,T (S) = {0} , T ∈ L (k))] .

For such characteristic we have

ψS→0 (k) ≤ min
[
1,

k

2
ψ (k)

]
≤ min

[
1,

k − 1
2

]
,

with ψ′S→0 (1) ≤ 1
2ψ
′ (1) and ψ (k) = 1 for sufficiently large k. An imprecise estimate

for the last claim is k > k0 + 1, where k0 is the universal constant mentioned
in the conclusion to the Benyamini-Sternfeld Theorem. Indeed, if R : B → S is
a k-lipschitzian retraction, then T : B → X defined as Tx = x − Rx, satisfies
T (S) = {0} , T ∈ L (k + 1) and d (T ) = 1.

8. Results on optimal retraction problem

The investigations concerning the optimal retraction problems concentrate in general
on finding nice estimates of k0 (X) for particular spaces X. It is hard to say that
there are any general methods to obtain such evaluations. Most of the work is done
by applying special tricks to construct examples. There is no space X for which
exact value of k0 (X) is known. Here we present some basic facts and list the most
interesting estimates.

First observe that the constant k0 (X) can not be too small.

Claim 1. For any Banach space X, k0 (X) ≥ 3.

To observe this, consider a lipschitzian retraction R : B → S,R ∈ L (k) .Define
T = −R observe that T 2 = R and take any x ∈ B. Let d (x) = ‖x− Tx‖ =
‖x + Rx‖ . Now we have

2 =
∥∥T 2x− Tx

∥∥ ≤ k ‖Tx− x‖ = kd (x) .

Since for any ε > 0, x ∈ B can be selected so that d (x) ≤ ψ (k) + ε,we get

2 ≤ kψ (k) ≤ k

(
1 − 1

k

)
= k − 1

which implies our claim. It is not clear whether the above estimate is sharp. Certainly
for some regular spaces we can get better bound. Observe that our construction the
mapping T maps the segment [x, Tx] onto a lipschitzian (just rectifiable) curve which
joins two antipodal points, Tx and T 2x = Rx = −Tx. The minimal length of such
curve is called the girth of the sphere, is denoted by g (X) and satisfies g (X) ≥ 2.
For some spaces g (X) = 2 but for some (e.g. uniformly convex) we have g (X) > 2.
For example, for the Hilbert space we have g (X) = π. For details on the girth see
([31]). We leave to the reader to observe that a technical refinement of the arguments
we used above lead to the sharper inequality

g (X) ≤ kψB→S (k) .
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Using the estimate from the previous section, for the Hilbert space we get

π ≤ k

(
1 − 1

k

) 3
2

which implies k0 (H) ≥ 4.5 . . . .
The evaluation k0 (X) ≥ 3 seems to be imprecise even for spaces with g (X) = 2.

For example we have g
(
l1
)

= 2, but k0
(
l1
) ≥ 4 ( see [7]).

There are more results concerning estimates from above. There are not satisfac-
tory evaluations for the maximal k0. All the attempts to evaluate it ends at the level
of high thousands. Much better situation is observed for particular spaces or some
classes of spaces. For years, step by step improvements has been done by a number
of authors. The first estimates placed k0 (X) for classical Banach spaces between 10
and 40. The first space for which it was known that its retraction constant does not
exceed 10 was L1 (0, 1) . For a long time the best estimate was k0

(
L1 (0, 1)

) ≤ 9.43,
where the last number was a solution of certain equation. The general situation till
2002 is discussed in [10] and [19] (Chapter 17).

All the results of this type are obtained by producing concrete examples of
mappings. Let us present here some recent constructions of retractions with relatively
small Lipschitz constants. The examples are selected on the bases of their simplicity.
The best known estimates obtained via longer constructions will be only mentioned.

Let us begin with spaces l1 and L1 (0, 1) . An original construction presented in
[1] and [2] shows that

4 ≤ k0
(
l1
) ≤ 8.

On the basis of slightly modified technique the same estimate from above has
been established also for L1 (0, 1) and some other spaces having similar geometrical
properties (see . [14]). Here is the L1 version.

Example 11. Consider the unit ball B and the unit sphere S in L1 (0, 1) . For technical
reason let us assume that all the functions h ∈ L1 (0, 1) are extended to the negative
axis by putting h (t) = 0 for t < 0. For any function h ∈ B define the number

th = inf
[
t :

∫ 1

t
|h (s)| ds ≤ 1 − ‖h‖

]
.

Observe that
th = 0 if ‖h‖ ≤ 1

2
and that ∫ 1

th

|h (s)| ds = 1 − ‖h‖ if
1
2
≤ ‖h‖ ≤ 1.

Next define the mapping Q : B → 1
2B by

Qh (t) =
{

0 if t < th,
h (t) if th ≤ t.

.

and notice that:

Qh = h and consequently ‖Qh‖ = ‖h‖ , if ‖h‖ ≤ 1
2
,
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‖Qh‖ = 1 − ‖h‖ , if ‖h‖ ≥ 1
2

and consequently Q (S) = {0} ,

(I −Q)h = 0 and consequently ‖(I −Q)h‖ = 0, if ‖h‖ ≤ 1
2
,

‖(I −Q)h‖ = ‖h‖ − ‖Qh‖ = 2 ‖h‖ − 1, if ‖h‖ ≥ 1
2
.

The last observation comes from the fact that functions Qh and(I −Q)h have dis-
joint supports. Now let us evaluate the Lipschitz constants of Q and I −Q. Restric-
tions of these mappings to the ball 1

2B have Lipschitz constants 1 and 0 respectively.
Take any two functions f, g ∈ B with norms ‖f‖ ≥ 1

2 , ‖g‖ ≥ 1
2 and just for technical

reason assume that tf ≤ tg. We have

‖(I −Q) f − (I −Q) g‖ =
∫ tf

0
|f (s) − g (s)| ds +

∫ tg

tf

|g (s)| ds

=
∫ tf

0
|f (s) − g (s)| ds +

∫ 1

tf

|g (s)| ds−
∫ 1

tg

|g (s)| ds

=
∫ tf

0
|f (s) − g (s)| ds +

∫ 1

tf

|g (s)| ds− 1 + ‖g‖

=
∫ tf

0
|f (s) − g (s)| ds +

∫ 1

tf

|g (s)| ds

−
∫ 1

tf

|f (s)| ds− ‖f‖ + ‖g‖

≤
∫ 1

0
|f (s) − g (s)| ds + |‖g‖ − ‖f‖|

≤ 2 ‖f − g‖ .
Consequently

‖Qf −Qg‖ = ‖(f − g) − ((I −Q) f − (I −Q) g)‖
≤ ‖f − g‖ + ‖(I −Q) f − (I −Q) g‖
≤ 3 ‖f − g‖ .

So Q is 3-lipschitzian and I − Q is 2-lipschitzian. Now let A : L1 (0, 1) → L1 (0, 1)
be the isometry defined by

Ah (t) = 2h (2t− 1) .

Observe that if ‖h‖ ≤ 1
2 then the support of Ah is contained in the interval

[
1
2 , 1

]
.

If ‖h‖ ≥ 1
2 , then support of AQh is contained in

[
th+1
2 , 1

]
and since the support

of (I −Q)h is contained in [0, th] , the functions AQh and (I −Q)h have disjoint
supports. Knowing the above we can construct the retraction R : B → S by

Rh =

{
2 (1 − 2 ‖h‖)χ[0, 12 ]

+ 2Ah if ‖h‖ ≤ 1
2 ,

(I −Q)h + 2AQh if ‖h‖ ≥ 1
2 .
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Where χ[0, 12 ]
denotes the characteristic function of

[
0, 12

]
. The both formulas coin-

cide if ‖h‖ = 1
2 . If ‖h‖ ≤ 1

2 , then

‖Rh‖ =
∫ 1

2

0
2 (1 − 2 ‖h‖) ds + 4

∫ 1

1
2

|h (2s− 1)| ds

= 1 − 2 ‖h‖ + 2
∫ 1

0
|h (s)| ds = 1

and if ‖h‖ ≥ 1
2 , then also

‖Rh‖ = ‖(I −Q)h‖ + 2 ‖AQh‖
= 2 ‖h‖ − 1 + 2 (1 − ‖h‖) = 1.

Thus indeed R : B → S with R = I on S. Moreover, for f, g with ‖f‖ ≤ 1
2 , ‖g‖ ≤ 1

2
we have

‖Rf −Rg‖ = 2 |‖f‖ − ‖g‖| + 2 ‖Af −Ag‖ ≤ 4 ‖f − g‖ ,
while if ‖f‖ ≥ 1

2 , ‖g‖ ≥ 1
2 ,

‖Rf −Rg‖ = ‖(I −Q) f − (I −Q) g‖ + 2 ‖AQf −AQg‖
≤ 2 ‖f − g‖ + 6 ‖f − g‖ = 8 ‖f − g‖

If ‖f‖ ≥ 1
2 and ‖g‖ ≤ 1

2 then there exists a number α ∈ [0, 1] such that
‖(1 − α) f + αg‖ = 1

2 . Then we have

‖Rf −Rg‖ ≤ ‖Rf −R ((1 − α) f + αg)‖ + ‖R ((1 − α) f + αg) −Rg‖
≤ 8α ‖f − g‖ + 4 (1 − α) ‖f − g‖ ≤ 8 ‖f − g‖ .

Thus the inequality
‖Rf −Rg‖ ≤ 8 ‖f − g‖

holds for all f, g ∈ B meaning R is 8-lipschitzian.

The above implies that

3 ≤ k0
(
L1 (0, 1)

) ≤ 8.

The left inequality is weaker than this for l1 and has not been improved yet.
Let us pass to the space of continuous functions C [0, 1]. The old estimate (see

e.g. [10])

3 ≤ k0 (C [0, 1]) ≤ 4
(
1 +

√
2
)2

= 23.31 . . .

has been recently improved in [29] to

3 ≤ k0 (C [0, 1]) ≤ 4
(
2 +

√
3
)

= 14.92 . . .

and it is the best known estimate for this space. Better estimates has been obtained
for the subspace C0 [0, 1] ⊂ C [0, 1] consisting of all functions vanishing at zero,
f (0) = 0. Here is an elementary construction.
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Example 12. Let X = C0 [0, 1] be the space of continuous functions on f : [0, 1] → R
vanishing at zero, f (t) = 0 with standard uniform norm ‖f‖ = max |f (t)|. Consider
the function Λ : [0,∞] → [

0, 32
]

defined by

Λ (t) =

⎧⎨⎩
3t

3 (1 − t)
0

for 0 ≤ t ≤ 1
2

for 1
2 ≤ t ≤ 1

for t ≥ 1
.

Let T0 : C0 [0, 1] → 3
2B ⊂ C0 [0, 1] be defined by

(T0f) (t) = Λ (|f (t)| + t) .

Observe that T0 satisfies Lipschitz condition with constant k = 3. Also observe that
for any function f ∈ C0 [0, 1] there exists a point t1 ∈ (0, 1) such that |f (t1)|+t1 = 1

2 .
Hence, for all f ∈ C0 [0, 1] we have

‖T0f − f‖ ≥ |(T0f) (t1) − f (t1)| ≥ |(T0f) (t1)| − |f (t1)| =
3
2
− 1

2
+ t1 > 1.

For functions satisfying with ‖f‖ ≥ 1, we have another observation. If there is
a point t2 such that f (t2) < −1, we have (T0f) (t2) ≥ 0 and for any point t3 such
that f (t3) > 1 we have (T0f) (t3) = 0. Obviously, at least one of the points t2 or t3
satisfying the above does exist. In both cases we also have ‖T0f − f‖ ≥ 1.

Now, define the mapping T1 : 3
2B → 3

2B,

(T1f) (t) =
{

(T0f) (t)
min

{
(T0f) (t) , 3

(
3
2 − ‖f‖)} if ‖f‖ ≤ 1

if 1 ≤ ‖f‖ ≤ 3
2

.

The mapping T1 is lipschitzian with Lipschitz constant k = 3. For all f ∈ 3
2B,

‖T1f−f‖≥1. Also T1 sends the sphere 3
2S into the origin. In other words T1

(
3
2S

)
=

{0} .Consequently the mapping T : B → B defined by

T (f) =
2
3
T1

(
3
2
f

)
,

has the same Lipschitz constant k = 3, satisfies ‖T1f − f‖ ≥ 2
3 for all f ∈ B and

sends the unit sphere S to the origin, T (S) = {0} .
Now we can define the retraction R : B → S. Put

Rf =
f − Tf

‖f − Tf‖ = P

(
3
2

(f − Tf)
)
.

Here P : C0 [0, 1] → B denotes the radial projection,

Pf =

{
f
f
‖f‖

if ‖f‖ ≤ 1
if ‖f‖ > 1

.

It is known that the Lipschitz constant of P equals 2,

‖Pf − Pg‖ ≤ 2 ‖f − g‖ .
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Thus we have

‖Rf −Rg‖ =
∥∥∥∥P (

3
2

(f − Tf)
)
− P

(
3
2

(g − Tg)
)∥∥∥∥

≤ 3 ‖(f − Tf) − (g − Tg)‖
= 3 ‖f − g‖ + 3 ‖Tf − Tg‖
≤ 3 ‖f − g‖ + 9 ‖f − g‖ = 12 ‖f − g‖ .

Thus we conclude with k0 (C0 [0, 1]) ≤ 12.

The above estimate is not optimal. More technical approach has been presented
in [15] with better conclusion k0 (C0 [0, 1]) ≤ 7. The strongest known and the most
general result in this context is

3 ≤ k0 (CBz (M)) ≤ 2
(
2 +

√
2
)

= 6.83 . . .

where M is an arbitrary connected metric space consisting of more then one point,
z ∈ M and CBz (M) is the space of bounded continuous functions vanishing at z
(see [30]).

The case of Hilbert space is very interesting. The geometry of Hilbert space
H is very regular and, probably, this causes difficulties in finding explicit examples
of retractions R : B → S. Moreover, as mentioned above an exact formula for the
characteristic of minimal displacement ψH (k) is unknown does not help in finding
good estimates.

The first estimate k0 (H) ≤ 64.25 has been presented in [22]. Then, step by
step, there were several improvements. Let us mention a constructive example from
[8], k0 (H) < 32.26. and

k0 (H) ≤ 28.99

presented in [4]. The above estimate seems to be very rough but none better is
known. There are some findings which suggest so. These are some inequalities which
tie unknowns, k0 (H) and some values of ψH (k). Here are two samples (see [10])

k0 (H)ψ′H (1) ≤ 8,

k0 (H)ψH (3) ≤ 16
3
.

Finding the best estimates for k0 (H) and ψ′H (1) is in our opinion the main and
difficult challenge in the field.

Finally, we should mention some results related to more general case. As men-
tioned above a good and reasonable estimate for k0 = sup k0 (X) with respect to all
Banach spaces X is practically unknown. There are several estimates, some similar
to the last ones presented above for Hilbert space which are in the “folklore” of the
subject. Some can be found in ([10]). For example, for any Banach space X we have

k0 (X)ψ′X (1) ≤ 16
(
1 +

√
2
)2

= 93.25 . . . ,

k0 (X)ψX

(
1 +

√
2
)
≤ 16

(
2 +

√
2
)

= 54.62 . . . .
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Also, there are some more general inequalities which evaluate k0 (X) , as

k0 (X) ≤ 3k (P ) min
[

k + 2
2ψ (k) − 1

: k > ψ−1
(

1
2

)]
.

Here k (P ) ≤ 2 is the Lipschitz constant for the radial retraction of X onto the unit
ball B. Applying this estimate for extremal spaces having ψ (k) = 1 − 1

k we get

k0 (X) ≤ 3k (P )
(
2 +

√
2
)2

= k (P ) 34.97 . . . < 70.

The above is not the best known estimate in the class of extremal spaces. There
were several improvements which so far ended with (see [4])

ψX (k) = 1 − 1
k

=⇒ k0 (X) ≤ 30.84 . . . .

9. Final remarks

The presented direction of investigation is, as we were trying to show, full of open
problems. Even questions raised in the first paper [11] almost forty years ago are still
open. The progress is slow. Most of the results come from some tricky constructions
invented by a number of authors. There are not to many general theorems and rules
to proceed. Everything depends on individual creativity.

There are also directions of research related to the problem which we did not
mention. To end our presentation we would like to turn the readers attention to one,
which gain some popularity among researchers.

All the questions raised for lipschitzian mappings can be translated to some
other classes. Let us recall that the continuous mapping T : C → C is said to be
α-set contraction if for every subset D ⊂ C,α (T (D)) ≤ kα (D) where α is the
Kuratowski’s measure of noncompactness α (D) = inf d that D can be divided into
finite number of sets of diameter smaller then d. All the k-lipschitzian mappings
are k-set contractions. However this class is wider because it is closed with respect
some compact perturbations. Surprisingly optimal retraction problem for this class
of mappings and for some spaces is solved completely.

There are spaces (e.g. C [0, 1]) such that for any ε > 0 there exists a retraction
R : B → S being (1 + ε)-set contraction [32]. There are even spaces for which there
are retractions of the ball onto sphere constructed as a compact perturbations of
a nonexpansive map. More informations about this direction can be found in an
expository article [3].
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