
Self-induced density modulations in the free expansion of Bose-Einstein condensates

Luca Salasnich,1 Nicola Manini,2,3 Federico Bonelli,2 Michael Korbman,2 and Alberto Parola4
1
CNISM and CNR-INFM, Unità di Padova, Dipartimento di Fisica “Galileo Galilei,” Università di Padova, Via Marzolo 8,

35131 Padova, Italy
2
Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano, Italy

3
CNISM, Unità di Milano, Via Celoria 16, 20133 Milano, Italy

4
Dipartimento di Fisica e Matematica, Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy

sReceived 12 January 2007; revised manuscript received 9 March 2007; published 19 April 2007d

We simulate numerically the free expansion of a repulsive Bose-Einstein condensate with an initially Gauss-
ian density profile. We find a self-similar expansion only for weak interatomic repulsion. In contrast, for strong
repulsion we observe the spontaneous formation of a shock wave at the surface followed by a significant
depletion inside the cloud. In the expansion, contrary to the case of a classical viscous gas, the quantum fluid
can generate radial rarefaction density waves with several minima and maxima. These intriguing nonlinear
effects, never observed in free-expansion experiments with ultracold alkali-metal atoms, can be detected with
the available setups.
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I. INTRODUCTION

The anisotropic free expansion of a gas of 87Rb atoms was
the first experimental evidence of Bose-Einstein condensa-
tion in ultracold gases f1g. The nonballistic free expansion
observed with 6Li atoms has been saluted as the first signa-
ture of superfluid behavior in an ultracold Fermi vapor f2g. In
both cases the atomic quantum gases can be described by the
hydrodynamic equations of superfluids and, because the ini-
tial density profile is an inverted parabola, the free expansion
is self-similar f3–7g.

The first theoretical investigations of the free expansion
into vacuum of a classical gas sphere with constant initial
density date back to the 1960s f8,9g: Numerical analysis was
needed to analyze in detail the formation of a depletion at the
center and of a shock wave at the surface f10,11g. More
recently, rarefaction waves have been produced experimen-
tally by the free expansion of an electron plasma f12g.

In the present work we investigate the intriguing nonlin-
ear phenomena that the free expansion of a bosonic super-
fluid into vacuum displays. In particular, by integrating nu-
merically f13g the time-dependent Gross-Pitaevskii equation
sGPEd f14g we show that the expansion of a repulsive Bose-
Einstein condensate sBECd of initial Gaussian density profile
gives rise to central depletion and self-induced density
modulations, i.e., self-induced rarefaction waves. In addition,
we find that the expanding cloud produces a shock wave at
the surface, that is regularized by the quantum pressure of
the superfluid. Similar nonlinear effects were investigated in
the past in different conditions. In particular, Zak f15g and
Damski f16g analyzed the 1D nonlinear evolution and the
nondissipative shock waves induced by density perturbations
of BEC’s. Kamchatnov and collaborators f17g studied the
shock-wave formation and regularization in the propagation
of a 2D density perturbation over a uniform background.
Pérez-García et al. f18g investigated the shock-wave forma-
tion induced by the rapid increase of the scattering length in
a trapped BEC. Ruschhaupt and collaborators f19g investi-
gated the early times of the expansion of 1D and 3D sspheri-

cally symmetricd Gaussian-shaped BEC packets, from the
perspective of velocity distribution. The general understand-
ing is that, while shock waves occur in all space dimensions,
the central depletion is characteristic of 3D expansion.

Shock and rarefaction waves induced by a density pertur-
bation were observed recently in BEC’s f20,21g and also in
nondissipative nonlinear optics f22g. In the present work we
propose an experiment well within the present-day techno-
logical capability: By exploiting the Fano-Feshback reso-
nance mechanism f23g tuned by an external magnetic field, it
is possible to equilibrate a trapped BEC characterized by a
very small scattering length, thus producing a stationary
Gaussian density profile, and then simultaneously remove
the confining trap and change the magnetic field, making the
scattering length very large, thus initiating the expansion of
an initially-Gaussian strongly interacting expanding BEC.
We illustrate the depletion and shock phenomena that should
be observed in such kind of experiments.

II. THE NUMERICAL EXPERIMENT

We describe the collective motion of the BEC of N atoms
in terms of a complex mean-field wave function csr , td nor-
malized to unity and such that rsr , td=Nr1sr , td=Nucsr , tdu2

is the number-density distribution. The equation of motion
that we assume for csr , td is the time-dependent GPE f14g
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where Usr , td is a confining potential that we assume to van-
ish at tù0 sthus allowing free expansiond and m is the
atomic mass. The nonlinear term represents the interatomic
interaction at a mean-field level, where as is the s-wave scat-
tering length, and we consider the repulsive regime as.0.

In traditional experiments with ultracold alkali-metal at-
oms f1,2g expansion starts from an initial state coinciding
with the ground state of the confined superfluid under the
action of a soften anisotropicd harmonic potential. For robust
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interparticle interaction slarge number of particlesd, the den-
sity profile in this initial state resembles closely a negative-
curvature parabola f14g. When such density profile is taken
as the initial state of a successive free nonballistic expansion,
to a very good degree of approximation it expands in a self-
similar fashion, maintaining the same shape and only spread-
ing out and scaling down its height proportionally, until a
ballistic regime is reached when dilution leads to a fully
noninteracting regime f3–7g.

In the present work we discuss the much more exciting
phenomena observed in the expansion of an interacting con-
densate starting off as a stationary Gaussian

csr,0d =
1

sps2d3/4
expS− o

i=x,y,z

ri
2

2si
2D , s2d

with s3=sxsysz. Note that a Gaussian profile is readily
achieved experimentally by equilibrating the BEC with a
very small scattering length as obtained by means of the
Fano-Feshbach resonance technique f14,23g with a carefully
tuned external constant magnetic field. as can then be set to
the desired value by a sudden change in the magnetic field at
the time when the harmonic trapping potential is switched
off.

The isotropic case sx=sy=sz=s is conceptually advan-
tageous, as the expansion can be studied within the GPE
model in its full generality as a function of a single param-
eter. Consider rescaling the variables of Eq. s1d as follows:
r→r /s, t→ t" / sms2d, and c→cs3/2, to produce a dimen-
sionless form

i
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2 + gucu2Gc , s3d

of the equation for the free expansion of a condensate expan-
sion starting off from a Gaussian initial state of unit width.
The dimensionless interaction strength g=4pNas /s is the
one free parameter determining the properties of the free
expansion. The scattering length of 23Na atoms can be in-
creased to as.10 nm, thus producing g.104 for BEC’s of
N.105 in current traps of frequency .1000 Hz f25g.

We simulate the expansion experiment numerically by us-
ing an efficient finite-difference Crank-Nicolson algorithm
f13g: We verify that little changes affect the expansion as
long as the interaction is small. g,1 tracks the weak-
coupling limit where interaction only accelerates slightly the
free expansion described by

csr,td =
1

p3/2s1 + t2d3/2
expS− r2s1 + itd

2s1 + t2d
D s4d

f24g, while g@1 represents the strong-coupling regime,
where the mean-field self-interaction term in Eq. s3d domi-
nates the expansion for long enough to produce substantial
nonlinear effects such as those sketched in Fig. 1. In particu-
lar we observe the rapid buildup of a sharp expanding spheri-
cal density wave which leaves behind a central region of
depleted density. New successively formed radial ripples
cross this density-depleted region. Eventually, at very long
times, when the overall density has decayed enough for the

nonlinear term in Eq. s3d to become negligible everywhere,
the expansion recovers a bell-shaped profile.

More quantitatively, for increasing g, the rarefaction starts
to be evidenced by a local minimum at the droplet center for
g*48.3, and becomes more and more pronounced and long
lived for larger interaction strength g. In the highly nonlinear
regime, the free expansion of the bosonic cloud into vacuum
develops sequences of radial density waves with minima and
maxima, each starting at a characteristic time and disappear-
ing at a later time. Figure 2 tracks a few early times in this
class, as a function of g: More could be defined for larger g.
Overall, the time tam of appearance of the first local mini-
mum reduces slowly as g increases, while the time tdm of
disappearance of all local minima and recovery of a bell-
shaped profile increases rapidly with g. In between these two
characteristic times several traveling density minima and
maxima can be formed depending on the value of g. Gener-
ally, the number and density difference of local minima and
maxima increases with the interaction strength.

In practice, the visibility of the central depletion need not
be easy to appreciate by means of total opacity measure-
ments, since such measurements address the integrated den-
sity of a generic linear section crossing the droplet at a given
distance from its center. However, Fig. 1 shows that for suit-
ably strong interaction, a sensibly higher-opacity outer ring
does indeed develop. The inset of Fig. 2 tracks the time
range when this inner optical-density minimum remains
lower than the outside denser ring by at least 1% and 5%: It
is seen that for strong enough interaction sg*215 and g

*310, respectivelyd, the depleted region realizes a limited
but significant visibility, which improves for stronger cou-
pling. An example of visible opacity ring is displayed in the
upper right corner of Fig. 2.

To characterize the dynamics of the bosonic cloud it is
useful to introduce its local phase velocity, given by
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FIG. 1. sColor onlined Four successive frames of the radial den-
sity profile ssolid lined for the expansion of a strongly interacting
condensate, characterized by dimensionless interaction parameter
g=2000. The “opacity” of the expanding cloud sdashed lined given
by the density r1srd integrated along lines at a distance r from the
center srescaled by a factor 0.036d. All quantities are dimensionless:
Lengths in units of the initial Gaussian width s and time in units of
ms2 /".
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v =
i
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This velocity can be written as vsr , td=¹usr , td, where usr , td
is the phase of the macroscopic wave function csr , td
=r1sr , td

1/2eiusr,td of the bosonic superfluid. From Eq. s4d one
finds immediately the radial phase velocity of a spherical
noninteracting Bose gas sg=0d:

v =
r

2

t

1 + t2
. s6d

In the interacting case sg.0d the nonlinear term acts as the
chemical potential of a fluid of classical pressure P

=gucu4 /2 and sound velocity cs=Îgucu2 f14g. For g!1 the
gas velocity follows Eq. s6d closely, while for large g devia-
tions from Eq. s6d are substantial, as mainly the interaction
term, rather than the quantum tendency to delocalization,
drives the expansion. The ratio v /r, a constant as a function
of r according to Eq. s6d in a noninteracting expansion,
shows strong deviations induced by the nonlinear term gucu2.
In practice, the phase velocity of a strongly interacting BEC
approaches the local sound velocity, with larger densities im-
plying higher velocities. Accordingly, initially the central
part of the strongly repulsive bosonic superfluid accelerates
and propagates faster than the periferic part: The ensuing
mass flow is responsible for the formation of the rarefaction
region inside the cloud, shown in Fig. 1. The matter flowing
quickly out of the central region accumulates near the profile
edge on top of the slower external tail, thus tending to pro-
duce a shock wave f16–18,21,22g, with a BEC density pro-

file extremely steep at the surface, approaching a step func-
tion: This is illustrated by the t=0.24 panel of Fig. 1. This
steep wave front survives for a brief period, after which den-
sity oscillations shoot backwards and the surface profile rap-
idly smoothens its density gradient. At this point, the expan-
sion dynamics is strongly affected by these backward density
oscillations, which induce a inverted relation between local
velocity and density, as Fig. 3 illustrates: For a strongly in-
teracting BEC, at a fixed time t the ratio v /r finds local
maxima sminimad in correspondence to the local minima
smaximad of the density profile r1. This inversion demon-
strates the inward motion of the density ripples. These local
minima represent the rarefaction waves produced by the sur-
face step smoothing. This smoothing is driven by the quan-
tum pressure term f16g.

III. COMPARISON TO CLASSICAL HYDRODYNAMICS

The quantum pressure −su¹cu2d / s2r1d, which plays a neg-
ligible role in the self-similar nonballistic expansion f7g of
both Fermi and Bose superfluids with an inverted-parabola
initial profile f26g, becomes relevant in regularizing the
shock-wave singularity, like the dissipative term in classical
hydrodynamics f21g. Analogous depletion and shock-wave
phenomena are indeed observed in the hydrodynamical ex-
pansion of hot classical fluids, and can be simulated, e.g., by
means of the Navier-Stokes equations sNSEd, which depend
on the sdissipatived coefficient of shear viscosity h f9g. For
h=0 the irrotational s¹∧v=0d NSE reduce to the Euler
equations of an ideal snonviscousd fluid. By using Psrd
=gr1

2 /2 as the equation of state, the Euler equations are ex-
actly equivalent to the GPE without the quantum pressure
term f14g. In Fig. 4 we compare the expanding BEC fGPE,
Eq. s3dg and classical gas sNSEd, for g=10000. The NSE are
solved by means of a Lagrangian finite-difference method
f27g. The four successive frames displayed in Fig. 4 show
that, while expanding, the interacting BEC and the classical
gas produce a remarkably similar self-depletion of the central
region. On the other hand, the multipeak rarefaction struc-
tures predicted by the GPE are not reproduced by the NSE.
Thus the novelty of the free expansion of a BEC with respect
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FIG. 2. sColor onlined Characteristic times of the free expansion
as a function of the interaction strength g. For gù48.7, a first
minimum in the radial density profile appears at the center r=0 at
time tam sdashedd and fills in at tdm sdot-dashedd. For gù363, a
local maximum reforms at the center at time taM ssolidd and disap-
pears at time tdM. A density maximum appears within the rarefac-
tion region at time teM sdot-dot-dashedd. Inset: The time of appear-
ance ta and disappearance td of a denser ring ssketched in the small
square for g=1200 and t=1.8d of visibility h sdefined in Fig. 1d 1%
ssolidd and 5% sdashedd in the opacity profile sdashed lines of Fig.
1d, as a function of g. Units as in Fig. 1.
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FIG. 3. sColor onlined Comparison of the density profile r1srd
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metrical expansion of the strongly interacting bosonic cloud. Units
as in Fig. 1.
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to that of a weakly viscous classical fluid, stands mainly in
the distinct large-amplitude rarefaction waves moving inside
the depletion region, which are supported by the nondissipa-
tive nature of quantum pressure.

IV. DISCUSSION OF THE ROLE OF DIMENSIONALITY

The expansion of the BEC in an anisotropic context is
also instructive. In particular, we find that a one-dimensional
s1Dd expansion starting from a Gaussian state produces no
central depletion. Interestingly, Ruschhaupt et al. f19g dem-
onstrate a depletion even in 1D, by switching the interaction
off after a brief time interval. By leaving the interaction on at
all times instead, we find no central depletion whether we
examine an ideally 1D BEC, represented by a purely 1D
GPE, or when we simulate the 3D expansion of a Gaussian
wavepacket to which an harmonic confining potential is kept
along two orthogonal space directions at all times, with free
expansion being allowed along a single direction z. In both
geometries shock-wave phenomena arise along the axial di-
rection, as previously shown by Damski in the strictly 1D
geometry f16g. In the detail, in the latter cylindrical geom-

etry, if we take a spherical Gaussian s2d of width equal to the
confining-potential harmonic length f" / smv'dg1/2 as the ini-
tial state, the strongly interacting BEC initially shoots out
rapidly in all directions, including the confined ones, thus
producing shock, depletion, and rarefaction waves around
the cylindrical-symmetry axis. Figure 5 illustrates this rapid
initial expansion and depletion sdotted and dashed profilesd,
driven by interaction, followed by a return toward the cylin-
der axis induced by the confining potential ssolid and dot-
dashed profilesd. Likewise, along the z axis the density does
show a depletion in a suitable time interval, but the inte-
grated density r1axszd;2pe0

`r1sr' ,zdr'dr' retains a bell
shape at all times, even for very large interaction, thus con-
firming the qualitative behavior of the purely 1D model.

In conclusion, we show that the free expansion of a BEC
reveals novel and interesting nonlinear effects, including ra-
dial rarefaction density waves with several minima and
maxima not achievable with classical viscous fluids, and
which are awaiting experimental investigations.

ACKNOWLEDGMENTS

The authors thank Paolo Di Trapani, Luciano Reatto, and
Flavio Toigo for useful suggestions.

f1g M. H. Anderson et al., Science 269, 198 s1995d.
f2g K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and

J. E. Thomas, Science 298, 2179 s2002d.
f3g Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 s1996d.
f4g Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. A

54, R1753 s1996d; 55, R18 s1997d.
f5g P. Öhberg and L. Santos, Phys. Rev. Lett. 89, 240402 s2002d.
f6g L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 72,

025602 s2005d.
f7g G. Diana, N. Manini, and L. Salasnich, Phys. Rev. A 73,

065601 s2006d.

f8g P. Molmud, Phys. Fluids 3, 362 s1960d.
f9g Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves

and High-Temperature Hydrodynamic Phenomena sDover
Publications, Mineola, NY, 2002d fin Russian, sIzd. Nauka,
Moscow 1966dg.

f10g V. E. Kondrashov, A. N. Polyanichev, and V. S. Fetisov, Fluid
Dyn. 9, 835 s1974d.

f11g N. C. Freeman and S. Kumar, J. Fluid Mech. 56, 523 s1972d;
N. C. Freeman, R. S. Johnson, S. Kumar, and W. B. Buch,
ibid. 68, 625 s1975d.

f12g J. D. Moody and C. F. Driscoli, Phys. Plasmas 2, 4482 s1995d.

0

0.1

0

3×10
-4

6×10
-4

ρ
1
(r

)

0

5×10
-5

1×10
-4

0 5 10 15 20 25
r

0

2×10
-5

4×10
-5

t=0

t=0.25

t=0.5

t=0.75

FIG. 4. sColor onlined Self-depleting radial density profile r1

=r /N during the expansion: Comparison between the strongly in-
teracting Bose gas sGPE, solid linesd and the classical gas sNSE,
dashed linesd, with g=14 and the same initial conditions sa unit
Gaussiand. In the NSE, the shear viscosity coefficient h=10−5.
Units as in Fig. 1.

0 5 10
r

⊥

0

0.02

0.04

ρ
1

ra
d
(r

⊥
)

t=0.3
t=1.4
t=1.7
t=2.0

FIG. 5. sColor onlined Successive frames of the expansion of the
radial density r1radsr'd;e`

`r1sr' ,zddz, obtained starting from an
isotropic Gaussian wave packet of unit width, for dimensionless
interaction g=500 and radial confinement of unit frequency v'

=1.

SALASNICH et al. PHYSICAL REVIEW A 75, 043616 s2007d

043616-4



f13g E. Cerboneschi, R. Mannella, E. Arimondo, and L. Salasnich,
Phys. Lett. A 249, 495 s1998d; L. Salasnich, A. Parola, and L.
Reatto, Phys. Rev. A 64, 023601 s2001d.

f14g L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation

sOxford University Press, Oxford, 2003d.
f15g M. Zak and I. Kulikov, Phys. Lett. A 307, 99 s2003d; I. Ku-

likov and M. Zak, Phys. Rev. A 67, 063605 s2003d.
f16g B. Damski, Phys. Rev. A 69, 043610 s2004d; 73, 043601

s2006d.
f17g A. M. Kamchatnov, A. Gammal, and R. A. Kraenkel, Phys.

Rev. A 69, 063605 s2004d.
f18g V. M. Pérez-García, V. V. Konotop, and V. A. Brazhnyi, Phys.

Rev. Lett. 92, 220403 s2004d.
f19g A. Ruschhaupt, A. del Campo, and J. G. Muga, Eur. Phys. J. D

40, 399 s2006d.
f20g Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, Science 293,

663 s2001d.
f21g M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P.

Engels, and V. Schweikhard, Phys. Rev. A 74, 023623 s2006d.
f22g W. Wan, S. Jia, and J. W. Fleischer, Nat. Phys. 3, 46 s2007d.
f23g U. Fano, Nuovo Cimento 12, 156 s1935d; H. Feshbach, Ann.

Phys. sN.Y.d 5, 357 s1958d; U. Fano, Phys. Rev. 124, 1866
s1961d.

f24g R. Robinett, Quantum Mechanics. Classical Results, Modern

Systems, and Visualized Examples sOxford University Press,
Oxford, 2006d.

f25g J. Stenger, S. Inouye, M. R. Andrews, H.-J. Miesner, D. M.
Stamper-Kurn, and W. Ketterle, Phys. Rev. Lett. 82, 2422
s1999d.

f26g N. Manini and L. Salasnich, Phys. Rev. A 71, 033625 s2005d.
f27g R. D. Richtmyer and K. W. Morton, Difference Methods for

Initial-Value Problems sWiley, New York, 1967d.

SELF-INDUCED DENSITY MODULATIONS IN THE FREE … PHYSICAL REVIEW A 75, 043616 s2007d

043616-5


