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We consider far from equilibrium heat transport in chaotic billiard chains with noninteracting charged
particles in the presence of nonuniform transverse magnetic field. If half of the chain is placed in a strong
magnetic field, or if the strength of the magnetic field has a large gradient along the chain, heat current is
shown to be asymmetric with respect to exchange of the temperatures of the heat baths. Thermal
rectification factor can be arbitrarily large for sufficiently small temperature of one of the baths.
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The problem of explaining irreversible macroscopic
transport laws, such as the Fourier law of heat conduction,
from the reversible microscopic equations of motion is one
of the open problems in nonequilibrium statistical mechan-
ics [1,2]. The problem is still far from being settled. In
systems of noninteracting particles, e.g., quasi 1-d chaotic
billiards, the validity of Fourier law has clearly been con-
firmed [3], even though such noninteracting systems can-
not exhibit local thermal equilibrium in the nonequilibrium
steady state [4,5]. Furthermore, an interesting connection
between anomalous heat conduction and anomalous diffu-
sion has been established [6]. These problems are not only
interesting for understanding the fundamentals of statisti-
cal mechanics, but they may also have straightforward
applications, e.g., for connecting dynamics and transport
in emerging nanotechnology, engineering of molecular
motors, understanding and control of energy flow in bio-
molecules, etc.

In view of these ideas, Terraneo et al. [7] have recently
proposed a mechanism for thermal rectification in an an-
harmonically interacting particle chain. Using an effective
phonon approach, they have shown that an anharmonic
chain composed of three different parts may have asym-
metric heat transport properties due to (non)matching of
the effective phonon bands. This and related ideas have
been further elaborated and improved [8,9], achieving
rectification efficiencies up to 2000. Recently, the ideas
in [8] have led to an interesting experimental work in
which thermal rectification has been observed [10]. A
further step to devise a thermal transistor has been dis-
cussed in [11] in terms of the negative differential thermal
resistance observed in some anharmonic chains.

Since these first works, other different mechanisms lead-
ing to thermal rectification have been described. In [12], it
was shown that the nonlinearity of the dynamics of an
asymmetric two-level system leads to an asymmetric heat
flow. More recently in [13], it was shown that thermal
rectification can be observed in asymmetric billiards of
interacting particles. When the billiard is subjected to an
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external temperature gradient, the effective interaction
leads to a temperature dependence of the transmission
coefficient, and thus, it is possible to dynamically control
the transmission probability of the billiard. For this type of
billiard system, rectifications as large as 10° were ob-
served. However, the theory presented in [13] requires
the knowledge of the microscopic transmission coeffi-
cients, which is, at best, phenomenological. Simple phe-
nomenological mechanism of thermal rectification has also
been recently discussed in [14].

A common problem with most of these proposals is that
the rectification factor has always been rather limited; i.e.,
it is very difficult to achieve a situation in which heat flows
only in one direction and not in the opposite one.
Moreover, the fact that the thermal rectification depends
directly or indirectly on the microscopic particle-particle
interaction renders difficult the ability to control the power
of rectification.

In this Letter, we propose a novel microscopic mecha-
nism for thermal rectification which works in the absence
of particle interactions. Instead, thermal rectification is
controlled with an external nonuniform magnetic field,
leading to an arbitrarily large power of rectification. In
our model, heat is carried by charged particles and the only
restriction is that the typical mean-free-paths due to dis-
sipative mechanisms should be much larger than the
Larmor radius of the charged particles in the magnetic
field. In practice, this means that the temperatures of the
baths should be quite low, but such regimes are nowadays
easily accessible, for example, in mesoscopic physics,
quantum dots/wires, antidot lattices, etc. The rectification
mechanism is very simple. It is based on asymmetric
reflection of slow and fast particles off the interface be-
tween regions with different magnetic field intensities and
predicts arbitrary large rectification factors for sufficiently
low temperatures.

We consider a gas of noninteracting point particles of
mass m and electric charge e that moves freely inside a
closed two-dimensional billiard region. The billiard is
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shaped as a chain of equal cells as depicted in Fig. 1. Let
the circular obstacles have radius R and centers of the discs
be arranged in a hexagonal array with lattice distance
4/ /3, such that the billiard motion has a closed horizon
for R = 1. Then we cut out a quasi one-dimensional bil-
liard channel of width 8y = 2/+/3 through the centers of
two nearby rows of discs so that one rectangular x X &y
cell of the channel, containing one half disk and two
quarter disk obstacles, has length éx = 4. Negative curva-
ture of the billiard boundary ensures that the motion in the
absence of the magnetic field is completely chaotic—
hyperbolic. The simplest model that we consider is com-
posed of two cells (Fig. 1). The left cell contains no
magnetic field, whereas the right cell is subjected to a
perpendicular uniform magnetic field of strength B. In
what follows, we will refer to a channel of N cells for
which the N/2 left cells contain no magnetic field and the
N/2 right cells contain a magnetic field of density B, as
step configuration. In the dynamics, we neglect the
Coulomb interaction among particles. Therefore, our re-
sults are valid for sufficiently low particle density. Let A
denote the smallest length scale in the problem, namely,
the width of the opening between the neighboring cells in
our model, A = % — R.

The transmission probability between the two cells is
controlled by the strength of the magnetic field. Consider
the particles that cross the interface from left to right.
There exists a critical velocity v,: fast particles of velocity
v > v, always enter the right cell, and thus contribute to
the left to right energy flow provided they reach the right
end of the system which is coupled to a heat bath as
explained below. Instead, slow particles of velocity v <
v, such that the gyro-magnetic radius ¢(v) = mv/(eB) is
less than A/2, will be reflected or transmitted depending on
the position at which they reach the interface.

Using a statistical ensemble of trajectories, the condition
for the critical velocity (v.) = A/2 can be rewritten as
the condition giving a critical temperature
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FIG. 1 (color online). Geometry of the model: We consider a
closed billiard composed by N symmetric unit cells, each of
which is made of a rectangular boundary of width 8y = 2//3
and length 6x = 4. Inside each cell, there are three circular hard
scatterers of radius R disposed in a triangular lattice (see the
text). Each cell is subjected to an external perpendicular uniform
magnetic field of strength B; € [0, B]. At the left and right
boundaries, the billiard is placed in contact with two stochastic
thermal baths at different temperatures 7; and Tg. The figure
corresponds to a channel of N = 2 cells in which B; = 0 and
B, = B. The dashed lines are drawn as a reference.

such that particles which are colder than 7, will be re-
flected in their majority.

However, for the particles that cross the interface from
right to left, there is no condition on their velocity, and they
always enter the left cell. The above qualitative argument
makes it clear that the transport of heat will be strongly
asymmetric with respect to exchange of effective tempera-
tures of particles on different sides of magnetic field
boundary, provided the temperatures are strongly different,
one being larger and the other smaller than 7. In the rest of
the Letter, we measure the temperature in units of 7. and
denote itas 7 = T/T, = ﬁ(v%.

We couple the left cell with a stochastic heat bath [3] of
dimensionless temperature 7;, and the right cell with a heat
bath of temperature 7, namely, if a particle reaches the
end boundary of the billiard that is in contact with a heat
bath, it is reflected with a velocity chosen from a distribu-
tion with probability densities
Mefvﬁ/%’ efv§/27" )

Pi(v,) = Py(vy) =

1
N2mT
where 7 is the temperature of the respective heat bath in
dimensionless units. If the left bath is cold, i.e., 7, < 1,
then the particles will most of the time remain in the left
cell, and there will be no heat current between the baths,
irrespective of the temperature of the right bath, which we
assume is larger than 1. If we exchange the temperatures of
the baths, then we will in general have some nonsmall heat
current flowing, since cold particles have no problem in
leaving the region with a magnetic field.

We measure the heat current per particle in the steady
state as the time average of the energy transported across
the junction per unit time

J(xg) = lim © ] ' B(t)sgnlv(18G() — xo)dr,
=t Jo

where E(t) = {m[v3(1) + v3(1)] is the instantaneous ki-
netic energy. Furthermore, we denote the heat current as
J*if 7, < 7 and as J if the temperatures are exchanged,
i.e., 7, > 7. Comparing magnitudes of these two currents,
we quantify the thermal rectification as

_max{lV7L 1}

= (L ©)

From our argument, it is clear that rectification will be
effective if one of the temperatures is very small, say 7;, <
1, and the other is simply above the critical, 7, > 1. It is
possible to make a quantitative prediction on the scaling of
rectification factor A with temperatures. When the energy
current through the magnetic field interface is very weak,
namely, if 7; < 7, the current is proportional to the trans-
mission coefficient at the interface, i.e., one minus the
probability of reflection. From our previous discussion, it
is clear that if 7, <1 < 7, the particle density will be
larger at the left cell (with zero magnetic field). This is
mainly because the cold particles in the left cell spend a

104302-2



PRL 98, 104302 (2007)

PHYSICAL REVIEW LETTERS

week ending
9 MARCH 2007

long time before being able to cross the interface. A
particle of velocity v is transmitted (not reflected) to the
right cell if it crosses the interface at a distance from the
upper boundary shorter than 2¢(v) [15]. Therefore, invok-
ing the ergodicity of the dynamics in the left cell, we can

simply estimate the transmission coefficient 7 as " ~

297(”), where o(v(1)) = 2mkgT,/eB and we denote by
Tmin = min{7;, 7z}. However, in the reverse situation (ex-
changing 7; and 7), we have t~ ~ 1, so we can estimate
the rectification

A=t /tT x 4

Tmin

In Fig. 2, we show the rectification index A as a function
of 7., for fixed value of the maximal temperature 7.
We clearly confirm the scaling (4), indicating also that the
rectification index is only very weakly depending on the
maximal temperature (as long as 7., > 1. This can be
seen in the inset of Fig. 2) where the rectification index A is
shown as a function of the two temperatures of the heat
baths 7; and 7. The correctness of the scaling (4) shows
that the magnetically induced rectification power is arbi-
trarily large for sufficiently small temperature 7;,. Even
though a noninteracting system cannot reach local thermal
equilibrium, and therefore the concept of (local) tempera-
ture is not well defined, it is instructive to compute tem-
perature and density profiles, as long-time averages of
kinetic energy density and particle density as a function
of the horizontal coordinate along the chain. In Fig. 3, we
plot the kinetic energy density and the particle density
measured in each cell of a channel of 10 cells, the right
half of 5 cells being in a uniform magnetic field. We plot
the profiles for the positive gradient, 7; < 73 (triangles),
and the inverted negative gradient (circles). The positive
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FIG. 2 (color online). Rectification index A as a function of the
minimal temperature 7, for a 2-cell channel in a step configu-
ration. The maximal temperature was set to 7,,,, = 33.4275. The
dashed line is for the no rectification value A = 1. The solid line
corresponds to Tr;iln/ ?. Inset: Color density plot for A as a
function of the temperatures of both baths.

gradient for which 7; is 7,;, corresponds to the insulating
case, i.e., to the situation in which the heat current is very
small. In Fig. 3, we see that the insulating case corresponds
to a large gap in the kinetic energy profile. In contrast, for
the negative gradient, the gap in the kinetic energy profile
is much smaller, and this coincides with the observation of
a larger heat current. However, note that the energy profile
for the negative gradient is not a monotonous function due
to the lack of local thermal equilibrium. Moreover, the
density profile confirms our prediction that the low current
situation is characterized by a very small density of parti-
cles on the side of the magnetic field.

We discuss now a slightly different situation in which
the magnetic field does not change abruptly from one half
of the system to the other, but instead changes gradually,
forming a uniform gradient of the magnetic field. We refer
to this situation as the gradient configuration for which the
magnetic field in each cell has an intensity given by B; =
Bi—1)/(N—-1)fori=12,...,N.

We have performed numerical simulations for the gra-
dient configuration, and we found no qualitative differ-
ences with respect to the step configuration. In Fig. 4, we
show the dependence of the rectification index on the
minimal temperature (panel a). As for the step configura-
tion, we have found that for sufficiently low temperature
Tmin» the rectification index again grows as A ~ 1/, /Tyiy.
In the panels (b) and (c), we show the profiles of the kinetic
energy and particle density, respectively. As expected, the
profiles for the gradient configuration are more smooth
than for the step configuration.

From our analysis, it follows that our rectification effect
is a phenomenon which exists only in far from equilibrium
situation. In the thermodynamic limit, a vanishingly small
temperature gradient is established across the system. In
Fig. 5, we show the results of numerical simulations which
indicate that, for fixed bath temperatures, the rectification
index scales as A ~ 1/L. In the inset of Fig. 5, the time
averaged heat currents for the positive and negative gra-
dients are also shown.
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FIG. 3 (color online). Energy density (a) and particle density
(b) profiles for a 10-cell channel in a step configuration. The bath
temperatures are 7, = 3.34277 X 1072, 7, = 33.4277. In
both panels, profiles are shown for the positive and negative
gradient for which 75 = 7, (triangles) and 7z = 7,;, (circles),
respectively.
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FIG. 4 (color online). 10-cell channel in a gradient configura-
tion: (a) Rectification index A as a function of the minimal
temperature 7.;,, with 7, = 33.4275. The temperatures are
given in units of T,.(B), where B = 100 is the strength of the
magnetic field at the rightmost cell. The dashed line is for the no
rectification value A = 1. The solid line corresponds to Tr;iln/ 2 In
the panels at the right, the profiles of kinetic energy (b) and
particle density (c) for the positive (triangles) and negative
(circles) gradient are shown.

Finally, it is interesting to give a quantitative estimate of
the critical temperature in Eq. (1) in physical units. Let us
suppose that the gas of particles inside the billiard of Fig. 1
consists of electrons. Assuming that the dimension of the
opening is A = 100 nm and a magnetic field of B =1 Tis
applied, then the critical temperature is 7. ~ 0.5 K. Thus,
a rectification power of A ~ 10 would be measurable for
thermal gradient given by T, ~ 1073 Kand T, ~ 10 K
that appears accessible to nowadays experiments.
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FIG. 5 (color online). Dependence of the thermal rectification
index A as a function of the size of the chain L for a chain in a
step-configuration with fixed T, = 3.34275 X 1073, Tpux =
3.34275 X 10? and fixed particle density, namely, one particle
per cell. The dashed line corresponds to L', Inset: heat current
J as a function of the size of the chain L for the positive
(triangles) and negative (circles) gradient.

In this Letter, we have presented a novel mechanism for
thermal rectification. This mechanism is fairly simple. It
results from the asymmetric behavior of the dynamics at
the magnetic interface that leads to a simple temperature
dependence of the transmission coefficient. Moreover, this
mechanism for thermal rectification is not based on the
macroscopically unaccessible microscopic particle inter-
action, but on the interaction with an external field, making
possible an easy control of the power of rectification. We
have shown that the thermal rectification power is arbi-
trarily large for sufficiently small temperature of one of the
heat baths.

Furthermore, the physical scales needed for optimal
implementation of our theoretical model are realizable in
present nanoscale experiments with mesoscopic devices.
We believe that it is precisely at these scales of mesoscopic
physics where such a thermal rectifier would find interest-
ing applications. This fact makes an experimental verifi-
cation of the mechanism presented here very desirable.
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