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ON THE ASYMPTOTIC SPECTRUM OF FINITE ELEMENT
MATRIX SEQUENCES∗

BERNHARD BECKERMANN† AND STEFANO SERRA-CAPIZZANO‡

Abstract. We derive a new formula for the asymptotic eigenvalue distribution of stiffness
matrices obtained by applying P1 finite elements with standard mesh refinement to the semielliptic
PDE of second order in divergence form −∇(K∇Tu) = f on Ω, u = g on ∂Ω. Here Ω ⊂ R2,
and K is supposed to be piecewise continuous and pointwise symmetric semipositive definite. The
symbol describing this asymptotic eigenvalue distribution depends on the PDE, but also both on the
numerical scheme for approaching the underlying bilinear form and on the geometry of triangulation
of the domain. Our work is motivated by recent results on the superlinear convergence behavior of the
conjugate gradient method, which requires the knowledge of such asymptotic eigenvalue distributions
for sequences of matrices depending on a discretization parameter h when h → 0. We compare our
findings with similar results for the finite difference method which were published in recent years. In
particular we observe that our sequence of stiffness matrices is part of the class of generalized locally
Toeplitz sequences for which many theoretical tools are available. This enables us to derive some
results on the conditioning and preconditioning of such stiffness matrices.
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1. Introduction and statement of the main results. Consider the semiel-
liptic PDE of second order in divergence form

−∇(K∇Tu) = f on Ω, u = g on ∂Ω,(1)

where Ω ⊂ R
2 is a bounded open “smooth” set (say, with piecewise C1 boundary),

and K : Ω �→ R
2×2 is piecewise continuous in Ω and symmetric semipositive definite

at each point of Ω. In this paper we are interested in describing the asymptotic
distribution of eigenvalues of the matrix of coefficients obtained by approximating the
above elliptic PDE by P1 finite elements in the case where the position of the vertices
can be described by some mapping.

The task of finding the asymptotic eigenvalue distribution is motivated by some
recent results on the (superlinear) convergence behavior for the method of conjugate
gradients (CG) [4, 5, 6]: a discretization of (1) for some sequence of stepsizes h tending
to zero leads to a sequence of systems of linear equations Anxn = bn with An some
symmetric positive definite matrix of order n, where of course n depends on h and
tends to ∞ for h → 0. The CG method is a popular method for solving such systems,
and its convergence properties have been analyzed by many authors (see, e.g., [3, 41]).
For instance, one has a simple upper bound for the CG error in the energy norm in
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terms of the spectral condition number of An, that is, the ratio of the largest divided
by the smallest eigenvalue of An; see, e.g., [24, (6.106)]. Both for finite difference and
finite element approximations, asymptotics for the smallest eigenvalue of An in terms
of h and the smallest eigenvalue of the differential operator of (1) are known; see, for
instance, [20]. By elementary means one also obtains upper bounds for the largest
eigenvalue, and hence upper bounds for the CG error.

However, the (linear) upper bound based on the condition number is usually quite
rough, especially in the range of superlinear convergence of CG. This superlinear con-
vergence behavior is observed numerically to be quite pronounced in the context of
discretized elliptic problems in ≥ 2 dimensions, in particular for small stepsizes h.
Here CG convergence is known to be governed by the distribution of the spectrum
Λ(An) of An, which at least for very simple model problems can be computed explic-
itly. Roughly speaking, superlinear CG convergence occurs if the eigenvalue distri-
bution of An is far from being a worst case eigenvalue distribution. This qualitative
rule of thumb has been known already for some time, but has been quantified only
recently in [4, 5, 6]: here the authors give asymptotic error estimates for CG in terms
of the asymptotic eigenvalue distribution of (An)n≥0, namely the so-called asymptotic
spectrum defined as follows.

A sequence of matrices (An)n≥0, An Hermitian of order n with spectrum Λ(An) ⊂
R, is said to have an asymptotic spectrum given by some measure σ if for all functions
f ∈ Cc(R) (i.e., continuous with compact support) there holds

lim
n→∞

1

n

∑
λ∈Λ(An)

f(λ) =

∫
f(λ) dσ(λ),(2)

where each eigenvalue is counted according to its multiplicity (and hence σ is a prob-
ability measure supported on the extended real line R = R ∪ {±∞}). In the case
where the limit (2) exists and takes the form

lim
n→∞

1

n

∑
λ∈Λ(An)

f(λ) =

∫
D

f(ω(t))
dt

m(D)
(3)

with a domain D ⊂ R
d having finite Lebesgue measure m(D) > 0, the function ω will

be referred to as the symbol of (An).
The probably most classical example of sequences of matrices having an asymp-

totic spectrum is given by Hermitian Toeplitz matrices An = (tj−k)j,k=1,...,n ob-
tained from the Fourier coefficients of the Lebesgue integrable generating function
ω(s) =

∑
j∈Z

tje
ijs, i2 = −1; see, for instance, [8] and references therein. Here the

symbol coincides with the generating function, and D = (−π, π).
In the present paper, the matrices An will result from the same approximation

process when using different (decreasing) stepsizes, and thus one might expect that
the sequence of matrices (An) has an asymptotic spectrum. Indeed, in case of finite
difference discretization for differential operators, explicit formulas for an asymp-
totic spectrum have been given in [23, 38, 33, 26] (one-dimensional setting) and
[31, 32, 30, 28, 35] (two-dimensional and multidimensional setting). Each time, the
underlying symbol includes information on the coefficients and the domain of the PDE
and information on the discretization schemes for the derivatives. To our knowledge,
results for finite element approximations are still lacking (except for some preliminary
results in [26, 31]).
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Before stating our results on stiffness matrices for finite elements in subsection 1.2,
we first recall in subsection 1.1 some known examples of asymptotic spectra in the
finite difference case.

1.1. The case of finite difference discretizations. Consider the discretiza-
tion of the one-dimensional boundary value problem⎧⎪⎨⎪⎩ − d

dx

(
k(x)

d

dx
u(x)

)
= f(x), x ∈ (0, 1),

u(0), u(1) given numbers,

on a uniformly spaced grid using centered finite differences of precision order 2 and
minimal bandwidth. The resulting linear systems are of tridiagonal type with coeffi-
cient matrices (An) having entries which are weighted samples of k:

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

k 1
2

+ k 3
2

−k 3
2

−k 3
2

k 3
2

+ k 5
2

−k 5
2

−k 5
2

. . .
. . .

. . .
. . . −k 2n−1

2

−k 2n−1
2

k 2n−1
2

+ k 2n+1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,(4)

with kt = k(t · h), h = (n + 1)−1. When k(x) ≡ 1, the matrix An reduces to the
Toeplitz matrix Tn(a) of size n,

Tn(a) =

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤⎥⎥⎥⎥⎥⎥⎦ ,(5)

generated by a(s) = 2 − 2 cos(s): note that the numbers −1, 2,−1 are the (nonzero)
Fourier coefficients c1, c0, c−1 of a and represent also the stencil of the finite difference
formula. This latter statement is not a coincidence: if we change the stencil (for
instance, in order to obtain more precise discretization schemes), then we obtain
Toeplitz matrices generated by a new function a having Fourier coefficients given by
the entries of this new stencil [33]. A well-known fact from the theory of Toeplitz
matrices is that (Tn(a))n has an asymptotic spectrum given by ω(s) = a(s) with
D = [−π, π]; see, for instance, the seminal work by Grenander and Szegö [17]. In the
more general case of variable coefficients, it follows from the locally Toeplitz analysis
of [38] that the matrices An of (4) have an asymptotic spectrum given by the symbol

ω(x, s) = k(x)a(s)

with D = (0, 1) × [−π, π] (see also [23]). We observe that the result is in some sense
natural since the samplings of k move along the diagonals of An smoothly (if k is
smooth), and therefore also the algebraic structure of An looks like a Toeplitz if we
restrict our attention to a local portion of the matrix: this nice algebraic behavior has
a natural counterpart in the global spectral behavior. As in the constant coefficient
case, the change of the discretization scheme, i.e., of the stencil, will change only
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the function a in the symbol (compare [33] and [38]). Finally, we observe that the
matrices (An) are essentially of the same type as those which one encounters when
dealing with sequences of orthogonal polynomials with varying coefficients. Here again
locally Toeplitz tools have been used for finding the distribution of the zeros of the
considered orthogonal polynomials under very weak assumptions (only measurability)
on the regularity of the coefficients [22] (see also [40]).

A further variation which could be considered in the discretization of the above
one-dimensional boundary value problem is the use of nonequispaced grids. Indeed,
if the new grid of size n is obtained as the image under a map φ : [0, 1] �→ [0, 1] of a
uniform grid of the same size n or if the new grid can be approximated in this way
(see, e.g., [35, Definition 4.6]), then the corresponding matrix sequence (An) has an
asymptotic spectrum described by the symbol

ω(x, s) =
k(φ(x))

[φ′(x)]2
a(s) with D = (0, 1) × [−π, π].(6)

For these results, motivated by the use of collocation techniques (see, e.g., [21]) for
approximating the solution of one-dimensional and multidimensional boundary value
problems, see [35].

In the case of a two-dimensional problem such as (1), the analysis is also quite
complete concerning finite difference approximations. For instance, when Ω = (0, 1)2

and K = I2, using the classical 5 point stencil or the 7 point stencil (in this case there
is no difference since K1,2 = K2,1 = 0), we obtain the two-level Toeplitz matrix

TN (b) = Tn1(a) ⊗ In2 + In1 ⊗ Tn2(a),(7)

where N = (n1, n2) (n1 is the number of internal points in the x1 direction and
n2 is the number of internal points in the x2 direction), n = n1n2 is the size, and
b(s1, s2) = a(s1)+a(s2) with a(s) = 2−2 cos(s). Also in this case the bivariate stencil
represents the nonzero Fourier coefficients of the bivariate generating function b, and
this property remains valid for other stencils. Moreover, according to relation (3), the
asymptotic spectrum of (TN (b))N is described by the symbol ω(s1, s2) = b(s1, s2) with
D = [−π, π]2 (see, e.g., [39]). We observe that the same matrix, with n1 = n2 = ν−1,
is obtained when employing the P1 finite element approximation with triangles having
the vertices (

(j, k)

ν
,
(j + ε, k)

ν
,
(j, k + ε)

ν

)
, ε = ±1.(8)

More generally, as a consequence of the theory of generalized locally Toeplitz se-
quences presented in [31, 32], asymptotic spectra can be given for finite difference
approximations of (1) for general functions K and a domain Ω, which guarantees the
symmetry of the resulting matrix (e.g., a pluri-rectangle that is a connected finite
union of rectangles with edges parallel to the main axes; see [36]). For instance, for
a 7 point stencil (see the proof of Corollary 1.2(b) below) we know that the resulting
matrix sequence has an asymptotic spectrum with symbol

ω(x, s) =

[
1 − eis1

1 − eis2

]∗
·K(x) ·

[
1 − eis1

1 − eis2

]
,(9)

with D = Ω × [−π, π]2. Notice that if Ω = (0, 1)2 and K(x) = I2, then the above
symbol reduces to that of (7) since[

1 − eis1

1 − eis2

]∗ [
1 − eis1

1 − eis2

]
= |1 − eis1 |2 + |1 − eis2 |2 = a(s1) + a(s2) = b(s).
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Furthermore, for nonequispaced tensor grids obtained as the image under a bijective
map φ(x) = (φ1(x1), φ2(x2))

T of an equispaced tensor grid, the general structure of
the symbol (see [35, 31]) is the natural generalization of (6): denoting by ∇φ the
(diagonal) Jacobian of φ(x) = (φ1(x1), φ2(x2))

T , we have

ω(x, s) =

[
1 − eis1

1 − eis2

]∗
· K̃(x) ·

[
1 − eis1

1 − eis2

]
,(10)

K̃(x) = ∇φ(x)−1K(φ(x))∇φ(x)−T

over D = Ω̃ × [−π, π]2, Ω̃ := φ−1(Ω). We notice that (10) is the natural two-
dimensional generalization of (6) and that the symbol in (10) reduces to that in
(9) if φ1(x1) = x1 and φ2(x2) = x2, i.e., in the case where the grids are uniform.

Finally, recently the above results have been extended to non-Hermitian matrices
An occurring, e.g., in the finite difference discretization of PDEs containing lower order
difference operators: it has been shown in [16, 18] that, provided that the spectral
norm of An is uniformly bounded in n and that the trace norm of Sn = (An−A∗

n)/(2i),
the skew-Hermitian part of An, grows at most as o(n), then the sequence (An) has
the same asymptotic spectrum as the sequence ((An + A∗

n)/2) obtained from the
Hermitian part of An. This result also implies [18, 19] that (9) remains true for more
general domains Ω, even if one uses different approximation schemes for the boundary
conditions.

1.2. The case of finite element approximations. Taking into account the
results of the previous subsection, the natural question arises of whether similar results
on the asymptotic spectrum hold for matrices obtained by applying finite elements
to (1). We mentioned already the well-known fact that for the special case K = I2,
Ω = (0, 1)2 and a uniform triangulation on the square such as (8), the stiffness matrix
for P1 elements is identical to that obtained by finite differences using a 5 point stencil.
However, this connection is no longer true in the general case and is not sufficient for
us to fully understand the asymptotic properties of stiffness matrices, since for finite
elements, for instance, a triangulation does not need to be of tensor form.

Rather than developing a general theory, we will discuss in this paper only the
example of an approximation of (1) using P1 finite elements, together with triangula-
tions Tν allowing for some a priori mesh refinement. More specifically, in the following
we suppose that we have some ν ≥ 1, some open bounded set Ω̃, and a triangulation
Tν of Clos(Ω) with vertices described by a bijective mapping φ : Clos(Ω̃) �→ Clos(Ω)
of the form

(j/ν, k/ν)T ∈ Clos(Ω̃) : Pj,k = φ((j/ν, k/ν))(11)

and triangles

(Pj,k, Pj+ε,k, Pj,k+ε), ε = ±1.(12)

Such a function φ allows us to include also graded triangulations which are suitable if
our domain Ω has nonconvex vertices (e.g., for L-shaped domains); see Examples 1.3
and 1.4 below. The usual procedure for solving (the variational form of) (1) via P1

finite elements (see, e.g., [10, 13]) is to consider for Pj,k ∈ Ω the hat function ψj,k

being linear on each of the triangles, taking the value 1 on the vertex Pj,k and 0 on
any other vertex (and thus having a support given by the set of the six triangles which
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(j, k) (j + 1, k)

(j + 1, k − 1)(j, k − 1)

(j, k + 1)(j − 1, k + 1)

(j − 1, k)

Fig. 1. The vertex (j, k) and its adjacent vertices for P1 finite elements.

share the vertex Pj,k; see Figure 1), and to solve the system of linear equations

Anxn = bn, An =

(∫
Ω

∇ψj,k(x)K(x)∇ψj′,k′(x)T dx

)
Pj,k,Pj′,k′∈Ω

(13)

with a suitable right-hand side bn depending on f and g. The matrix An is usually
referred to as the stiffness matrix. Notice that the same matrix of coefficients but a
different right-hand side is obtained if the Dirichlet boundary conditions are partly
replaced by Neumann boundary conditions. In what follows, the letter n will always
denote the size of the matrix An, i.e., the number of vertices in Ω (which is proportional
to ν2; compare with (18) below).

Theorem 1.1. Consider the above triangulation Tν of Clos(Ω) with vertices (11)

and triangles (12). We suppose that φ : Clos(Ω̃) �→ Clos(Ω) is bijective, m(Ω̃) > 0,

and that there exists an “exceptional” compact set Γ ⊂ Clos(Ω̃) with ∂Ω̃ ⊂ Γ and

with Lebesgue measure m(Γ) = 0 such that K ◦ φ is continuous in Ω̃ \ Γ, and φ is of

class C1 in Ω̃\Γ, with nonsingular Jacobian ∇φ. Then an asymptotic spectrum of the
stiffness matrices An of (13) for ν → ∞ exists and is given by the formula∫

f dσ =
1

(2π)2
1

m(Ω̃)

∫
[−π,π]2

ds

∫
Ω̃

dx f(ω(x, s)),

where

ω(x, s) =

[
1 − eis1

1 − eis2

]∗
· K̃(x) ·

[
1 − eis1

1 − eis2

]
,

K̃(x) = |det∇φ(x)|∇φ(x)−1K(φ(x))∇φ(x)−T .

Moreover, this formula for the asymptotic spectrum remains valid if one uses numeri-
cal integration for evaluating the entries of An, as long as the quadrature formula has
positive weights and integrates constants exactly.

Some consequences of Theorem 1.1 are summarized in the following result.
Corollary 1.2. With the notations and assumptions of Theorem 1.1, the fol-

lowing hold:
(a) The sequence of matrices of coefficients (An) has the same asymptotic spec-

trum as the one obtained by applying P1 elements on the uniform triangulation (8) to
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the PDE

−∇(K̃∇Tu) = f̃ on Ω̃, u = g̃ on ∂Ω̃.(14)

Moreover, the bilinear form in the weak formulation of problems (1) and (14) are
equivalent via variable transformation.

(b) One obtains for (An) the same asymptotic spectrum as that for matrices ob-
tained by applying finite differences based on a 7 point stencil (see Figure 1) to (14).
Moreover, (An) is a (reduced) generalized locally Toeplitz sequence in the sense of [32,
Definition 3.1], with the symbol ω(x, s) of Theorem 1.1.

It is quite instructive to compare the results of Theorem 1.1 and Corollary 1.2
with those of subsection 1.1 for finite difference discretizations. We observe that
the symbol in formula (10) and the expression of ω in Theorem 1.1 have a similar
structure; in particular, we have the same dependency on the domain Ω and on the
matrix-valued coefficient function K. Also, the trigonometric polynomials in s1, s2

occurring in Theorem 1.1 are the same as those in (10). These polynomials translate
the dependency of the asymptotic spectrum on the discretization scheme (5/7 point
stencil or P1 finite elements). The main difference between the two symbols is the
dependency on the triangulation described by our function φ: in case of finite elements
there is an additional factor |det∇φ|, leading to a smoother symbol in neighborhoods
of points x ∈ Γ with |det∇φ(x)| = 0 (corresponding, e.g., to nonconvex edges of Ω;
compare with Example 1.3 below), and implying that the finite element matrix of
coefficients has fewer eigenvalues of “large” magnitude than the corresponding finite
difference matrix of coefficients.

We conclude this section by considering two examples for triangulations Tν in-
duced by some mapping φ.

Example 1.3. Suppose that Ω is some nonconvex polygon Ω, with nonconvex
vertices given by aj , j = 1, . . . , p, and corresponding inner angles βjπ ∈ (π, 2π), and

let d > 0 be sufficiently small. Consider the choice Ω = Ω̃ and

φ(x) =

{
aj + (x− aj) ·

(
||x−aj ||

d

)βj−1

for ||x− aj || < d,

x else,

where || · || denotes the Euclidean norm. By construction, φ : Clos(Ω) �→ Clos(Ω) is

bijective and of class C1 in Ω̃ \ Γ = {z ∈ Ω : ||z − aj || = d for j = 1, 2, . . . , p}. Its
Jacobian for ||x− aj || < d is given by

∇φ(x) =
||x− aj ||βj−1

dβj−1

[
I2 + (βj − 1)

(x− aj)(x− aj)
T

||x− aj ||2

]
,

and |det∇φ(x)| = βj(||x− aj ||/d)2βj−2 tends to 0 for x → aj . For the inverse of the
normalized Jacobian occurring in the symbol of Theorem 1.1 we find

√
|det(∇φ(x))|∇φ(x)−1 =

√
βj

[
I2 −

(
1 − 1

βj

)
(x− aj)(x− aj)

T

||x− aj ||2

]
.

Notice also that ||∇φ(x)|| is bounded uniformly in Ω̃ \ Γ, implying that the finesse
parameter of the triangulation Tν , i.e., the largest of the diameters of the triangles of
this triangulation, is of order O(1/ν). We finally observe that for triangles where the
largest of the distances of the three vertices to aj is given by tβj ≤ d have edges with
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Fig. 2. Triangulation of an L-shape for ν = 12. On the top we find the uniform triangulation,
and on the bottom its image under the map φ(x) = x ·min{1,

√
||x||} leading to some grid refinement

around the origin.

size of order tβj−1/ν: such a mesh refinement based on the grading function t �→ tβj is
often used in order to keep the classical finite element error estimate also for singular
solutions induced by nonconvex vertices.

Example 1.4. A typical example covered by Example 1.3 is a triangulation of an
L-shape with vertices (0, 0), (−1, 0), (−1, 1), (1, 1), (1,−1), (0,−1), the only nonconvex
edge being at the origin a1 = 0, with β1 := β = 3/2. Here we can choose d = 1 in
Example 1.3, leading to the function φ(x) = x · min{1, ||x||β−1}, with the inverse of
the normalized Jacobian given by√

|det(∇φ(x))|∇φ(x)−1 =
√
βI2 −

(√
β − 1√

β

)
xxT

||x||2 , ||x|| < 1.

In Figure 2 we have drawn both the uniform triangulation and its image under φ,
leading to some graduation around the origin.
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We should notice that in the proof of Theorem 1.1 we do not need any properties
of the triangles of Tν having a nonempty intersection with Γ. Thus Theorem 1.1
remains valid if one uses, for instance, curved elements in order to fit more complicated
boundaries.

The remainder of the paper is organized as follows: in section 2 we give the proof
of Theorem 1.1 and Corollary 1.2. In section 3 we discuss relations between stiff-
ness matrices for different triangulations, in order to design efficient preconditioning
strategies. Finally, in section 4 we draw some conclusions.

2. Proof. In what follows we write λ1(An) ≤ λ2(An) ≤ · · · ≤ λn(An) for the
eigenvalues of some symmetric matrix An of order n, and μ(An) = 1

n

∑n
j=1 δλj(An) for

the corresponding counting measure. Moreover, we will write μ(An) → σ for n → ∞
if there is weak-star convergence in the sense of (2), i.e., the matrix sequence (An)
has an asymptotic spectrum described by the measure σ.

For proving the above result we make use of the following result on (reduced)
generalized locally Toeplitz matrix sequences (see [31, 32]), which we will not cite
in its greatest generality: we will focus instead on a subclass of matrix sequences
that are (reduced) generalized locally Toeplitz (see [32, Definition 3.1] for the precise
definitions in full generality) and also banded and symmetric. Let (Mn) be a sequence
of matrices of size n and of level γ ∈ N defined according to the multi-index rule

Mn = (Ma,a′)a,a′∈νD∩Zγ ,(15)

Ma,a′ =
1

(2π)γ

∫
[−π,π]γ

dse−sT (a′−a)ω

(
a + a′

2ν
, s

)
,

and corresponding to some open D ⊂ R
γ , some integer ν ≥ 1, and some symbol

ω : D × [−π, π]γ → R with ω(x, s) = ω(x,−s) being a polynomial in eis, e−is with
coefficients continuous in x. We observe that a matrix Mn of such a type and level 1
is just an ordinary banded matrix, where succeeding elements on any diagonal vary
only slightly (for large ν and therefore a fortiori for large n) since they are values of
some continuous function at arguments differing only by 1/ν (which tends to zero as
n = n(ν) tends to infinity). Also, a matrix Mn of level γ is block banded with blocks
being themselves of the same structure as in (15) of level γ− 1. Finally, if the symbol
ω(x, s) does not depend on x and D =

⊗γ
j=1(0, αj), we obtain the classical Toeplitz

matrices of level γ and order
∏γ

j=1[ν · αj − 1]. A basic result on such symmetric
banded (reduced) generalized locally Toeplitz matrix sequences is that they have an
asymptotic spectrum given by the following formula [31, 32]:

lim
n→∞

μ(Mn) = σ,

∫
f dσ =

1

(2π)γ
1

m(D)

∫
[−π,π]γ

ds

∫
D

dx f(ω(x, s)).(16)

We will also apply the following statement on the behavior of an asymptotic
spectrum under perturbations: the idea relies upon the use of some kind of (matrix)
approximation theory for reducing the computation of the symbol of a complicated
matrix sequence to the computation of the symbol of simpler matrix sequences (see
[29, 31, 32]).

Lemma 2.1. Let An ∈ C
n×n be symmetric, and suppose that there exist probability

measures σ, σ′ such that, for each ε > 0, we may write An = A′
n + A′′

n + A′′′
n with

symmetric matrix sequences A′
n := A′

n(ε), A′′
n := A′′

n(ε), A′′′
n := A′′′

n (ε), where

lim sup
n→∞

||A′′
n|| ≤ ε, lim sup

n→∞

rank (A′′′
n )

n
< ε,
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and (A′
n)n having an asymptotic spectrum μ ≤ εσ′+σ. Then (An) has the asymptotic

spectrum σ.
Proof. Suppose that the assertion of the lemma is not true. Then by Helley’s

theorem [25, Theorem 0.1.3] there exists an infinite set of natural numbers N such
that (μ(An))n∈N tends to some probability measure ν different from the probability
measure σ. By possibly replacing An by −An we may conclude that there exists a
b ∈ R with

ν([−∞, b)) > σ([−∞, b)) = σ([−∞, b]).(17)

Write rn = rank (A′′′
n ). Any V ⊂ C

n can be written as direct sum V ′⊕V ′′, V ′ being a
subset of the kernel of A′′′

n , V ′′ being therefore a subset of the image of (A′′′
n )∗ = A′′′

n ,
implying that dim(V ′) ≥ dim(V ) − rn. Consequently, using the Courant min-max
principle, we obtain for any 1 ≤ j ≤ n− rn

λj(A
′
n) = max

V⊂Cn,dim(V )=n+1−j
min
y∈V

y∗A′
ny

y∗y

≤ max
V⊂Cn,dim(V )=n+1−j

min
y∈V

y∗(A′
n + A′′

n)y

y∗y
+ ||A′′

n||

≤ max
V ′⊂Ker(A′′′

n ),dim(V ′)≥n+1−j−rn
min
y∈V ′

y∗(A′
n + A′′

n)y

y∗y
+ ||A′′

n||

≤ max
V ′⊂Cn,dim(V ′)≥n+1−j−rn

min
y∈V ′

y∗Any

y∗y
+ ||A′′

n|| = λj+rn(An) + ||A′′
n||.

Taking into account [25, Theorem 0.1.4], we conclude that

ν([−∞, b)) ≤ lim sup
n→∞

μ(An)([−∞, b]) = lim sup
n→∞

#{j : λj(An) ≤ b}
n

≤ lim sup
n→∞

rn + #{j > rn : λj−rn(A′
n) ≤ b + ||A′′

n||}
n

≤ ε + lim sup
n→∞

μ(A′
n)([−∞, b + 2ε]) ≤ ε + σ([−∞, b + 2ε]).

For ε → 0, we are left with ν([−∞, b)) ≤ σ([−∞, b]), in contradiction with (17). Hence
the lemma is shown.

The above lemma is essentially contained in original work by Tilli on (one-level)
locally Toeplitz sequences [38] and can be considered an evolution of the low-rank,
low-norm splittings used by Tyrtyshnikov [39]. A form which is closer to the present
approach can be found in [31], where the main role is played by the symbols of the
involved matrix sequences. However, in the present version the language and the tools
of Lemma 2.1 are a bit different since the results are expressed in terms of measures
(recall formulation (2)) rather than symbols (recall formulation (3)).

Proof of Theorem 1.1. We start by establishing the formula

lim
ν→∞

n(ν)

ν2
= m(Ω̃), where n = n(ν) = #

{
(j, k)

ν
∈ Ω̃

}
(18)

is the size of the stiffness matrix (13) for the triangulation with parameter ν. For
d > 0, denote by Γd := {y ∈ R

2 : dist(y,Γ) ≤ d} the closed d-neighborhood of Γ,
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where we recall that ∂Ω̃ ⊂ Γ by assumption on Γ. For any (j,k)
ν ∈ Ω̃ we find an open

square of Lebesgue measure 1/ν2 being a subset of the (2/ν)-neighborhood of Ω̃, any

two of such squares having an empty intersection, and thus n(ν)/ν2 ≤ m(Ω̃ ∪ Γ2/ν).

On the other hand, the set Ω̃ \ Γ2/ν is a subset of the union of closed squares of

Lebesgue measure 1/ν2 centered at (j,k)
ν ∈ Ω̃, implying that n(ν)/ν2 ≥ m(Ω̃ \ Γ2/ν).

Taking into account that m(Γd) → m(Γ) = 0 for d → 0 by assumption of Theorem 1.1,
we arrive at relation (18).

Let ε > 0. We now choose suitable subsets of Ω̃. Let d > 0 with m(Ω̃ \ Γ3d) >(
1 − ε

3

)
m(Ω̃). By compactness of Γ, we may cover Γ with a finite number of open

∞-neighborhoods Ud(xj) = {y ∈ R
2 : ||y − xj ||∞ < d}, j = 1, . . . , p, with xj ∈ Γ.

Defining the pluri-rectangles

Ω̃′ := Ω̃ \
p⋃

j=1

Clos(U2d(xj)), Ω̃′′ := Ω̃ \
p⋃

j=1

Ud(xj),

we find that Ω̃ \ Γ3d ⊂ Ω̃′ ⊂ Ω̃′′ ⊂ Ω̃ \ Γ, with Ω̃′′ being compact, Ω̃′ being open, and

lim
ν→∞

n′(ν)

ν2
= m(Ω̃′) ≥

(
1 − ε

3

)
m(Ω̃), where n′ = n′(ν) = #

{
(j, k)

ν
∈ Ω̃′

}
.

(19)

Thus, for sufficiently large ν,

n′(ν)

n(ν)
> 1 − ε

2
.(20)

We are now prepared to introduce a suitable splitting of the stiffness matrix An

of (13): we first apply a suitable simultaneous permutation of row and columns such

that the first n′(ν) rows and columns of An correspond to indices with (j, k)/ν ∈ Ω̃′.
Then the matrix A′′′

n defined by

An −A′′′
n =

[
Ãn 0
0 0

]
, Ãn =

(∫
Ω

∇ψj,k(x)K(x)∇ψj′,k′(x)T dx

)
(j,k)/ν,(j′,k′)/ν∈Ω̃′

is symmetric and has a rank bounded above by twice the difference of the order
n = n(ν) of An minus the order n′ = n′(ν) of Ãn. A combination with (20) leads to
the relations

(A′′′
n )∗ = A′′′

n , rank (A′′′
n ) ≤ εn.(21)

We want to apply Lemma 2.1 via a splitting Ãn = Ã′
n + Ã′′

n, and

An = A′
n + A′′

n + A′′′
n , A′

n =

[
Ã′

n 0
0 0

]
, A′′

n =

[
Ã′′

n 0
0 0

]
,(22)

where Ã′′
n will be a symmetric matrix of small norm, and Ã′

n symmetric and banded.

Moreover, (Ã′
n) will be (reduced) generalized locally Toeplitz of level 2 in the sense of

(15), and thus we know the existence and the explicit form of the asymptotic spectrum

of (Ã′
n) for ν → ∞.
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We make use of the classical assembling procedure of a P1 finite element matrix
An: starting from the zero matrix, the stiffness matrix An is obtained after applying
for all triangles T of the form (Pj,k, Pj+η,k, Pj,k+η), η = ±1, the updating formula

(23)

An

(
(j, k), (j + η, k), (j, k + η)

(j, k), (j + η, k), (j, k + η)

)

← An

(
(j, k), (j + η, k), (j, k + η)

(j, k), (j + η, k), (j, k + η)

)
+

1

2|det(C−1)|B
TC−1

∫
T
K(x) dx∫
T
dx

C−TB,

where the affine mapping x �→ Pj,k + Cx brings the points (0, 0), (1, 0), (0, 1) to
Pj,k, Pj+η,k, Pj,k+η, respectively, and

B =

[
−1 1 0
−1 0 1

]
.

An important observation in our proof is that the updating term in (23) behaves like
1
2B

T K̃(ζ)B for some ζ ∈ φ−1(T ) for “most” triangles T . In order to make this claim

more precise in (24) below, we notice that, by construction, Ω̃′′ is a compact subset

of Ω̃\Γ, and hence the Jacobian ∇φ of φ, its inverse ∇φ(x)−1, and the function K ◦φ
are uniformly continuous in Ω̃′′. Let

M := sup
x∈Ω̃′′

max
{
||∇φ(x)||, ||∇φ(x)−1||, ||K(φ(x))||,

√
2ε
}
≥ 1,

and choose ν sufficiently large such that a triangle having at least one vertex in Ω̃′

is a subset of Ω̃′′, and that any of the above functions varies at most by ε/(4M5) by

choosing two arguments in any triangle that is a subset of Ω̃′′. For the matrix Ãn

we need to consider only triangles T having at least one vertex with preimage in Ω̃′.

Denoting by T̃ ⊂ Ω̃′′ the corresponding triangle with vertices (j,k)
ν , (j+η,k)

ν , (j,k+η)
ν , we

may conclude with help of the mean value theorem that, for any ζ ∈ T̃ ,∥∥∥∥
∫
T
K(x) dx∫
T
dx

−K(φ(ζ))

∥∥∥∥ ≤ ε

4M5
≤ M,

∥∥∥∥ ν

η
C −∇φ(ζ)

∥∥∥∥ ≤ ε

M5
≤ 1

2||∇φ(ζ)−1|| ,

and hence∥∥∥∥∥
(
ν

η
C

)−1

−∇φ(ζ)−1

∥∥∥∥∥ ≤ 2ε

M3
≤ M,

∥∥∥∥det

(
ν

η
C

)
− det(∇φ(ζ))

∥∥∥∥ ≤ 4ε

M4
≤ M.

Applying the triangular inequality several times, we obtain after some elementary
computations the (quite rough) estimate

max
ζ∈T̃

∥∥∥∥ 1

|det(C−1)|C
−1

∫
T
K(x) dx∫
T
dx

C−T − K̃(ζ)

∥∥∥∥ ≤ 80ε,(24)

with K̃ as in the statement of Theorem 1.1. We remark that the same conclusion holds
if instead of exact integration one uses a quadrature formula with positive weights for
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Table 1

The six adjacent vertices of (j,k)
ν

∈ Ω̃′ and the corresponding off-diagonal entries of Ã′
n: in

the first column we find the index (j′, k′) of an adjacent vertex, in the second and third column the
index of the third vertex of the two triangles giving a nontrivial contribution to the entry in row
(j, k) and column (j′, k′) of An, and in the last column the entry of Ã′

n at the same position.

(j′, k′) (j′′, k′′) (j′′′, k′′′) Corresponding entry of Ã′
n

(j − 1, k) (j, k − 1) (j − 1, k + 1) BT
1 K̃( (j+j′,k+k′)

2ν
)B2

(j, k − 1) (j + 1, k − 1) (j − 1, k) BT
1 K̃( (j+j′,k+k′)

2ν
)B3

(j + 1, k − 1) (j + 1, k) (j, k − 1) BT
2 K̃( (j+j′,k+k′)

2ν
)B3

(j + 1, k) (j, k + 1) (j + 1, k − 1) BT
1 K̃( (j+j′,k+k′)

2ν
)B2

(j, k + 1) (j − 1, k + 1) (j + 1, k) BT
1 K̃( (j+j′,k+k′)

2ν
)B3

(j − 1, k + 1) (j − 1, k) (j, k + 1) BT
2 K̃( (j+j′,k+k′)

2ν
)B3

the entries of the stiffness matrix, provided that this quadrature formula integrates
constants exactly.

Notice that, in the updating procedure (23), an off-diagonal entry of An is updated
twice since a fixed edge of the triangulation is adjacent to two triangles, and a diagonal
entry is updated six times since there are six triangles adjacent to a vertex; compare
with Figure 1. More precisely, in row labeled (j, k), the matrix Ãn has nonzero off-
diagonal entries in columns labeled

(j′, k′) ∈ {(j − 1, k + 1), (j, k + 1), (j − 1, k), (j + 1, k), (j, k − 1), (j + 1, k − 1)},

i.e., the indices of adjacent vertices. For instance, for the entry in column (j′, k′) =
(j− 1, k) we have to consider the two triangles T with third vertex labeled (j′′, k′′) =
(j, k− 1), and (j′′′, k′′′) = (j− 1, k+ 1), respectively, and the corresponding updating
quantities can be found at position (1, 2) and (2, 1), respectively, of the symmetric
3×3 updating matrix on the right-hand side of (23). Thus, defining the corresponding

off-diagonal entry of Ã′
n by

Ã′
n

(
(j′, k′)

(j, k)

)
= BT

1 K̃

(
1

2

(
(j, k)

ν
+

(j′, k′)

ν

))
B2

= (−1,−1)K̃

(
(j + j′, k + k′)

2ν

)
(1, 0)T ,

B
 denoting the �th column of B, we find according to (24) that∣∣∣∣Ã′
n

(
(j′, k′)

(j, k)

)
− Ãn

(
(j′, k′)

(j, k)

)∣∣∣∣ ≤ 80ε ||B||2 = 240ε.

The off-diagonal entries of Ã′
n for the other five adjacent vertices (j′, k′) of (j, k) are

given in Table 1, and each time we obtain the same estimate for the off-diagonal
entries of Ã′

n − Ãn. We define the diagonal entries of Ã′
n by

Ã′
n

(
(j, k)

(j, k)

)
= trace

(
BT K̃

(
(j, k)

ν

)
B
)

= −2

(
BT

1 K̃

(
(j, k)

ν

)
B2 + BT

1 K̃

(
(j, k)

ν

)
B3 + BT

2 K̃

(
(j, k)

ν

)
B3

)
(25)
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and find according to (24) that∣∣∣∣Ã′
n

(
(j, k)

(j, k)

)
− Ãn

(
(j, k)

(j, k)

)∣∣∣∣ ≤ 240ε ||B||2 = 720ε,

and thus, by (22),

||A′′
n|| = ||Ãn − Ã′

n|| ≤
√
||Ãn − Ã′

n||1||Ãn − Ã′
n||∞ ≤ (6 · 240 + 720)ε = 2160 ε.

It remains to analyze Ã′
n. Comparing the definition (15) with the last column of

Table 1 and with (25), we see that (Ã′
n) is a banded and symmetric generalized

locally Toeplitz matrix sequence of level 2 corresponding to the domain Ω̃′ and the
symbol

ω(x, s) = (2 cos(s1) − 2)BT
1 K̃(x)B2 + (2 cos(s2) − 2)BT

1 K̃(x)B3

+ (2 cos(s2 − s1) − 2)BT
2 K̃(x)B3

= 4 sin2
(s1

2

)
K̃1,1(x) + 4 sin2

(s2

2

)
K̃2,2(x)

+ 4

[
sin2

(s1

2

)
+ sin2

(s2

2

)
− sin2

(
s2 − s1

2

)]
K̃1,2(x),

that is, the same symbol (but a different domain) as in the statement of Theorem 1.1.

Using (16), we may conclude that (μ(Ã′
n)) has the limit σ̃, with∫

f dσ̃ =
1

(2π)2
1

m(Ω̃′)

∫
[−π,π]2

ds

∫
Ω̃′

dx f(ω(x, s)).

According to (22), for the corresponding counting measures for ν → ∞, we get using
(18), (19),

μ(A′
n) =

n(ν) − n′(ν)

n(ν)
· δ0 +

n′(ν)

n(ν)
μ(Ã′

n) → m(Ω̃) −m(Ω̃′)

m(Ω̃)
· δ0 +

m(Ω̃′)

m(Ω̃)
σ̃

and

m(Ω̃) −m(Ω̃′)

m(Ω̃)
· δ0 +

m(Ω̃′)

m(Ω̃)
σ̃ ≤ ε · δ0 +

m(Ω̃′)

m(Ω̃)
σ̃ ≤ ε · δ0 + σ,

since σ̃ differs from σ by using a different normalization and a smaller set of integration
Ω̃′ ⊂ Ω̃. Thus we may apply Lemma 2.1, giving the asymptotic spectrum for (An) as
claimed in Theorem 1.1.

Proof of Corollary 1.2. The first sentence of part (a) follows immediately by
applying the formulas of Theorem 1.1 twice. With respect to the second one, consider
the variable transformation x = φ(x̃) in (1): with f̃(x̃) = f(φ(x̃)), we have ∇̃f̃(x̃) =
(∇f)(φ(x̃))∇φ(x̃), and hence∫

Ω

(∇u)(x)K(x)(∇v)(x)T dx

=

∫
Ω

(∇̃ũ)(x̃)∇φ(x̃)−1K(φ(x))∇φ(x̃)−T (∇̃ṽ)(x̃)T |det∇φ(x̃)|dx̃

=

∫
Ω̃

(∇̃ũ)(x̃)K̃(x̃)(∇̃ṽ)(x̃)T dx̃.
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For a proof of part (b), we consider

yν = (uj,k)(j,k)/ν∈Ω̃′ , ũj,k ≈ u

(
(j, k)

ν

)
and the second order central difference operators using the 7 point stencil of Figure 1,

Δ1uj,k = uj+1/2,k − uj−1/2,k ≈ 1

ν

∂

∂x̃1
u

(
(j, k)

ν

)
,

Δ2uj,k = uj,k+1/2 − uj,k−1/2 ≈ 1

ν

∂

∂x̃2
u

(
(j, k)

ν

)
,

Δ3uj,k = uj+1/2,k−1/2 − uj−1/2,k+1/2 ≈ 1

ν

(
∂

∂x̃1
− ∂

∂x̃2

)
u

(
(j, k)

ν

)
.

Let Ω̃′ and Ã′
n be as in the preceding proof, and let Cn be obtained from the matrix

Ã′
n by replacing the diagonal entries (25) by

Cn

(
(j, k)

(j, k)

)
= −BT

1

(
K̃

(
(2j − 1, 2k)

2ν

)
+ K̃

(
(2j + 1, 2k)

2ν

))
B2

−BT
1

(
K̃

(
(2j, 2k − 1)

2ν

)
+ K̃

(
(2j, 2k + 1)

2ν

))
B3

−BT
2

(
K̃

(
(2j + 1, 2k − 1)

2ν

)
+ K̃

(
(2j − 1, 2k + 1)

2ν

))
B3,

and hence ||Ã′
n − Cn|| is of order ε; compare with (24). For a grid point (j,k)

ν ∈ Ω̃′

having all its adjacent vertices in Ω̃′, the component of Cnyν with index (j, k) can be
written as

[K̃1,1 + K̃1,2]

(
(2j − 1, 2k)

2ν

)
(uj,k − uj−1,k)

+ [K̃1,1 + K̃1,2]

(
(2j + 1, 2k)

2ν

)
(uj,k − uj+1,k)

+ [K̃2,2 + K̃1,2]

(
(2j, 2k − 1)

2ν

)
(uj,k − uj,k−1)

+ [K̃2,2 + K̃2,1]

(
(2j, 2k + 1)

2ν

)
(uj,k − uj,k+1)

+ K̃1,2

(
(2j + 1, 2k − 1)

2ν

)
(uj+1,k−1 − uj,k)

+ K̃1,2

(
(2j − 1, 2k + 1)

2ν

)
(uj−1,k+1 − uj,k)

= −Δ1[K̃1,1 + K̃1,2]Δ1uj,k − Δ2[K̃2,2 + K̃1,2]Δ2uj,k + Δ3K̃1,2Δ3uj,k.
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If some of the vertices (j′,k′)
ν adjacent to (j,k)

ν lie outside of Ω̃′, we get a similar
expression, where the corresponding values uj′,k′ have to be dropped. Therefore the

matrix Cn describes a finite difference discretization in Ω̃′ based on the 7 point stencil
of Figure 1 for the differential expression

− ∂

∂x̃1

(
[K̃1,1 + K̃1,2]

∂u

∂x̃1

)
− ∂

∂x̃2

(
[K̃2,2 + K̃1,2]

∂u

∂x̃2

)

+

(
∂

∂x̃1
− ∂

∂x̃2

)(
K̃1,2

(
∂u

∂x̃1
− ∂u

∂x̃2

))
,

coinciding with −∇(K̃∇u), the differential expression of the PDE of Corollary 1.2(a).
Using the same limit considerations as in the proof of Theorem 1.1, the first assertion
of Corollary 1.2(b) follows. The second assertion now is a simple consequence of the
above relationship between An and the 7 point stencil finite difference matrix and
of the fact that every finite difference discretization of second order PDEs leads to
(reduced) generalized locally Toeplitz sequences (see [31, 32]).

3. Uniform versus nonuniform triangulations and preconditioning. Let
us briefly recall some classical terminology concerning finite element triangulations.
The finesse parameter of a triangulation Tν is the largest among the diameters of the
triangles of this triangulation. A family of triangulations Tν for varying ν is called
quasi-uniform [2, 20] if the length of the shortest edge in Tν divided by the finesse
parameter of Tν is bounded below by some constant uniformly in ν. The family
of triangulations Tν is called shape-regular [9, Definition II.5.1] if the ratio of the
diameter divided by the radius of the largest inscribed disk is bounded uniformly for
each triangle T ∈ Tν and all ν (or, equivalently, if all angles are bounded away from
zero uniformly in ν).

In the previous sections we have considered a triangulation Tν of Ω being the
image under a bijective map φ of a uniform triangulation T̃ν of Ω̃ with stepsize
1/ν. Denote by An(K, Tν) the corresponding stiffness matrix (13). Since in gen-

eral the two triangulations Tν and T̃ν lead to stiffness matrices of the same size, we
want to discuss in this section in more detail some spectral properties of the matrix
An(I2, T̃ν)−1An(K, Tν) and other related matrices. This analysis is motivated by the
task of finding efficient preconditioning strategies for the method of conjugate gra-
dients applied to the stiffness matrix An(K, Tν). Our uniform triangulation (T̃ν)ν is
trivially both quasi-uniform and shape-regular, while (Tν)ν is not necessarily so. For
instance, for the graduated mesh of Example 1.3 we find a finesse parameter ≥ 1/ν,
but the triangle with vertex aj has edges of size d(1/(dν))βj , and hence (Tν)ν is not
quasi-uniform. In this section we will be particularly interested in the case where
(Tν)ν is only shape-regular.

The main results of this section are given in subsection 3.2: in Theorem 3.2 we
first relate two stiffness matrices with respect to the partial ordering of Hermitian
matrices (M1 ≤ M2 if M1,M2 are Hermitian and M2 −M1 is semipositive definite).
Subsequently, in Corollary 3.4 we deduce bounds for the smallest and the largest
eigenvalue of such preconditioned stiffness matrices, and in Theorem 3.5 we give results
on the asymptotic spectrum for such matrices. But first we provide in subsection 3.1
a basic proposition (based on the local analysis of finite element matrices), which is
the keystone for proving the results of subsection 3.2.
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3.1. Local domain analysis of the finite element matrices. In order to
better understand the local properties of a stiffness matrix, let us go back to the
classical assembling procedure of a P1 finite element matrix An mentioned already
in the proof of Theorem 1.1. Starting from the zero matrix, we have the following
updating formulas: any triangle T of the form (Pj,k, Pj+η,k, Pj,k+η), η ∈ {±1}, gives
the contribution

(26)

An

(
(j, k), (j + η, k), (j, k + η)

(j, k), (j + η, k), (j, k + η)

)

← An

(
(j, k), (j + η, k), (j, k + η)

(j, k), (j + η, k), (j, k + η)

)
+

1

2|det(C−1)|B
TC−1

∫
T
K(x) dx∫
T
dx

C−TB,

where the affine mapping x �→ Pj,k + Cx maps the points (0, 0), (1, 0), (0, 1) to
Pj,k, Pj+η,k, Pj,k+η, respectively, and

B =

[
−1 1 0
−1 0 1

]
.

Suppose that the three points (Pj,k, Pj+η,k, Pj,k+η) have positive orientation, and de-
fine by α, β, γ, respectively, the angles of the triangle T at these vertices. In addition,
define Π to be a rotation matrix mapping the half line (0, Pj+η,k − Pj,k) to the half
line ((0, 0), (1, 0)); then

ΠC =
||Pj+η,k − Pj,k+η||

sin(α)

[
sin(γ) sin(β) cos(α)

0 sin(β) sin(α)

]
,

and, in addition,

C−1√
|det(C−1)|

=
1√

sin(α) sin(β) sin(γ)

[
sin(α) sin(β) − cos(α) sin(β)

0 sin(γ)

]
· Π.

Observe also that C−1/
√
|det(C−1)| has the singular values

√
δT and 1/

√
δT and

thus a spectral condition number δT , which can be computed explicitly in terms of
the angles of T :

δT := cond

(
C−1√

|det(C−1)|

)
= yT +

√
y2
T − 1, yT =

sin2(β) + sin2(γ)

2 sin(α) sin(β) sin(γ)
.

(27)

Therefore

1

δT
I2 ≤ 1

|det(C−1)|C
−1C−T ≤ δT I2.(28)

If the three points (Pj,k, Pj+η,k, Pj,k+η) have negative orientation, then we switch
axes; that is, we exchange the role of β and γ, but the conclusions in (27) and (28)

are the same. For instance, for a triangle T ∈ T̃ν of a uniform triangulation we get
α = π/2 and β = γ = π/4, leading to δT = 1, but in general δT ≥ 1.
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The relation (28) enables us to compare the updating matrices in (26) for different
meshes and K = I2, and, by a similar argument, for different (pointwise symmetric
positive definite) coefficient functions K.

Proposition 3.1. With

κmin = essinfx∈Tλmin(K(x)) ≥ 0, κmax = esssupx∈Tλmax(K(x)),

and B, C as in (26) we have that

κmin
BTC−1 C−TB

2|det(C−1)| ≤ 1

2|det(C−1)|B
TC−1

∫
T
K(x) dx∫
T
dx

C−TB ≤ κmax
BTC−1 C−TB

2|det(C−1)| ,

and, with δT ≥ 1 as in (27),

1

δT

BTB

2
≤ BTC−1C−TB

2|det(C−1)| ≤ δT
BTB

2
.

There are many ways of writing the constant δT of (27). For instance, if β, γ ∈
(0, π/2), we find using the relation α + β + γ = π that

yT =
sin2(β) + sin2(γ)

sin2(β) sin(2γ) + sin2(γ) sin(2β)
≤ 1

min(sin(2β), sin(2γ))
,

which is quite precise if β or γ is small compared to the other two angles. We also have
that δT is uniformly bounded for T ∈ Tν for all ν if and only if all angles occurring in
Tν are bounded away from zero uniformly in ν, i.e., (Tν)ν is shape-regular. Moreover,
there holds

δT ≤ 2yT =
b2 + c2

2m(T )
≤ a + b + c

2m(T )
max{a, b, c},

the expression on the right-hand side being bounded above by the ratio of the diameter
of the triangle T to the radius of the largest disk contained in T .

For our triangulation Tν obtained as the image of the uniform triangulation, we
also know from the proof of Theorem 1.1 that

C√
|det(C)|

≈ η
∇φ(ζ)√

|det(∇φ(ζ))|
, ζ ∈ φ−1(T ),(29)

and hence

δ := sup
ν

max
T∈Tν

δT = sup
ν

max
T∈Tν

cond

(
C√

|det(C)|

)
≈ sup

ζ∈Ω̃\Γ
cond

(
∇φ(ζ)√

|det(∇φ(ζ))|

)
.

This latter quantity turns out to be very simple for the refined triangulations discussed
in Examples 1.3 and 1.4, namely δ ≈ β, with βπ ∈ (π, 2π) being the largest inner
angle of Ω. We should notice that these last arguments are not completely rigorous,
since in general relation (29) can be shown to be true only for triangles T with φ−1(T )
having a certain distance to Γ. However, there exist similar mesh refinements where
the resulting family (Tν)ν is shape-regular and where explicit lower bounds for the
angles are known.



764 BERNHARD BECKERMANN AND STEFANO SERRA-CAPIZZANO

3.2. Extremal eigenvalues, condition numbers, and preconditioning.
The four statements in this section will have a short proof since they are related
to previously known results. For our first statement we have been strongly inspired
by similar results for so-called matrix-valued linear and positive operators (LPOs)
(see [27, 34]). Here we give a short direct proof.

Theorem 3.2. Assume that the matrix K is uniformly elliptic and bounded;
i.e., there exist positive constant κmin and κmax such that κminI2 ≤ K(x) ≤ κmaxI2
almost everywhere with respect to x (for instance, κmin = essinfxλmin(K(x)), κmax =
esssupxλmax(K(x))). Then

(An(K, Tν))ν and (An(I2, Tν))ν are uniformly equivalent

and more precisely, κminAn(I2, Tν) ≤ An(K, Tν) ≤ κmaxAn(I2, Tν),(30)

and the same result is true if one replaces Tν in (30) by T̃ν .
Assume that the family of triangulations (Tν)ν is shape-regular, and define

δ := sup
ν

max
T∈Tν

δT < ∞

with δT as in (27). Then

(An(I2, Tν))ν and (An(I2, T̃ν))ν are uniformly equivalent

and more precisely 1
δAn(I2, T̃ν) ≤ An(I2, Tν) ≤ δAn(I2, T̃ν).(31)

Proof. The main work for proving statements (30) and (31) has been done already
in subsection 3.1: according to (26), the claimed inequalities in (30) are obtained by
summing over all triangles T ∈ Tν the first inequality of Proposition 3.1. Similarly,
relating the triangulations Tν and T̃ν for K = I2 means that we have to study how
the stiffness matrix changes if C in (26) is replaced by I2: the answer is obtained by
summing the last inequality of Proposition 3.1 for all triangles (after replacing δT by
δ).

The preceding result enables us to give more precise bounds for the smallest and
largest eigenvalue of the different stiffness matrices occurring in Theorem 3.2.

Corollary 3.3. Assume that the matrix K is uniformly elliptic and bounded,
and that (Tν)ν is shape-regular. Then the largest eigenvalue of An(K, Tν) is uniformly
bounded in ν, and the smallest behaves like 1/ν2 for ν → ∞.

In particular, the spectral condition number of An(K, Tν) behaves like n, the num-
ber of vertices of Tν .

Proof. Since Ω̃ is bounded, it is contained in a square with sides of size dout and
contains a square of size din. Then An(I2, T̃ν) contains as submatrix the Toeplitz
matrix generated by 4 − 2 cos(s1) − 2 cos(s2) of order din(ν − 1)2, and, in addition,

An(I2, T̃ν) is a submatrix of a Toeplitz matrix generated by 4−2 cos(s1)−2 cos(s2) of
order d2

outν
2 (see [36]). Since the eigenvalues of Toeplitz matrices generated by linear

cosine polynomials are explicitly known, it follows that the smallest eigenvalue of
An(I2, T̃ν) is of order 1/ν2 ∼ n−1, and its maximal eigenvalue is uniformly bounded by
8, which is also its limit for ν → ∞. Using, for instance, the well-known representation
of extremal eigenvalues of Hermitian matrices in terms of Rayleigh quotients, it follows
from Theorem 3.2, by combining (30) and (31), that all three matrices An(K, Tν),
An(I2, Tν), and An(K, T̃ν) have a smallest eigenvalue of order 1/ν2 ∼ n−1 and a
maximal eigenvalue bounded uniformly in ν.
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Corollary 3.3 has been proved in [2, relation (5.102c), p. 235, and pp. 236–238],
[9, Lemma V.2.6], [20, p. 61 and Lemma 2.6, p. 233], and [37, Theorem 5.1], under the
additional assumption that (Tν)ν is also quasi-uniform. Notice that the proofs given
in the above references consist of comparing suitable Sobolev norms, and here the
quasi uniformity condition cannot be dropped. The idea contained in subsection 3.1
is to use the updating formulas, i.e., a kind of element-by-element local analysis which
is more effective than a global analysis (see, e.g., [1] and the work by Fried [15], where
a similar technique has been extensively used).

Let us finally turn to the problem of designing a preconditioner for the CG method
applied to the system An(K, Tν)xn = bn. We recall that the matrix An(I2, T̃ν) cor-

responding to the uniform triangulation T̃ν coincides with that obtained by applying
the classical finite difference 5 point stencil to the Poisson problem −Δu = f . Thus
solving the system An(I2, T̃ν)yn = cn can be performed in O(n) operations using,
e.g., the method of cyclic reductions [11, 12, 14], and thus such a matrix would be a
practical preconditioner. Define also the matrix

Dn = diag

(∥∥∥∥K̃ (
(j, k)

ν

)∥∥∥∥)
(j,k)

ν ∈Ω̃h

,

which again is a practical preconditioner. Then, under the assumptions of Proposi-

tion 3.1, the condition number of An(I2, T̃ν)−1An(K, Tν) and of An(I2, T̃ν)−1D
−1/2
n

· An(K, Tν)D−1/2
n can be bounded independently of the stepsize 1/ν in terms of the

smallest angle used in the triangulation of Ω, plus possibly the norm and the ellipicity
constant of K. This means that the associated preconditioned CG (PCG) will achieve
a fixed precision in O(n) operations also in the nonconstant coefficient case with a
nonuniform triangulation.

In the following two results we give a complete picture (localization and distri-
bution) of the spectral behavior of preconditioned matrix sequences arising from the
use of the above-mentioned preconditioners.

Corollary 3.4. Assume that the matrix K is uniformly elliptic and bounded,
i.e., there exist positive constant κmin and κmax such that κminI2 ≤ K(x) ≤ κmaxI2
almost everywhere with respect to x (for instance, κmin = essinfxλmin(K(x)), κmax =
esssupxλmax(K(x))). Then

the eigenvalues of An(I2, Tν)−1An(K, Tν) belong to [κmin, κmax],(32)

and the same result is true if one replaces Tν in (32) by T̃ν .
Assume also that the family of triangulations (Tν)ν is shape-regular such that

δ := supν maxT∈Tν
δT < ∞ with δT as in (27). Then

the eigenvalues of An(I2, T̃ν)−1An(I2, Tν) belong to [1/δ, δ];(33)

the eigenvalues of An(I2, T̃ν)−1An(K, Tν) belong to [κmin/δ, κmaxδ].(34)

Proof. Statements (32) and (33) follow from the corresponding statements (30)
and (31) in Theorem 3.2 and the fact that, for Hermitian positive definite X,Y , we
have for the spectrum Λ(Y −1X) the localization

Λ(Y −1X) ⊂
{
u∗Xu

u∗Y u
: u = 0

}
.
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The claim (34) follows from (30) and (31) by rewriting the Rayleigh quotient as

u∗An(K, Tν)u
u∗An(I2, T̃ν)u

=
u∗An(K, Tν)u
u∗An(I2, Tν)u

u∗An(I2, Tν)u
u∗An(I2, T̃ν)u

.

Theorem 3.5. Assume that the matrix K is uniformly elliptic in the sense of
Corollary 3.4. Consider the preconditioned sequences (Y −1

n Xn) with

[Yn, Xn] ∈ {[An(I2, T̃ν), An(K, T̃ν)], [An(I2, Tν), An(K, Tν)],
[An(I2, T̃ν), An(I2, Tν)], [An(I2, T̃ν), An(K, Tν)]}.

Then, calling ωX the symbol of (Xn) and calling ωY the symbol of (Yn), we have that
the asymptotic spectrum of (Y −1

n Xn) is given by ωX/ωY .
Proof. It is enough to observe that all the involved matrix sequences are such that

both Xn and Yn come from the same matrix-valued LPO for which the distribution
is known (see Theorem 1.1) and is sparsely vanishing (i.e., the symbol vanishes in
a set of zero Lebesgue measure). The conclusion follows from the general theory of
LPOs as in Theorem 2.9 of [28] (compare also Theorem 4.6 in [33] and Theorem 3.7 in
[26]).

With the notation of the above theorem, we remark that the same result could

be proved for the matrices [Yn, Xn] = [D
1/2
n An(I2, T̃ν)D1/2

n , An(K, Tν)]. Indeed D
1/2
n ,

An(I2, T̃ν), and An(K, Tν) are all (reduced) generalized locally Toeplitz sequences with
sparsely vanishing symbols (i.e., zero on at most a set of zero Lebesgue measure): for
Dn the statement is trivial since the matrix is diagonal, while for the remaining two
matrix sequences this has been proved in Corollary 1.2. Then our claims follow from
the fact that, if the symbols are all sparsely vanishing and sparsely unbounded (the
inverse of a sparsely vanishing), then the operation Xn � Yn also gives a sequence
in the generalized locally Toeplitz class, with asymptotic spectrum described by the
symbol ωX �ωY ; this has been shown in [31, Theorem 5.8] for � being multiplication,
in the same paper for � being addition or subtraction, and is known to be true also
for inversion, that is, for the sequence (Y −1

n Xn) (see [32, Theorems 2.2 and 3.2]).
In order to illustrate Theorem 3.5 and its link with Theorem 1.1, we mention

more explicitly the example that the sequence of matrices (An(I2, T̃ν)−1An(K, Tν))
for ν → ∞ has an asymptotic spectrum described by the measure σ, with∫

f dσ =
1

(2π)2
1

m(Ω̃)

∫
[−π,π]2

ds

∫
Ω̃

dx f (ω(x, s)) ,

K̃(x) = |det∇φ(x)|∇φ(x)−1K(φ(x))∇φ(x)−T as before,

ω(x, s) =
ωX(x, s)

ωY (x, s)
=

[
1 − eis1

1 − eis2

]∗
· K̃(x) ·

[
1 − eis1

1 − eis2

]
[

1 − eis1

1 − eis2

]∗
·
[

1 − eis1

1 − eis2

] ,

and with ωX(x, s), ωY (x, s) according to the notation of Theorem 3.5.
In particular (compare with (34)), the most important part of its eigenvalues lies

in the interval

[κmin, κmax] =
[
essinfx∈Ω̃λmin(K̃(x)), esssupx∈Ω̃λmax(K̃(x))

]
.
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4. Concluding remarks. We have shown the existence of an asymptotic spec-
trum for the sequence of stiffness matrices, which occur in the P1 finite element
approximation of the two-dimensional model problem (1) with an a priori mesh re-
finement and varying stepsizes. The underlying symbol ω of this asymptotic spectrum,
given in Theorem 1.1, depends not only on the domain and the coefficient functions
of the PDE, but also on the particular P1 approximation scheme (via the dependency
on the Fourier variable s) and the map φ which describes our mesh refinement. We
expect, by analogy with the finite difference case (see [31]), that Theorem 1.1 holds
also for other finite elements if one adapts the choice of the trigonometric polynomials
in s. It is probably also possible to extend our results to higher dimensions and to
other elliptic PDEs, and probably we need only quite weak regularity assumptions on
the involved domain and the involved coefficient functions, as in the finite difference
case (see [38, 31, 32]). On the other hand, the graded meshes used in modern solvers
(especially those generated by a posteriori mesh refinements) in general are not topo-
logically equivalent to the meshes considered in this paper. Notice that, for proving
asymptotic spectral results of global type, it is sufficient that the graded meshes are
equivalent to an approximation of our meshes (see [35]). These issues should be in-
vestigated in more detail in future works, in order to widen the practical impact of
our findings.

In the second part of the paper we have analyzed the spectral behavior of some
preconditioned finite element matrix sequences in terms of localization, extremal, and,
especially, distributional spectral results. The analysis could be used for deducing
more precise bounds on the (P)CG convergence, in view of the results in [4, 5, 6]:
the related specific study and the related numerical experiments will be part of a
subsequent work.

Beside the locally Toeplitz idea, we have used in section 3.1 another purely linear
algebra tool, namely the local domain analysis: it consists of decomposing compli-
cated matrix structures in linear combinations of nonnegative definite dyads or low-
rank matrices for which the (spectral) analysis is very simple, and then combining
these results to deduce properties of the original matrix. (For finite elements see [1]
and the beautiful and rich paper by Fried [15, e.g., (47)]; for finite differences com-
pare with [33, section 3.5], [7, Theorem 3.7]; and for general matrices see [26].) We
mention that this simple tool is especially useful for preconditioning analysis and for
the analysis of extremal eigenvalues asymptotics. As a byproduct we have deduced
in Corollary 3.4 that the finite element matrix sequence with uniform triangulation
and the nonuniform one (not necessarily verifying the quasi uniformity) are spectrally
equivalent. Thus a simpler (projected) two-level Toeplitz structure associated with
the uniform triangulation can be employed as preconditioner requiring a constant
number of iterations independently of the size of the problem.
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