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SUMMARY 

In this letter, we have extended the existing results on the admissible set of 

periodic symbolic sequences of a second-order digital filter with marginally stable 

system matrix to the unstable case. Based on this result, the initial conditions can be 

computed using the symbolic sequences. The truncation error of the representation of 

an initial condition due to the use of a finite number of symbols is studied. 
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1. INTRODUCTION 

It is well known that the autonomous response of a second-order digital filter with 

marginally stable system matrix implemented using two’s complement arithmetic may 

exhibit chaotic behaviors, dependent on the initial conditions [1]-[4]. In order to 

analyze these complex behaviors, symbolic sequences are introduced. The symbolic 

sequences depend on the initial conditions. It is found that the map from the set of 

initial conditions to the set of symbolic sequences is neither injective nor surjective. 

Some researchers have worked out the admissible set of periodic sequences [2]-[4]. In 

this letter, we extend the results to the case with unstable system matrix and some 
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interesting phenomenon was found. 

The organization of this letter is as follows: The system is described in section 2. 

The admissible set of symbolic sequences of an unstable second-order digital filter with 

two’s complement arithmetic is discussed in section 3. Finally, a conclusion is 

summarized in section 4. 

 

2. SYSTEM DESCRIPTION 

Assume a second-order digital filter with two’s complement arithmetic is realized 

in direct form. The state space model of the feedback system can be represented as 

follows: 
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where a  and b  are the filter parameters,  kx1  and  kx2  are the state variables, and 

f  is the nonlinearity due to the use of two’s complement arithmetic. The nonlinearity 

f  can be modeled as: 

  nf  2  (2) 

such that 

1212  nn   and Zn . (3) 

Hence, the state vector is confined in a square defined as follows: 
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 By introducing the symbolic sequences, the state space model of the digital filter 

can further be represented as: 
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where 
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and 

   mmks ,,1,0,1,,   , for 0k , (8) 

in which m  is the minimum integers satisfying: 

    1212 21  mkxakxbm , for 0k . (9) 

The admissible set of periodic symbolic sequences with period M  [2] is given by 
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where 
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 qp,mod  is the reminder of 
q
p , 

and 

    ,1,0 sss  . (12) 

 

3. ADMISSIBILITY AND INVERTIBILITY OF A SECOND-ORDER DIGITAL 

FILTER WITH TWO’S COMPLEMENT ARITHMETIC 

Let 1  and 2  be the eignevalues of A . In this section, we assume that: 

11   (13) 

and 

12  . (14) 

Define 
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    mmkss ,,1,0,1,,:   , (15) 

and 

2: IS . (16) 

Obviously, S  is not surjective and the set   is not admissible. 

Lemma 1: 

Define  
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, then the set 

b  is admissible and bb IS 2:  is surjective. 

Proof: 

Since bs  , we have: 
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Since 
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and 

  2Ik x , for 0k , (24) 

we have 

   jsjs  , for 1,,1,0  kj   and 0k . (25) 

This implies 

ss   (26) 

and 

   bsS 0x . (27) 

Hence, the set b  is admissible and bb IS 2:  is surjective. This completes the 

proof.   

Lemma 2: 

bb IS 2:  is injective. 

Proof: 

Let 

    221 0,0 Ixx . (28) 

Assume 

   00 21 xx   (29) 

and 

      bbb sSS  00 21 xx . (30) 

Since 
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        00 2121 xxAxx  kkk , for 0k . (33) 

Since 

11  , (34) 

12  , (35) 

and 

    221 , Ikk xx , for 0k , (36) 

we have 

   00 21 xx  . (37) 

This contradicts equation (29). Hence, bS  is injective, and completing the proof.  

Remark 1: 

According to Lemma 1 and 2, bS  is bijective. 

Lemma 3: 

Define  2: IT bb  , then bT  is bijective and 
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Proof: 

By applying similar methods in Lemma 1 and 2, we can easily prove that bT  is 

bijective. To show 
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since   20 Ix , we have 
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This completes the proof.  

Remark 2: 
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Proof: 
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Remark 3: 

For a one-dimensional case, any number  1,1x  can be represented as an 

M -ary number with each bit    1,,1,0,1,,1  MMjb  , that is: 
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Hence, the mapping 

  oneoneS  1,1:  (51) 

is surjective. 

It is well known that oneS  is injective, so oneS  is bijective. However, this is not true 

for the two-dimensional case. Since: 
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Hence, S  is not surjective and the set   is not admissible. However, if we confine 

the set   by its subset b , then we guarantee that there exists   20 Ix . Hence, bS  is 

surjective and the set b  is admissible. 

Although an infinite number of bits is required to represent x  with infinite 

precision, we may truncate the representation by a finite number of bits and the 

quantization error is bounded by the magnitude represented by the last bit. That is 

1

11







 k

kj
j MM

M . (55) 

However, for the two-dimensional case, the truncation error is 
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Since 

  0lim 


keik
 (57) 

and 

  0kei  (58) 

for 2,1i ,  Zk0  such that  kei  for 2,1i , are monotonically decreasing with 

respect to k  for 0kk  . Hence, we still can truncate the representation of  0x  using a 

finite number of symbols. 

This property suggests that an information can be coded using the successive 

approximation technique. Compared to the existing successive approximation coding 

technique, the traditional one is to code the information directly, while this coding 

technique is to code the symbolic sequences. The security is improved. 

 

4. CONCLUSION 

In this letter, we have extended the results on the admissible set of symbolic 

sequences of a marginally stable second-order system to an unstable system. Based on 

this result, the initial conditions can be computed by the symbolic sequences directly. 

Moreover, the truncation error of the representation of an initial condition due to the use 

of finite number of symbols is studied. 
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