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Abstract

We introduce a new texture representation that combines standard sampling, to be bilinearly interpolated in
smoothly varying regions, with customizable discontinuities, to model sharpboundaries between these regions.
The structure consists of a standard signal texture, plus a second texture we call pinchmap, which encodes discon-
tinuities along generally curved lines; at rendering time the fragment processor efficiently decodes this structure
with a single access to each texture. We also present a fully automatic way to compute a pinchmap and signal
texture pair, starting from an original high resolution image. The final result on the screen is a comparable visual
quality for a fraction of the texture storage and with a negligible impact on performance.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Comp. Graph.]: Line and Curve Generation

1. Introduction

In general terms, a 2D textureTs stores a signal functions
(e.g. color, normal, alpha value, or other attributes) that has
to be applied over a 2D surface. It consists of a regular set
of samples (texels) of that signal, that are typically interpo-
lated at rendering time. Naturally, the quality of the results
is strictly dependent on the resolution of the texture. High
resolution textures are so determinant to achieve better vi-
sual result that texture memory is always a resource in short
supply, notwithstanding the continuous increase of its avail-
ability. Hence the need to increase perceived texture quality
by other means than just increasing the number of texels.

One promising direction is to resort to mixed 2D image
representations. Combining the infinite precision of vectorial
elements (e.g. lines or sharp boundaries) with the flexibility
of sampled texels potentially leads to tremendous decrease
of texture memory usage for a comparable visual quality.

However, to be useful in most applications, such a scheme
must be efficiently interpreted in graphic hardware. Recently
we witnessed to important advancements, but currently there
is no solution that is really feasible to run on commodity
hardware at an acceptable price in terms of consumed re-
sources. In this paper we present such a solution.

After a focused, brief analysis of related work, we devote
the next four sections to the description a new texture rep-
resentation (showing the underlying concept, the structure

itself, its actual implementation on graphic hardware, and
additional effects that can be added in sections 3, 4, 5 and
6 respectively). Then in Sec. 6 we sketch a fully automatic
method to construct an instance of that representation.

1.1. Previous Work

In this section we will address only the few previous research
results that, to our knowledge, most closely share our objec-
tives: to embed discontinuities into textures to improve their
visual quality - especially when magnified- while keeping
memory usage low. We refer the reader to the basic and ad-
vanced literature for other, conceptually related but techni-
cally distant problems, like those involving (as for texture
mapping) on-the-fly texture synthesis, procedural textures,
texture compression, or (as for image processing) automatic
feature detection, image segmentation, or super-resolution.

The approaches presented in [TC04, RBW04, Sen04],
and ours too, all share the idea of adopting an image (or tex-
ture) representation capable of encoding and displaying fea-
tures (sharp discontinuities) over images that would other-
wise describe smoothly varying values. Another shared char-
acteristic is that the extra information is distributed across
the image and stored over a regular grid (whose element
are called “Bixels”, or “feature-based-texture” pixels, or
“silmap” texel, or the “pinchmap” texels that we are about
to propose), so that only a limited number of accesses near
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the current region will be necessary to locally interpret the
image (a necessity if the algorithm is to be implemented in
the GPU, where the number of per fragment accesses to tex-
ture is severely limited).

In the schema proposed in [TC04], pixels are enhanced to
embed sharp boundaries (so becoming “bixels”), and pixel
values are not interpolated across such boundaries. Bound-
aries are defined with linear or quadratic formulas, so they
can be curved. This work is not designed in its details to be
implemented in a programmable fragment shader. Its gen-
eral structure would probably allow for such an adaptation,
but this has not been investigated.

In [RBW04] a similar schema is proposed. Boundaries are
defined as a set of splines. This results in a very expres-
sive representation, but also leads to very complex worst
cases that would rule out an implementation on program-
mable graphic hardware. Authors suggest that simple seg-
ments should substitute splines in that scenario, which prob-
ably would lead to a solution similar to [Sen04].

[Sen04] (a derivative work of [SCH03]) represents a
breakthrough because for the first time this sort of algo-
rithm is really implemented and tested on a programmable
fragment shader. To achieve this, complexity of boundaries
is kept to a minimum (straight segments). Results are im-
pressive. However, the cost of the technique turns out to be
prohibitive for most applications, requiring a total of eight
texture accesses per fragment (five to a texture encoding dis-
continuities, three to the final signal texture) only to obtain a
single texture value (the equivalent of a single texture fetch
for a standard texture). This figure can possibly be reduced
by some form of texel packing or other similar optimiza-
tions, but probably not drastically.

This is a consequence of the basic approach shared by all
of the above proposals: in order to implement boundaries,
final texture values are computed by averaging, near such
boundaries, not the usual four but three, two or a single texel
value. Unreachable texture values are weighted by zero, and
the remaining weights are re-normalized. This makes the
computation of the final texel value very heavy in terms of
number of accesses. Also, it creates many different cases
(even for very simple boundary primitives), that are difficult
to dealt with in the fragment shader (extremely ill-equipped
for densely branched code).

Additionally, the above approach has an important short-
fall in terms of quality, because fewer than four texels are
interpolated near boundaries. This is why the signal gradient
in directions perpendicular to the boundaries is void; worse
still, at corners, where only a single texel is “averaged”, the
color is bound to be constant.

Another common trait is that discontinuities are always
defined piecewise, region by region, and within each region,
in a way independent from neighbors. As we will discuss

later, this ultimately results in the necessity to perform more
accesses to the discontinuity encoding texture.

We approach the problem from a totally different direc-
tion, leading to a solution that uses only a single extra texture
access (other than the one to the final texture), simplifies the
per-fragment computations, improves the visual quality, and
naturally supports a number of additional features - includ-
ing curved boundaries, inexpensive anti-aliasing, smoothly
starting discontinuities, optional solid lines, and others.

2. Preliminaries

Assume the texture signals is defined over a 2D squared
domainT

2 = [0,N)× [0,N) for someN = 2n,n∈N. Texture
Ts consists of texels located at each integer position inT

2.

The process of scan converting a texture polygon on the
screen will produce fragments with a corresponding region
of T

2. When that region covers multiple samples ofTs, the
problem to combine them into a single value for that frag-
ment can be efficiently solved by various forms of pre-
filtering (MIP-mapping). When, on the contrary, the pro-
duced fragment corresponds to a region ofT

2 with an area
smaller than one, then a magnifying filterfM is needed. The
function fM , defined overT2, returns for any given position
a value that is some combination of the samples ofTs.

Simply fetching the closest texel ofTs leads to severe
aliasing artifacts. A common solution to alleviate them is to
use:

fM(u,v) = fb(u,v) (u,v) ∈ T
2

where fb is bilinear (first order) interpolation between the
four closest samples ofTs. This solution is so widely ap-
plied that it is hard-wired on any modern GPU. Bilinear in-
terpolation works well when the signals to be represented is
smooth; on the contrary whenspresents 0-order discontinu-
ities it leads to exceedingly blurred visual results.

The bilinear interpolationfb is a continuous function de-
fined piecewise as follows:T2 is implicitly subdivided into
N×N unit squares, and inside each squarefb is defined as
the 1st order bilinear interpolation of the four texels at the
corner of that square. We will refer to these squares asfexels
(from “four texels”). Each fexel has four corner texels, and
adjacent fexels share two corner texels (note thatfb is C∞

inside fexels, but onlyC0 across fexels).

3. Main Idea

Wherever the signal to be represented presents sharp (0-
order) discontinuities, there are some fexels containing an
unwanted smooth transition between the texels sampled on
either side of that discontinuity. We call those fexelsunde-
sired fexels. Fexels that are not undesired arevisible.

The idea is to perturb the locations at which bilinear inter-
polation is computed so that, intuitively speaking, undesired
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Figure 1: The concept behind a pinching operation. On the
left: a 4× 4 closeup of a standard texture (in this case, a
color texture). The 16 texels are shown as colored spheres.
A fexel is the space where 4 texels are bilinear interpolated.
Here fexels are separated by a solid line and shown with a
superimposed regular grid, to illustrate how the fexel space
is warped during the pinching. Fexels that interpolate be-
tween similar texels are color-coded with shades of blue or
red. Undesiredfexels, i.e. those that interpolate across very
different texels, are color-coded with grays. Right, the unde-
sired fexels have been “pinched” creating a sharp disconti-
nuity between the red and the blue regions along a (gener-
ally) curved line.

fexels are shrunk to a line creating a discontinuity in the fi-
nal result (see Fig.1); in practice, we ensure undesired fex-
els will never be accessed. We call this processpinching. In
other words, we use, as magnification filterfM , the function:

fM(u,v) = fb((u,v)+ p(u,v)) (u,v) ∈ T
2

wherep is called thepinchfunction. In locations away from
discontinuities,p is valued(0,0) and the magnification filter
becomes a standard bilinear interpolation. At discontinuities,
p will present a matching step-discontinuity.

In all cases, a single bi-linearly interpolated final texture
access from the signal textureTs is performed per fragment.
The advantages of this basic choice are manyfold:

• efficiency: bi-linearly interpolated texture accesses are
hardware optimized, making best use of on-chip texture
RAM bandwidth;

• visual quality: every final texture value is interpolated be-
tweenfour texels;

• non-branched code: we always have a single texture tex-
ture access toTs, and that texture access is performed in a
non-branched part of the fragment shader;

• additional effects: manipulating the above formula, it is
easy to obtain several additional effects, including anti-
aliasing (Sec.6.1), smooth start of sharp boundary lines
(Sec.6.2), and others (rest of Sec.6).

Note that no texel ofTs is wasted, as every texel will still
affect an area ofT2; rather we conceal fexels, that is, regions
betweentexels.

The vector functionp implicitly determines: which fexels
are pinched, the pinching directions (which for example is

perfectly horizontal in Fig.1), and the shape of the line to
which the pinched fexels will be collapsed.

We encodep in an auxiliary textureTp, the pinchmap,
that is pre-computed and paired with the main signal texture
Ts, and is loaded on the graphic card at rendering time. To
save texture memoryTp should be as compact as possible; to
save on-card texture bandwidth,p(u,v) should be computed
using the least number of accesses toTp.

One natural choice would be to definep piecewise, by
subdividingT

2 into as many pieces as there are texels in
Tp and then separately storing each piece in a correspond-
ing texel ofTp, encoding it with a configuration index and a
limited number of parameters. However, in order to enforce
continuity of p across adjacent texels, one would need to
either perform additional accesses to neighbor texels inTp,
or alternatively to replicate some data from neighbor texels
inside each texel ofTp.

To bypass this problem we designed a scheme wherep is
computed using a single bilinearly interpolated texture ac-
cess to the pinchmapTp, and p(u,v) is computed starting
from the four recovered channel values (again, bilinearly in-
terpolated texture accesses are highly optimized and their
cost in performance and bandwidth is very similar to that of
a direct texture access).

This scheme, described in Section4, allows for curved
discontinuity lines. It also lets the resolution of the pinchmap
Tp and of the signal textureTs to be chosen somewhat inde-
pendently (see Section6.4).

The resulting per-fragment algorithm to process a frag-
ment with associated texture coordinates(u,v) is conceptu-
ally as follows (see Section5.2 for a more detailed descrip-
tion):

1. fetch texeltp at pos.(u,v) from pinchmapTp;
2. compute pinch-functionp(u,v) usingtp (andu andv);
3. fetch final texelts at pos.(u,v)+ p(u,v) from signal tex-

tureTs;
4. processts normally.

Both texture accesses are bi-linearly interpolated. The last
step is the same as any other 2D texture mapping application;
for example it can consist of a verbatim copy ofts to the
current pixel (ifTs stores a pre-shaded color), or of a shading
of ts (if Ts stores normal values) and so on.

Pinchmaps and mipmapping: Although the pinchmap
perturbation is designed for magnification filters, it produces
final texture coordinates that are valid for all MIP-map lev-
els. This means that the same algorithm sketched above
works regardless of the magnification level (differently from
other approaches, we do not need to identify it in the frag-
ment shader). MIP-map levels can be computed forTs nor-
mally, and accessed in step 3 with standard trilinear inter-
polation. Clearly, MIP-mapping must be turned off in the
access of step 1.
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4. Pinch functions

In this section we detail how a proper pinch function is de-
fined overT2 to perturb texture positions in order to “pinch
away” undesired fexels. For illustration purposes, we first
tackle a 1D case where a single fexel is pinched.

4.1. One dimensional case

In a one-dimension analogue, a fexel is the segment between
two consecutive texels of a one-dimensional array of sam-
ples. Fexels delimited by texels that should not be interpo-
lated areundesired, just like before. Note that two consec-
utive fexels cannot both be undesired, otherwise the shared
texel would not be part of any visible fexel.

An undesired fexel will be collapsed into a pointγ located
somewhere inside it, by expanding the two adjacent fexels
on its left and right side (which are both visible ones). In
particular, we choose to expand only the closest halves of
the two adjacent fexels. In this way, the two further halves
are left untouched, and can be expanded over the possibly
undesired fexel on the opposite side, if needed.

We define a local one-dimensional pinch functionp1D
γ :

R→ [−1.. + 1] that is parameterized withγ and is used to
perturb the texture location in order to pinch away a single
undesired fexel. The final texture coordinate for a texel with
initial texture coordinatek will be k+ p1D

γ (k).

In order to avoid repetition artifacts, we must make sure
that k+ p1D

γ (k) is strictly monotonically increasing withk.

This is equivalent to the constraint∂p1D
γ (k)/∂k >−1.

Let us describep1D
γ in a reference system where the ori-

gin is in the middle of the 1D fexel to be pinched away (see
Fig. 2). Consequently the locations of the two texel delimit-
ing the fexel will be at−0.5 and at 0.5. The functionp1D

γ is
non-zero only inside the interval(−1..+ 1) (as we want to
affect only the two halves of the adjacent fexels), and more-
over it must be zero in±1 to ensure continuity. The para-
meterγ, which is the position where the undesired fexel is
collapsed, typically ranges in[−0.5..+0.5].

Since we want to “pinch” both delimiter texels into po-
sition γ, we need thatp(γ−) = −h− γ and p(γ+) = h− γ,
whereh is the value 0.5 (we are usingh as a parameter be-
cause later we will need to change its value, see Sec.6.4).
By interpolating linearly between these fixed values at−1,
+1, γ− andγ+ we get

p1D
γ (k) =























0 k≤−1

−
(1+k)(h+γ)

γ+1 −1 < k≤ γ
−

(1−k)(h−γ)
γ−1 γ < k≤ 1

0 k > 1

(1)

Note that the constraint on the derivative ofp1D
γ is satis-

fied for anyγ ∈ [−0.5..+0.5], or even(−1..+1).

Figure 2: Above: the one dimensional pinch function p1D
γ

for a givenγ. The horizontal axis is centered in the mid-
dle of the fexel to be pinched (hatched with diagonal lines).
Texels are shown as gray balls. Below: the function for
γ =−0.5,−0.25,0,+0.25,+0.5.

Figure 3: An (arbitrarily chosen) discrete subset of the con-
tinuous set of segments along which the function p1D

γ is to
be applied. In each shown segment, the midpoint (k= 0) is
identified by a square, the extreme points (k=±1) by a cir-
cle, and the points at position k=±0.5 by a small crossing
line. Undesired fexels are grayed (note that they correspond
to the points at positions−0.5 < k < +0.5). For clarity we
do not show the pinching positionsγ (γ varying across seg-
ments) which form a discontinuity line.

In summary, the functionp1D
γ is such thatk+ p1D

γ (k) is
never in(−0.5..+0.5), but will assume any other value for
somek. The interval(−0.5..+0.5), which correspond to an
undesired fexel, is effectively “pinched away”.
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4.2. Two dimensions

Getting back to the two dimensional case, we want undesired
fexels to be shrunk to a line, their area covered by stretching
neighbor visible fexels over them. Similarly to the 1D case,
we want only the closer half of the visible neighbors fexel
to be stretched, so that the other half remain unaffected and
can, if needed, take part of an unrelated pinching operation
of the other side (more precisely, subdividing every visible
fexels in four squared subregion, only those adjacent, even
diagonally, to an undesired fexel will be expanded).

The extension to 2D however is not straightforward, as the
pinching operation as we defined in Sec.4.1 is fundamen-
tally a 1D operation. Our solution is perform that operation
along proper pinching direction overT

2.

More specifically, we will cover the areas ofT
2 affected

by pinch operations with a continuous set ofpinch segments,
and then we applyp1D

γ along each segment. Each pinch seg-
ment is identified by its midpoint(mu,mu) and direction
(du,dv), with ‖(du,dv)‖∞ = 1, and it is parameterized as:

(mu,mv)+k · (du,dv) k∈ [−1,+1]

Finally each segment has a parameterγ that determines
where, over that segment, the discontinuity is to appear. Over
each segment, the pinch functionp is defined as:

p((mu,mv)+k · (du,dv)) = p1D
γ (k) · (du,dv) (2)

Sinceγ will vary continuously across the segments, the
resulting discontinuity line, defined by all the points at posi-
tion k = γ of every segment in the set, is in general a curved
line.

4.3. Disposition of pinch segments

For equation (2) to be defined, every point inTs affected by
a pinch operation must belong to a single segment (with the
exception that a point can be either end of any number of
segments, because thep1D

γ (±1) = 0 for everyγ).

To get the desired effectall and onlythe points inside un-
desired fexels must be at positionk ∈ [−0.5,+0.5] of their
segment (so that these fexel will be “pinched away”, accord-
ing to equation (1)).

It follows that, in our schema, the set of mid-points of the
segments (k = 0) forms a poly-line passing through the cen-
ter of every two adjacent undesired fexels; fork =±0.5 the
poly-line corresponds to a boundary between visible and un-
desired fexels; fork = ±1 the poly-line is the line connect-
ing the center of the visible fexels surrounding the undesired
ones (see Fig.3).

4.4. Constraints on fexel configuration

Just as in one dimension we could not have two consecu-
tive pinched fexels, we have similar consistency constrains
in two dimensions.

Figure 4: Examples of pinching operations, over a minimal
4× 4 signal texture. Each column shows a different com-
bination. Top row: standard bilinear interpolation, with no
pinching. Second row: fexels are shown before pinching.
A 8× 8 subgrid is superimposed, and undesired fexels are
darkened and identified with a black cross. The discontinu-
ity line (resulting from randomly chosen values ofγ) is also
shown in black. Third row: undesired fexels are collapsed
to that line, and neighbors fexels are expanded over them.
Bottom row: final result (actual snapshot).

First of all, the combination where a group of 2× 2 ad-
jacent fexels are all undesired does not make sense, as the
signal texel shared by the four fexels would not belong to
any visible fexel.

Another combination to be ruled out is the one where a
texel is at the same time a corner of two diagonally opposite
undesired fexels, and two diagonally opposite visible fexels.
If that was the case, the texel in question would be involved
in two different incompatible pinch operations pushing it in
opposite directions.

Any other combination is valid (see Fig.4 for examples).

5. Encoding and decoding pinch functions

In this section we detail how a proper pinch function can
be encoded in a pinchmap textureTs, and, during fragment
processing, recovered from it and then applied.
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Figure 5: A detail of a signal- (in this case, color-) texture
Ts with its pinchmap texture Tp superimposed. Texels of Ts

are shown as colored balls, while texels of Tp are shown as
crosses. There is one texels of Tp for each fexel of Ts, so
the two grids are displaced by half a texel size. Undesired
fexels of Ts (grayed areas) correspond to active texels of Tp,
shown as black crosses, where the k channel is zero. The
other texels of Tp have a k channel with a value of either
minus one (red crosses) or one (blue crosses). The pinch-
function is nonzero only in zones colored green or gray, so
the pinch affects only these regions. In particular, the green
region will expand over the gray region, covering it (in this
way the gray region will be pinched into a discontinuity line
- here dotted).

5.1. Pinchmap structure

In order to apply equation (2) to the texture position(u,v)
of each fragment, we need the values used in that formula:
k (parametric position of(u,v) inside its pinch segment),du,
dv (orientation of that segment), andγ (pinch location over
that segment). We store appropriate values(dT

u ,dT
v ,kT ,γT)

in the 4-channel texels of the pinchmapTp so that used val-
ues du, dv, k and γ can be recovered adjusting the tuple
(dB

u ,dB
v ,kB,γB) returned by the single bilinear interpolated

access toTp.

Here it will be useful refer both to fexels of the signal-
textureTs and to fexels of pinchmapTp. When we refer to
the latter will be always specifypinchmapfexel.

All the stored (and read) values range in[−1,+1]. Texture
values natively range in[0,1] so a remapping is needed. Care
must be taken to be able to represent the value 0 precisely.
For example, if the textures have 8-bit per channel, the range
[−1,+1] must be remapped over[0..254], not [0..255], so
that the value 0 is represented by the value 127.

In our schema every pinchmap texel ofTp is in the center
of a fexel of the signal textureTs. In other words, the two
textures are reciprocally displaced by a constanth = 0.5 in
both directions (see Fig.5). This way it is easy to obtain
the 1-order discontinuities that the channelk must present

at k = ±1 (compare Fig.3), as they naturally appear at the
borders between pinchmap fexels. We refer to the pinchmap
texels corresponding to undesired fexels ofTs (that will be
pinched) with the termactivetexels.

Active texels, wherekT is set to 0, form lines of adjacent
texels that breaks the pinchmapTp into zones of non-active
texel, inside whichkT is constantly set to+1 or −1. No
pinching will occur internally to a zone (asp1D

γ (k) is 0 for
k=±1). This setup may at first seem to severely limit the ex-
pressive power of a pinchmap, allowing only for closed dis-
continuity lines. However this problem is bypassed as pinch-
ing can be locally disabled even in active texels (by zeroing
its dT

u anddT
v channels, see Section6.3 later).

Active texels can be subdivided intostraights(horizontal
or vertical), andturns. Active texels are boundaries between
kT = +1 andkT = −1 non-active ones, anddT

u anddT
v are

set to form a vector pointing toward thekT =−1 region; for
example in theturn texels bothdT

u anddT
v are set to±1, in

horizontalstraight texelsdT
u is zeroed anddT

v is set to±1,
and in vertical onesdT

v is zeroed anddT
v is set to±1. Cross

active texel, where two discontinuity lines cross, must privi-
lege one of them; in the final result the other one will unfor-
tunately show blurred in the close proximity of the crossing.

All non active texels have (kT , dT
u , dT

v ) always respec-
tively set to(±1,0,0), so that it is trivial to deal with the
case when a non-active pinchmap texel is adjacent to multi-
ple active texels.

Each channel of the pinchmap require some implementa-
tion consideration.

Channelk: position inside pinching segment.

We need the value ofk to be linear along all the segments
(because it needs to be equal to±0.5 corresponding to the
border between undesired and visible fexels, see Sec.4.2).
Even if the value ofkT is set tok in all pinchmap texels,
the value ofkB is in some case not linear. This happens in a
pinchmap fexel that has exactly one or exactly three active
pinchmap texels as its corners (see Fig.6).

Luckily it is easy to correct the interpolated valuekB and
recover lineark, knowing the current texture position(u,v)
overTp (in texels) and the signs ofdB

u ,dB
v . If one of dB

u , dB
v

is zero, then simplyk← kB. Else,k can only be one of two
alternatives

sign(kB)/2−sign(dB
u ) · (frac(u)−0.5)

sign(kB)/2−sign(dB
v ) · (frac(v)−0.5)

where frac returns the fractional part of its argument, i.e.
frac(x) = x−⌊x⌋.

To know which, we check: if one of them is equal (within
a tolerance) tokB, thank← kB again. Else, if they are both
smaller thankB, then we assign tokB the smaller of the two
values; else the larger. The proof, based on exhaustive analy-
sis of possible cases, is omitted for space reasons. While this
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Figure 6: Left: a single pinchmap fexel from the pinchmap
shown in Fig.5. This particular fexel has the kT channel set
to 0 in one (active) corner texel (in black), and the other
three corner texels with a k set to+1 (in blue). This is one
case where the result of the bilinear interpolation of the kT

channel (plotted in the middle) is not equal to the signal k
that we need (plotted in the right). The latter is linear along
the segments defined in Sec.4.2, the former is not.

procedure may seem at first complicated, the fragment pro-
gram that implements it uses only relatively few operations
(mostly conditional assignments).

Channels du and dv: segment orientation. In our schema
bilinear interpolation of these channels automatically en-
sures that the segment direction changes smoothly across
segments (and that it is constant along each segment). How-
ever, the length of the vector(dB

u ,dB
v ) will be shorter, be-

cause these values are interpolated with the values(0,0) that
we defined at inactive texels.

The original (du,dv) vector can be recovered from
(dB

u ,dB
v ) simply normalizing the latter (with respect to the in-

finity norm, that is, dividing it by max(|dB
u |, |d

B
v |)). By an ex-

haustive analysis of all cases, we can also predict|dB
u ,dB

v |∞
to be(1−|kT |). We prefer the latter formulation for reasons
that will be explained in Section6.2.

In a minority of cases (in the internal parts of L turns) this
is an slight underestimation, but this is acceptable as it re-
sults ultimately in an overestimation of(du,dv) and therefore
in the pinching of a small part of a visible signal fexel. How-
ever, for more accurate results we can also detect these cases
and correct them (formulas omitted for reason of space).

Channel γ: position of the discontinuity.

The channelγ is the sole responsible to determine the lo-
cation of discontinuity line within the zones affected by the
pinch (colored in green and gray in Fig.5). The γT can be
set arbitrarily in each texel ofTp, different choices leading
to different discontinuity lines but to equally coherent pinch
functions, in which the same undesired fexel are pinched
away. For example, in Fig.4 we have assigned random val-
ues toγ. During the construction of the pinchmap, the task
will be to find proper values forγT so that given shapes for
the discontinuity line are reproduced (see Section7 for an
illustration of how to do this automatically).

To be more precise, discontinuity lines are defined by

points wherek = γ (because of the structure of the pinch
function p1D

γ , see Fig.2). In our experience we found that,
if we directly use asγ the interpolated valueγB, then the
discontinuity line would tend to show a steep bend corre-
sponding to the diagonal of pinchmap fexel with a ofturn
active texels at a corner, because we are comparing a bi-
linearly interpolated value with a linear value like that plot-
ted in Fig.6, right. In most cases these bends at constrained
locations worsen the quality of the final result, and they are
very difficult to get rid of manipulatingγT values.

To avoid this problem it is enough to useγ← γB + (k−
kB). This way the equalityk = γ becomes equivalent to the
equalitykB = γB, leading to a more useful set of discontinu-
ity lines that are producible settingγT values.

Finally it should be noted thatγ is allowed to vary along a
segment as well as across segments. However this does not
affect the location of the discontinuity (k = γ), nor the final
texture positions at either side of that discontinuity, and does
not create any glitch or repetition artefact.

5.2. Fragment Program

The complete fragment program, for a fragment with initial
texture coordinates(u,v), is therefore:

1. Fetch values(r,g,b,α) from pinchmapTp at(u+h,v+h)
(with bilinear interpolation on);

2. Remap to[−1,+1]: (dB
u ,dB

v ,kB,γB)←Map(r,g,b,α);
3. Compute the “rectified” valuek form recovered values;
4. Normalize direction:(du,dv)← (dB

u ,dB
v )/(1−|kB|) ;

5. Computeγ← γT +(k−kB) ;
6. Pinch the texture coordinate:

(u′,v′)← (u,v)+ p1D
γ (k) · (du,dv)

7. Fetch final signal value from(u′,v′)
(with bilinear interpolation and mip-mapping);

8. Process fetched signal value as usual.

The entire program, including all the extensions that we
are going to illustrate in the next section, has been imple-
mented using less than 50 ARB fragment program instruc-
tions (the most expensive parts being Steps 3 and 5).

Numerical analysis shows that the algorithm is stable even
when the divisor in step 4 is arbitrarily close to zero (in
which case, also the final displacement will be close to zero).
Of course, care must be taken to avoid a direct division by
zero - for example, adding a small constant to the divisor.

6. Additional Features

In this section we show some additional feature that can
be added, with a small or null impact on efficiency, to the
pinchmap algorithm.
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Figure 7: The plot of the 1 Dimensional Anti-Aliased pinch
function pAA1D

γ (k), for γ =−0.25. In the horizontal axis the
anti-aliased part i is grayed.

Figure 8: A quad textured with a8× 8 pinchmap and a
rgb-colormap (actual screenshot). Below: a post-processed
close-up to show individual screen pixels. Left and right: re-
sults with and without anti-aliasing.

6.1. Anti-aliasing

It is easy to add an anti-aliasing on screen over the 0th order
discontinuities that we introduce in the texture. Conceptu-
ally, the idea is simply to perform only incomplete pinch op-
erations, so that undesired fexels are shrunk to a very small
but positive area rather than to a line. This effectively results
in an anti-aliasing, as undesired fexels are exactly the region
where the values from the two sides of the 0-order disconti-
nuity are interpolated together.

The only thing that we need to change is the functionp1D
γ ,

which is to be substituted in equation (2) with its anti-aliased
versionpAA1D

γ defined as:

pAA1D
γ (k) =

{

β(k− γ) if (k < γ)⊗ (β(k− γ) < p1D
γ (k))

p1D
γ (k) otherwise

(3)
where the⊗ symbol denotes the logical exclusive-or, andβ,
with β≫ 1, is the anti-aliasing parameter, intuitively denot-
ing the speed of texture coordinate over the undesired fexels.
The meaning of the formula is that the value ofp1D

γ is over-
ridden in proximity if its discontinuity by a steep, but not
instantaneous, connecting function (see Fig.7).

The anti-aliasing parameterβ determines the width of the

Figure 9: Pinching can be locally turned off, and disconti-
nuity lines can start smoothly. Top left: by a4×3 subset of a
signal texture Ts (spheres).The white pinch-map active texels
(crosses) have a pinch strength pstr of zero, the black ones of
one. As a result (top right) the top undesired fexel is pinched
away, the bottom one is not and the two central ones show a
smooth transition between these two states. Bottom: actual
screenshots without (left) and with (right) pinching.

region where the undesired fexel will be squeezed. It is easy
to see that its size will be 1/β of a texel. Ideally, for a perfect
anti-aliasing, this should be equal to one screen pixel. One
possibility is to actually use the per-fragment texture-speed
to adequately setβ for every texel. Alternatively, that can be
approximated with a global parameterβ set for each textured
object.

The functionpAA1D
γ is just an approximation of the ideal

anti-aliasing function (in fact, contrarily to the ideal case,
the anti-aliased regions on the left and on the right ofγ are
in general different in size). However, the function is very
simple to compute and it is good enough for most practical
purposes (see for example Fig.8).

6.2. Smoothly starting discontinuities

An important feature of our system is the ability to have a
smooth spatial transition between pinched and not pinched
regions. Intuitively the effect is obtained by only “half-
pinching” a given undesired fexel, leaving one of its side
un-pinched while pinching the other (see Fig.9).

The concept is straightforward. We use an extra attribute
pinch strength pstr ∈ [0,1] varying overT2, to multiply the
pinch functionp1D

γ in equation2, which becomes:

p((mu,mv)+k · (du,dv)) = p1D
γ (k) · pstr · (du,dv) (4)

This is implemented in a simple way, by encodingpstr

in the (dT
u ,dT

v ) channels of each texels. In active texels we
store, as(dT

u ,dT
v ), the values(pstr ·du, pstr ·dv). Step 4 of the
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Figure 10: Here, the signal texture is a normal-map encod-
ing a curved surface with a crease. The pinch strength is
changed from zero to one over the space of three fexels to
make the crease start smoothly. Left: fexels shown with a su-
perimposed8×8 grid, right: final result (screenshot).

Figure 11: A detail of a signal-texture Ts paired with a
pinchmap Tp where Tp has a resolution that is an half of
the one of Ts, to show the disposition of the texels of the two
textures. For a legend of symbols, see the caption of Fig.5.

fragment program in Section5.2 will now rightly compute
pstr · (du,dv) instead of(du,dv). Thanks to bilinear interpo-
lation, strengthpstr will vary smoothly acrossT2.

The ability to make boundaries smoothly start over several
texels is especially useful when the signal textureTs repre-
sents a normal field, and the 0th order discontinuity lines rep-
resents creases - like, for example, in an automobile chassis
(see Fig.10).

6.3. Open boundaries

Another important application of the above is when the
pinch strengthpstr is uniformly set to zero in a area, in which
case no pinching at all occurs in that area (see Figures10
and9). The ability to locally turn off pinching let us have non
closed discontinuity lines across the texture. A non closed
discontinuity line is (correctly) bound to start smoothly.

Figure 12: Actual screenshots featuring the same data as
Fig. 8. Left: pinched result, without solid lines. Middle and
right: solid black lines of different thickness are added in the
way described in Section6.5.

6.4. Different res. for the pinchmap and signal textures

Until now we assumed the pinchmapTp and the signal tex-
ture Ts had the same resolution. However, in general, the
resolution of the pinchmap can be 2K (with K ≥ 0) times
smaller than the signal texture. WhenK > 0, the texels ofTs

must be grouped in cluster sized 2K×2K , that will be placed
on one same side of the discontinuity. The displacement of
Tp with respect toTs is, in the general case, 2(−K−1) (see
Fig. 11).

In the fragment shader, the only difference is that the un-
desired fexel to be pinched are now smaller with respect to
the size of one fexel ofTp. Therefore the functionp1D

γ need
to be smaller in magnitude. The value of the parameterh
(in equation (1) and in Step 1 of the fragment code in Sec-
tion 5.2) is in the general case 2(−K−1) (see Fig.11).

On the contrary, it is not currently possible in our schema
to use a signal textures smaller than the pinchmap.

Within this limit, the two resolutions can be chosen in-
dependently. Intuitively, the resolution of the pinchmap de-
termines the complexity of the discontinuities - the higher it
is, the more complex and dense the discontinuity lines can
be (see Sec.5.1); the resolution of the signal texture deter-
mines instead the possible complexity of the color-map in
the smoothly varying zones.

6.5. Solid lines

Another easy-to-obtain effect consists of adding thick lines
of a constant color in correspondence of the discontinuities
lines, an effect that can be useful, for example, when the sig-
nal texture contains color information and we are targeting a
non-realistic rendering (see Fig.12). This is applicable only
when all discontinuity lines are closed.

To get this effect, it is sufficient to apply the anti-aliased
pinch functionpAA1D

γ , as defined in (3), and detect when
the 1st of its cases is applied. In this case anti-aliasing
would normally take effect. Instead, we simply overwrite
the current fragment color with a globally defined line color.
The parameterβ of pAA1D

γ determines line thickness (which
however will not be perfectly constant, due to the variation
of the Euclidean length of diagonal segments).
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In some application it could be appropriate to store line
color and thickness in each vertex of the model, or in an
additional texture, in order to make it possible to vary them
over the surface.

7. Automatic pinchmap creation tool

So far we described the way pinchmap-enhanced textures
work. In this section we detail how one can build, in a fully
automatic way, a pinchmap/signal texture pair to represent a
given signals.

7.1. Inputs and outputs

The input of this process must be a description of the origi-
nal signals, for example a vector-based representation of an
image, or a procedurally defined image, or a high-resolution
raster imageIHiRes. In our implementation we adopted the
latter approach because of its better flexibility (if the signal
is originally defined in any other way, it can be sampled to
form a hi-res raster image with arbitrary precision).

Moreover, we useIHiRes images with a extra alpha (trans-
parency) channel, that is used by the final tool user to specify
where the signal discontinuities must appear: the intended
meaning of this channel is as follows: wherever two regions
of IHiResare separated in the alpha channel by a steep jump
from zero to one or from one to zero, it means a sharp border
between the two corresponding texture regions is required.
On the contrary, where the alpha channel present no such
jump, the signal in the final result will be blended.

For example, the user can provide as input argbα color
image consisting of a foreground shape (where alpha is set
to one), silhouetted against the background (where alpha is
set to zero), to obtain a final result where that shape appears
separated from the background by a sharp boundary, and the
color varies smoothly both internally and externally of the
shape (see for example Fig.13).

Finally, we are assuming that the resolutionresp of the re-
quired pinchmapTp and the resolutionress of signal texture
Ts are also given as input. The two resolutions are supposed
to be much lower than the resolution ofIHiRes.

The output of the process is a pinchmap and a signal-
texture at the asked resolutions that can be combined to ap-
proximate the signal originally stored inIHiRes: in particu-
lar, the discontinuity encoded in the pinchmap will mimic
the boundaries discretely specified via the alpha channel;
the signal texture will store the signal specified in the other
channels ofIHiRes (whether they represented color, normal,
transparency, etc).

Once built, the two output textures can be stored and, later,
used independently from the original imageIHiRes that was
used to create them.

7.2. Algorithm

The algorithm consists of the following phases:

1. down-sample the alpha channelα of IHiRes into a bit-
maskILayer of resolutionresp;

2. enforce consistency constraints on the bit-maskILayer;
3. builddT

u dT
v andkT channels ofTp from the bitmask;

4. optimize the channelγT channels ofTp to matchIHiRes.α
5. fill Ts combining values of the channel other thanα from

proper locations ofIHiRes (and set the strength of each
active texel ofTp);

In the first four steps the pinchmapTp is constructed.

Step 1consists of a direct down-sampling ofα channel of
IHiRes. We build a temporaryILayer bit-mask with a bit for
each pinchmap fexel ofTp. All pixels of the corresponding
area ofIHiResare checked against the threshold 0.5, and the
ILayer bit is snapped to 0 or to 1 according to the majority of
the results (we keep track of the magnitude of the rounding
for the next step).

In step 2 we enforce the constrains described in Sec-
tion 4.4. Problematic areas are located, and then an iterative
local search is performed: in each iteration step we find and
apply the cheapest move that diminishes the global number
of broken constraints. An atomic move consists in assign-
ing a previously mixed 2× 2 patch ofILayer to all ones or
all zeros (overwriting their previous values), and its cost is
computed as the worsening of the total rounding error.

In step 3 ILayer will be used to identify active and inac-
tive pinchmap texels, and to consequently build thedT

u dT
v

andkT channels of each texel ofTp. This is straightforward:
each texel ofTp corresponds to the intersection of 4 pixels
of ILayer: if the four pixels are uniformly zero or ones, then
texel is not active andkT is assigned to−1 or +1 respec-
tively; else, the texel is active andkT is assigned to zero.
Values ofdT

u dT
v are then assigned as described in Sec.5.1.

The previous step ensured that we do not incur in forbidden
configurations.

Step 4 is the core part of the tool, where theγT channel
of Tp is optimized. Our objective is to assign a value to the
γT component of each texel that is either active or around an
active texel, so that the number of matching pixels ofIHiRes
is maximized. A pixel is considered to be matching if its
location ends up in the right side of the discontinuity, that
is when itsα value is bigger than 0.5 if and only if in the
corresponding point ofTp the interpolated valueγB is bigger
than the interpolated valuekB (see Section5.1). We do this
using a randomized simulated annealing approach.

We subdivideIHiRes in equal sized squaredcellseach cor-
responding to a fexels ofTp. First, we optimize locally values
of γT in each texel separately. A local optimization consists
of a series of tries:γT is increased and decreased by a pro-
gressively smaller delta and the new value is accepted only
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if it performs better than the old one. In each step the perfor-
mance is measured checking the number of matching pixels
in the fourcellscorresponding to the pinchmap-fexels shar-
ing the pinchmap-texel being optimized. This first search
ends in a local minima usually very far from the global one.

After this initial optimization, we iteratively choose a ran-
dom location ofTp, perturbγT values in a 2×2 patch of tex-
els around it, and then reoptimize separately eachγT values
in a 4× 4 patch of texels around it, like before. After each
iteration we accept the combined change only if it performs
better, in total, than the previous situation. This effectively
moves the solution away from the local minima.

The most expensive part (and the tighter sub-loop) of this
process consists the error computation for a givencell. That
part is highly optimized: for each row of pixels of eachcell
we can pre-compute and store once and for all the number of
guessed pixel for each possible integer position just before
the intersection, along that line, of the channelsγB andkB

(before, and after, that position all point of that cells are on
the same side of the discontinuity). The global error for a cell
is computed as the sum of those values. Of course, the error
associated to eachcell, once computed, is also stored for any
later query (changing aγT value invalidates this stored value
for all thecellsaround it).

In step 5, now that the pinchmapTp is ready, all we have
to do is to fill the signal-textureTs. To do that we first com-
pute the inverseg−1 of the functiong(u,v) = (u,v)+ p(u,v)
by brute force: we compute functiong for a dense sampling
of its argument, storing in each locationg(u,v) of a tem-
porary buffer the starting location(u,v). Then to each texel
of Ts, corresponding to the position(u,v) on Tp, we assign
a signal value that is a combination of the pixels ofIHiRes
aroundg−1(u,v).

When we compute this combination, we make sure that
we do not mix inTs pixels of IHiRes that belong to different
regions. That is, we must be sure to combine only pixels that
have allα > 0.5 (if in position (u,v) of Tp whereγ > k) or
α < 0.5 (otherwise).

In this step we also detect when the inputIHiRes im-
age presents values ofα around the discontinuity that are
far from 0 and 1. In this case we set the strength of the
pinchmap-texel to zero.

7.3. Results of the Pinchmap Creation Tool

We tested our method with a variety of input of different
sizes and with different parameters, with very good results.
Some example is visible in Fig.13.

The computation times are contained, keeping in mind
that this is just a preprocessing phase. The fourth phase,
being an iterative search over a very large domain, is the
most expensive one and takes proportionally almost all of
the time. However, thanks to the optimizations, total times

are in the order of a few seconds for a 32× 32 pinchmap
mimicking an original texture of 1024×1024.

8. Conclusions

We presented a texture representation that uses an auxil-
iary pinchmap to describe and embed custom discontinuities
along generally curved lines over standard bi-linearly inter-
polated 2D textures. We showed how the obtained results
are visually comparable to those usually obtainable only at
a cost of a severely larger texture memory usage. For exam-
ple, the 32×32 pinchmap encoded image, visible in Fig.13
(second image), shows a far better visual quality than the
128× 128 downsampled image (third image), which occu-
pies eight times as much memory. The former also behaves
better under extreme magnification.

Our approach is based on two basic ingredients. First, the
pinching approach means that we always resort to a single
final bi-linearly interpolated in the last texture access, with
positive effects both on visual quality and efficiency. Sec-
ond, the preceding texture access to the auxiliary pinchmap
is also bilinear interpolated, further improving efficiency
(both reducing the number of texture accesses and lead-
ing to a basically single-case algorithm), and also unlock-
ing simple solutions to achieve anti-aliasing, mip-mapping,
smoothly starting discontinuities, resolution differences be-
tween pinchmaps and signal textures, and so on.

A pinchmap/signal-texture pair is rendered in real time,
as it was predictable from the fragment program instruction
counts; moreover many per-fragment resources (texture ac-
cesses and ALU instructions) are left untapped for any fur-
ther computation.

The system is designed for minimal performance impact,
maximal quality and features during the rendering phase; the
cost is that becomes difficult to design a pinchmap that deliv-
ers the wanted discontinuities at the wanted locations. This
is why the work presented here would have been limitedly
useful without an automatic procedure to perform that task
with high performance and in acceptable times.

The resulting system -consisting in a preprocessing mod-
ule to create pinchmap/signalmap pairs, and a fragment pro-
gram to display them- can be used as a black box by final
user.

Limitations: Our approach is not free from limitations:
when the complexity of the discontinuity lines defy the
pinchmap expressiveness power, e.g. when two or more dis-
continuity lines cross each other, or three discontinuity lines
generate from a point, or too many lines run too near to each
other, then some of the lines are lost (and the image ap-
pears blurred). Also, in the texture access to the pinchmap
we are relying on a HW accelerated bilinear interpolation.
This can lead to artifacts if the hardware on the contrary per-
forms some complex (non linear) texel interpolation assum-
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Figure 13: Some results of the automatic pinchmap creation tool. Left: original starting image (alpha channel, which in both
cases separates foreground from background, is not shown). Second column: the result pinchmapped texture (actual screenshot
of the HW implementation): above both signal and pinchmap texture are sized 32× 32, below64× 64. Third column: for
comparison, a128×128 anti-aliased down-sampling of the original image. Last column: the signalmap-and the color-map
composing the pinchmap.

ing that it is manipulating colors, for example to take in ac-
count gamma correction. These feature must be disabled in
order for the pinchmap mechanism to work.

Pinchmap expressiveness:The lines that can be produced
are those that obtainable as the intersection of two channels
defined at pinchmap texels and bilinearly interpolated in be-
tween. This translates in a very powerful expressiveness, as
shown by the fact that complex images can be reproduced
by very small pinchmap (see Fig.13).

The constraints described in Sec.4.4 limit somehow the
expressiveness of the representation. For example, it is not
possible for a region of the texture separated by discontinu-
ity lines to consist of a single texel. This is an unavoidable
consequence of our basic choice: since we always interpolate
between four texels, then by definition the smallest separable
region consists of four texels. However, this is not a limita-
tion on the shapes that are obtained in the final result after
the pinching operations. Parametersγ, which typically range
in [−0.5+ 0.5], can also be assigned to values in(−1,+1)
without causing any artefact: the effect is that the disconti-
nuity line appears out of the zone originally covered by the
undesired fexels (note that now also one of the two regions
at the side of a pinched fexel, instead of beingexpandedover
it, is shrunka little).
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