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Experimentally observable quantum accelerator modes are used as a test case for the study of some general
aspects of quantum decay from classical stable islands immersed in a chaotic sea. The modes are shown to
correspond to metastable states, analogous to the Wannier-Stark resonances. Different regimes of tunneling,
marked by different quantitative dependence of the lifetimes on 1/�, are identified, depending on the resolution
of KAM substructures that is achieved on the scale of �. The theory of resonance assisted tunneling introduced
by Brodier et al. �Ann. Phys. 300, 88 �2002�� is reexamined and found to well describe decay whenever
applicable.
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I. INTRODUCTION

Classical Hamiltonian systems generically display mixed
phase spaces, where regions of regular motion and regions of
chaotic motion coexist �1�. Although no classical transport is
allowed between different, disjoint regions, quantum trans-
port is made possible by so-called “dynamical tunneling,”
which allows wave packets to leak through classical invari-
ant curves. In the case of a wave packet initially localized
inside a classical stable island, a transfer of probability into
the chaotic region arises, which may continue a long time,
and thus take the form of irreversible decay from the island,
whenever � is so small that the Heisenberg time related to
fast chaotic diffusion is much larger than the period�s� of
regular motion in the island. Islands of regular motion have
been found to play crucial roles in many contexts, such as
optical cavities �2�, driven cold atoms �3�, where they have
inspired detailed theoretical analysis �4�, and billiards, where
they motivated mathematical investigations �5� and atom-
optical experimental realizations �6�. Wide attention has been
attracted by chaos assisted tunneling, which denotes trans-
mission between symmetry-related islands, across a chaotic
region �7�. Slow tunneling out of islands dominates the dy-
namical localization properties in some extended systems
�8,9,13�.

In this paper we explore decay from regular islands into
the surrounding chaotic regions, which is a central theoreti-
cal issue in all the above hinted subjects. It is an appealing
idea that decay rates may be estimated, using only informa-
tion drawn from the structure of classical islands. On account
of the ubiquitous character of mixed phase spaces, this the-
oretical program is attracting significant attention �10–13�. In
this paper we address the problem in a special case, which
has a direct experimental relevance. The quantum accelerator
modes �QAMs� were experimentally discovered when cold
caesium atoms, falling under the action of gravity, were pe-
riodically pulsed in time by a standing wave of light �14,16�.
The theory of this phenomenon �15� shows that the dynamics

of an atom is described, in an appropriate gauge, by a formal
quantization1 of either of the classical maps:

Jt+1 = Jt + k̃ sin��t+1� ± 2��, �t+1 = �t ± Jt mod�2�� .

�1�

The classical phase portraits exhibit periodic �in J� chains of
regular islands. The rest of phase space is chaotic, and
QAMs are produced whenever an atomic wave packet is at
least partially trapped inside the islands. Therefore, QAMs
eventually decay in time, due to quantum tunneling �15�. The
problem of QAMs has a relation to the famous Wannier-
Stark problem �17� about motion of a particle under the com-
bined action of a constant and a periodic in space force field
�18�, and the class of QAMs we consider in this paper is due
to metastable states �4�, which are analogous to the Wannier-
Stark resonances, and is associated with subunitary eigenval-
ues of the Floquet evolution operator. We derive and numeri-
cally support quasi-classical, order-of-magnitude estimates
for their decay rates, based on classical phase-space struc-
tures. We theoretically and numerically demonstrate that de-
cay is determined by different types of tunneling, depending
on how significant the KAM structures inside the island are
on the scale of �, and in particular we show that these dif-
ferent mechanisms result in different quantitative depen-
dence on the basic quasi-classical parameter given by A /�,
where A is the area of an island. In the regime where higher-
order structures inside the island are quantally resolved, we
use the theory of resonance assisted tunneling �10� to de-

1The role of Planck’s constant in this quantization process is not
played by � �the Planck’s constant proper�, but by a different physi-
cal parameter, which is not, in fact, denoted � in the relevant pa-
pers. The theory derives map �1� from the Schrödinger equation in
the limit when this parameter tends to, by a process which is math-
ematically �though not physically� equivalent to taking a classical
limit. Therefore that parameter is here denoted by �, because its
actual physical meaning is immaterial for the theory discussed in
this paper.
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scribe the decay of QAMs and find a good agreement in the
presence of a single dominant resonance. In particular we
observe, in especially clean form, a remarkable stepwise de-
pendence on the quasi-classical parameter, as first predicted
in �10�.

The phase space islands which are studied in this paper
are directly related to experiments on laser cooled atoms
�14,16�. Unfortunately the step structure which is here pre-
dicted occurs in parameter ranges where the decay rate is
extremely small. Finding parameter ranges where decay rates
are appreciable, and still exhibit step dependence, is a chal-
lenging task for experimental application.

II. CLASSICAL AND QUANTUM DYNAMICS

QAMs one-to-one correspond to stable periodic orbits of
the map on the two-torus which is obtained from �1� on
reading J modulo �2�� �17,15�. This class of orbits in par-
ticular includes fixed points �i.e., period-1 orbits� of map �1�.
It is these period-1 orbits that give rise to the most clearly
observable QAMs, and in this paper we restrict to them2.
Map �1� differs from the standard map only because of the
drift 2�� in the first equation. Despite its formal simplicity,
this variant introduces nontrivial problems, concerning
Hamiltonian formulation and quantization, which are dis-
cussed in this section.

A. Wannier-Stark pendulum

Let k̃=k� and 2��=a�, with � a small parameter. For �
=0, map �1� has circles of fixed points at the “resonant”
values of the action J=2�s, �s�Z�. Straightforward calcula-
tion shows that for ��0 a stable fixed point, surrounded by
a stable island, survives near each resonant action, whenever
k is larger than a and smaller than a stability border �15�.
Other islands, related to periodic orbits of higher periods,
may or may not significantly coexist with such period-1 is-
lands, depending on parameter values. In any case, numerical
simulation shows that motion outside all such islands is es-
sentially chaotic at any ��0.

Using canonical perturbation theory, one finds �17� that in
the vicinity of resonant actions, and at first order in �, the
dynamics �1� are canonically conjugate to the dynamics
which are locally ruled by the “resonant Hamiltonian:”

Hres�J,�� =
1

2
J2 + �V���; V��� = − a� + k cos��� .

�2�

Multivaluedness of V��� is removed on taking derivatives,
so Hamilton’s equations are well defined on the cylinder,
even though the Hamiltonian �2� is not. They uniquely define
a “locally Hamiltonian” flow on the cylinder, which will be
termed the Wannier-Stark �WS� pendulum, because, if �
were a linear coordinate and not an angle, then �2� would be

the Wannier-Stark �classical� Hamiltonian for one-
dimensional motion of a particle in a sinusoidal potential
combined with a static electric field �18�. Trajectories of the
Wannier-Stark pendulum are obtained, by winding around
the circle the trajectories which are defined on the line by the
Wannier-Stark Hamiltonian.

If a=0, �2� is the Hamiltonian of a standard pendulum,
and motion is completely integrable in either of the two re-
gions in which phase space is divided by the pendulum sepa-
ratrix. If a�0, this is not true anymore. In particular, if �a�
	 �k�, then the flow has one stable and one unstable fixed
point. Motion is completely integrable inside the stable is-
land delimited by the separatrix, but not outside, because
trajectories are unbounded there and motion cannot be con-
fined to a torus �Fig. 1�. The separatrix �also called a
“bounce” �20� or “instanton trajectory” �21�� is the trajectory
which approaches the unstable point, both in the infinitely far
past, and in the infinitely far future �loop in Fig. 1, line PQ in
Fig. 2�. The resonant Hamiltonian provides but a local de-
scription of the motion near a resonance. It misses the peri-
odicity in action space which is an important global feature
of the problem; nevertheless, it does provide a description of
the inner structure of stable island�s�.

B. Quantization

Quantization of map �1� is a nontrivial task, because a
shift in momentum by 2��, as in the first Eq. �1�, may be

2These islands are not traveling ones. They nonetheless give rise
to QAMs because map �1� describes motion in an accelerating
frame �15�.

FIG. 1. Stable and unstable manifolds of a Wannier-Stark pen-
dulum �2� with a�=0.5 and k�=0.7. On the cylinder, arrows lie on
a single continuous trajectory.

FIG. 2. Wannier-Stark potential for a=0.2 and k=0.7.

SHEINMAN et al. PHYSICAL REVIEW A 73, 052110 �2006�

052110-2



inconsistent with quantization of momentum in multiples of
�. This problem disappears if the angle � in �1� is replaced
by x� �−
 , +
�, because then the map describes motion of
a particle in a line, and straightforward quantization yields
the unitary operator

U ª eia�X̂/�e−ik� cos�X̂�/�e−iP̂2/2�,

where X̂ and P̂ are the canonical position and momentum
operators. However, the quantum dynamics thus defined on
the line do not define any dynamics on the circle, except in

cases when Û commutes with spatial translations by 2�. This
case only occurs when a� is an integer multiple of �. Then
quasi-momentum is conserved and standard Bloch theory
yields a family of well-defined rotor evolutions, param-
etrized by values of the quasi-momentum. If a�=m� /n with

m and n integers, then it is easy to see that Ûn commutes with
spatial translations by 2� and so the nth power of the clas-
sical map “on the circle” can be safely quantized.

Similar subtleties stand in the way of quantizing the
Wannier-Stark pendulum. The WS Hamiltonian “on the line”
never commutes with translations by 2�, as long as a��0.
However, if a�=m� /n, then the unitary evolution generated
by the WS Hamiltonian over the integer time n does com-
mute with such translations �19�, and so it yields a family of
unitary rotor evolutions. Each of these yields a quantization
of the WS pendulum flow at such integer times. We shall
restrict to such “commensurate” cases. In the language of the
theory of Bloch oscillations �18�, these are the cases when
the “Bloch period” TB=� / �a�� and the kicking period are
commensurate.

III. DECAY RATES

Let Û generically denote the unitary operators that are
obtained by quantization of map �1� or powers thereof, as
discussed in Sec. II B. We contend that, despite classical

stable islands, the spectrum of Û is purely continuous. Quasi-
modes related to classical tori in the regular islands corre-

spond to metastable states, associated with eigenvalues of Û,
which lie strictly inside the unit circle, and thus have positive
decay rates �. They are analogous to the Wannier-Stark reso-
nances. Arguments supporting this contention are presented
in Appendix A, along with methods of numerically comput-
ing decay rates �. In this section we obtain order-of-
magnitude estimates of decay rates �.

Motion inside the islands is not integrable, but just quasi-
integrable, and displays typical KAM structures, such as
chains of higher-order resonant islands. We separately con-
sider the cases when such structures are small �resp., large�
on the scale of �. In the latter case, our basic theoretical tool
is the notion of resonance assisted tunneling, which was in-
troduced in �10�. This theory is presented from scratch in
Secs. III B and III C, with special attention to the role of
classical and quantum perturbation theory.

A. Wannier-Stark tunneling

First we consider the case when � is small compared to
the size of an island and yet large compared to the size of the

stochastic layer and of resonant chains inside the island. This
in particular means that second-order corrections on the reso-
nant Hamiltonian �2� are classically small, and so one ex-
pects the bare resonant Hamiltonian to capture the essential
features. This Hamiltonian is formally the Wannier-Stark
Hamiltonian and stable islands are associated with elliptic
motion near the bottom of the potential wells �Fig. 2�. A
WKB estimate for the smallest decay rate from a well is

� �
�0

2�
e−2S�A,B�/�, �3�

where �0 is the angular frequency of the small oscillations
and iS�A ,B� is the imaginary action along the classically
forbidden path from point A to point B, at constant energy
equal to the value of the potential at the bottom of the well:

S�A,B� = �
�A

�B

d��2�„V��� − V��A�… .

Reflection �→�−� turns �A into �Q, �B into �P, and reverses
the sign of the argument of the square root; so, S�A ,B�
=S�P ,Q�, the real action along the path from P to Q at
constant energy equal to the value of the potential in Q. This
path is the separatrix, so 2S�A ,B� is equal to the area en-
closed by the separatrix, which is in turn nearly equal to the
area A of the actual island in the regime we are considering.
Therefore,

� �
�0

2�
e−A/�. �4�

This result is compared with a numerical simulation in Fig.
3. Even better agreement with numerical data is obtained by
using in �3� the trajectory with energy ��0 /2 above the bot-
tom of the well, which is an approximation to the ground
state energy in the harmonic approximation. This is shown in
Figs. 3 and 4. The validity of the standard WKB formula �3�
and its accuracy is discussed in �20� and �21�.

The success of the elementary WKB approximation �3� is
due to the fact that in cases like Figs. 3 and 4 the potential
barriers on the right of �B are significantly lower than V��A�,
so that tunneling trajectories have to cross just one potential
barrier. When this condition is not satisfied, one is faced with
the full complexity of the WS problem.

B. Phenomenological quantum Hamiltonian

In Fig. 4�b� we show the dependence of � vs �, for the
case of the island of Fig. 4�a�. Like in the case of Fig. 3,
second- order resonances are not quite pronounced here and,
so, at relatively large values of � �leftmost part of the figure�
the dominant contribution to decay is given by WS tunnel-
ing, and good agreement is observed with the theory of Sec.
III A. As � decreases, a clear crossover is observed to slower
decrease of �, indicating that a different mechanism of decay
is coming into play, which overrules WS tunneling. In our
interpretation, this is the mechanism of “resonance assisted
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tunneling” to be discussed in what follows, which was intro-
duced in Ref. �10�. It is a quantum manifestation of classical
KAM structures, and so we now consider the case when � is
small compared to the size of the island, yet phase-space
structures produced by higher-order corrections to the reso-
nant Hamiltonian are not small on the scale of �. The ap-
proach to be presently described is based on a quantum
Hamiltonian, which is not formally derived from the exact

dynamics, but is instead tailored after the actual structure of
the classical phase space. This heuristic approach is appli-
cable when the WS linewidth �4� is negligible with respect to
the coupling between different WS tori �and between WS tori
and the continuum�, which is due to higher order corrections,
and in fact it totally misses WS tunneling given by �4�. It is
assumed that the classical partition island/chaotic sea is
quantally mirrored by a splitting of the Hilbert space of the

FIG. 3. �Color online� �a� Phase portrait of

system �1� with negative sign, for k̃=0.8 and
2��=0.7. �b� Circles: numerically computed de-
cay rate from the center of the regular island, as a
function of 1/�. Lines show WKB estimates, ob-
tained by using classically forbidden paths at
constant energy �2�. These are equal either to a
minimum of the WS potential �dashed line�
shown in Fig. 2, or to the ground state energy in
the potential well, estimated in the harmonic ap-
proximation �solid line�.

FIG. 4. �Color online� Same as Fig. 3 for k̃
=0.7 and 2��=0.5. The island chain highlighted
in �a� is generated by a 11:1 resonance at I111

	0.251, with v=4.37610−8, and M =2.785
�see Appendix B�. The dotted line in �b� repre-
sents the theory �16� for decay assisted by this
resonance, using the unperturbed spectrum �10�.
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system in a “regular” and a “chaotic” subspace, with respec-

tive projectors P̂r and P̂c, and that the Hamiltonian Ĥ may be
written as

Ĥ = Ĥr + Ĥc + V̂ + V̂†, �5�

where Ĥr= P̂rĤP̂r is a “regular” Hamiltonian, Ĥc= P̂cĤP̂c is a

“chaotic” Hamiltonian, and V̂= P̂rĤP̂c couples regular and
chaotic states. In the case of maps, the Hamiltonian formal-
ism has to be recovered by means of Floquet theory. Eigen-
values of Floquet Hamiltonians fall in Floquet zones, and,
for a system driven with a period T in time, the width of a
zone is 2�� /T. In our case we assume T=1 and so we iden-
tify the first Floquet zone with the interval �0,2���. For the

Hamiltonian Ĥc we assume in our case �where a�0 is al-
ways understood� a continuous spectrum.3 As this Hamil-
tonian is assumed to be “chaotic,” we further assume that its
quasi-energies are nondegenerate and completely fill each
Floquet zone, because typical random matrices drawn from
circular ensembles have simple spectra, with eigenphases
uniformly distributed in �0,2��. The discrete eigenvalues En

of the regular Hamiltonian Ĥr are therefore immersed in the

continuous spectrum of the chaotic Hamiltonian Ĥc, so the

coupling perturbation V̂ drives them off the real axis, and the
imaginary parts −i��n /2 they acquire are estimated by Fer-
mi’s golden rule:

�n �
2�

�
�
E,c�V̂†�En��E=En

2 , �6�

where �E ,c� is the eigenvector of Ĥc associated with an ei-
genvalue E in the continuous spectrum ��-function normal-
ization in energy is assumed for such eigenvectors�. Choos-

ing En in the first Floquet zone of Ĥc, �6� may be rewritten as

�n �
2�

�
�P̂0V̂†�En��2��En� .

where P̂0 is projection onto the first zone of Ĥc. The function
��E� is the local density of states, normalized to 1, of the

vector P̂0V̂†�En� with respect to the chaotic Hamiltonian Ĥc.

It yields the probability that a transition prompted by V̂† from
state �En� will lead to the continuum state �E ,c� in the first
zone. One may introduce the “ergodic” assumption, that all
in-zone transitions have the same probability. Then

�n �
1

�2 �P̂0V̂†�En��2. �7�

Whether or not the ergodic assumption is accepted, �7� may
be assumed to hold up to a factor of order 1.

C. Resonance assisted decay

At first order in �, the Hamiltonian Ĥr should correspond
to the classical resonant Hamiltonian, and its eigenstates to

quantized tori thereof. Therefore, the coupling V̂ only reflects
classical corrections of higher order than first, because the
resonant Hamiltonian has no coupling between the inside
and the outside of an island. Higher order corrections are

present in Ĥr as well, and, adding their secular �averaged�
parts to the resonant Hamiltonian, a new Hamiltonian H̄res is
obtained, which is still completely integrable, and shares the
action variable I of the integrable WS pendulum flow �inside

the WS separatrix�. Semiclassical quantization of H̄res yields

energy levels en= H̄res�In� with quantized actions In= �n
+1/2��. In the following, by “perturbation” we mean what is
left of higher-order corrections, after removing averages.

Thus the “unperturbed” quasi-energy eigenvalues of Ĥr are
given by en+2�N� with N any integer �2�� is the width of
a Floquet zone�. In the classical case, the destabilizing ef-
fects of the perturbation are mainly due to nonlinear reso-
nances. A classical r :s �r ,s integers� resonance occurs at I
=Irs if r��Irs�=2�s, where ��I�=�H̄res�I� /�I is the angular
frequency of the integrable motion in the island. The quan-
tum fingerprints of classical nonlinear resonances are quasi-
degeneracies in the quasi-energy spectrum. A degeneracy ap-

pears in the unperturbed quasi-energy spectrum of Ĥr,
anytime two or more energy levels en ,em , . . .. are spaced by
multiples of 2��, that is the width of a Floquet zone. In the
vicinity of a classical resonance Irs, this is approximately
true, whenever n−m is an integer multiple of r, for, in fact,
�en−em�	��n−m���Irs�=2��s�n−m� /r. Thus, in the semi-
classical regime, a classical resonance induces quantum
quasi-degeneracies, which involve whole sequences of quan-
tized tori. As such tori are strongly coupled by the perturba-
tion, decay is enhanced. This quantum effect is resonance
assisted decay �10�.

The perturbative approach assumes that the sought for
metastable states basically consist of superpositions of such
strongly coupled, quasi-degenerate states. This leads to re-

placing P̂r in �5� by projection P̂R onto a quasi-degenerate
subspace, similar to methods used in �28�; and so, in order to

use Fermi’s rule �7�, P̂RĤP̂R must be diagonalized, and P̂RV̂
must be specified. To this end we first write the matrix of

P̂RĤP̂R in a basis of quasi-degenerate states. Let In0
be a

quantized action close to Irs. The energy levels en0+Nr, where
the integer N takes both negative and positive values, have
an approximately constant spacing, close to 2��s, and thus
form a ladder. There is one such ladder for each choice of the
integer n0 in the set of the r closest integers to nrsIrs /�
−1/2 �not necessarily an integer�, and we fix one of them.

3One might more conventionally model Ĥc by a random matrix, of
rank ��−1, and still reach the crucial result �7�, at the price of using
some “quasi-continuum” ansatz at some point. In other words one

can assume that Ĥc is a random matrix from a circular ensemble,
where the density of the quasienergies is uniform and the eigen-
states are statistically independent of the eigenvalues. In the end the
limit of an infinite dimensional matrix is taken. We prefer not to
repress continuity of the spectrum, which is a crucial feature of the
QAM problem.
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The quasi-energy levels en0+Nr−2��Ns are quasi-degenerate.

Denoting �N� the corresponding eigenstates, the projector P̂R
onto the ladder subspace is a finite sum �N�N�
N�, where N
ranges between a N*	0 and a N*�0. The number of terms
in the sum is equal to the number of nearly resonant states
inside the island and so is given by L+1 where L=N*−N*.
Using that the actions IN of levels in a r :s ladder are approxi-
mately spaced by multiples of r�, L is estimated by

L 	 Int�� A
2��

− 1�1

r
� . �8�

If only nearest-neighbor transitions are considered, the ma-

trix of P̂RĤP̂R over the basis �N� is tridiagonal, of size L

+1. The off-diagonal elements v�N�= 
N�Ĥ�N+1� may be
semiclassically assumed to slowly change with N, and will
be hence denoted simply by v. The diagonal elements are the
nearly degenerate quasi-energies W�N�=en0+Nr−Nsh, and

Taylor expansion of H̄res�I� to second order near Irs yields

W�N� 	 H̄res�Irs� + 2��
s

r
�n0 − nrs� +

�2

2M
�n0 + rN − nrs�2,

�9�

where M =1/���Irs�. It follows that, apart from a constant
�independent on N� shift, the diagonal matrix elements of

P̂RĤP̂R are

W�N� 	
�2

2M
�rN + �n�2. �10�

where �n=n0−nrs. Replacing this in P̂RĤP̂R, one easily rec-

ognizes that the classical limit �→0, L→
 of P̂RĤP̂R is the
classical pendulum Hamiltonian:

Hrs�I*,�*� =
r2I*2

2M
+ 2v cos��*� , �11�

in appropriate canonical variables I*, �* �N��I*= �I
−Irs� /r as �→0�. This is the well-known pendulum approxi-
mation near a classical resonance �1�, directly derived from
quantum dynamics �22�, and is related by a simple canonical
transformation to the slightly different Hamiltonian �B1�
which is used in �10�.

The coupling to continuum P̂RV̂ remains to be specified.
Of all quantized tori in the chain, the closest to the chaotic
sea corresponds to state �N*�, and we assume that this one
state �in the given chain� is coupled to the continuum. This
assumption implies

V̂†P̂R = ���
N*� , �12�

where ��� is some vector in the chaotic subspace, about
which our one assumption is that it lies in the first Floquet
zone. Its norm has the meaning of a hopping amplitude from
the “gateway state” �N*� to the normalized state ���−1���. The
latter state may be thought of as a “last beyond the last”
nearly resonant state, corresponding to an unperturbed torus
which was sunk into the stochastic sea by the perturbation

and so can no longer support a regular quasi-mode of Ĥr.
Thus one may denote ���=v�N*�, and extrapolate to this last
transition, too, the semiclassical assumption v�N*��v. After
all such additional constructions, the “ergodic assumption”
�end of Sec. III B� is just that this last state has equal projec-

tions on all eigenstates of Ĥc. Fermi’s rule �7� now yields, for

the decay from an eigenstate �Em� �0�k�L� of P̂RĤP̂R,

�m �
v2

�2 �
N*�Em��2. �13�

The labeling m=0, . . . ,L of the eigenstates of P̂RĤP̂R is ar-
bitrary for the time being. The tridiagonal Hamiltonian is
defined on a chain of states and the scalar product in the last
formula is the value of the eigenfunction 
N �Em� at the right-
most site N=N* in the chain. Assuming the eigenfunction to
attain its maximum modulus at a site Nm, its value at site N*

should be of order exp�−�m�N*−Nm��. The quantity �m
−1 is the

fall-off distance of this eigenfunction. For a tridiagonal
Hamiltonian on a chain, arguments by Herbert et al. �23�
estimate this distance as

�m � ln�Dm

v̄
� , �14�

where Dm is the geometric average of the differences
�Ej −Em� �m fixed, j variable, j�m�, that is

ln�Dm� =
1

L
�

j��m�=0

L

ln��Ej − Em�� , �15�

and v̄ is the geometric average of the hopping coefficients
v�N� �N*�N�N*−1�. Under the assumption v�N�	v
=const, v̄=v, and so finally

�m �
v2

�2� v
Dm

�2�N*−Nm�

. �16�

It should be emphasized that the Em used in �15� are the

eigenvalues of P̂RĤP̂R and not its diagonal elements Wm
�10�, and that Eq. �14� is not perturbative.

D. Single-resonance-assisted decay

At any v�0, an island hosts a dense set of resonances,
but only a few of them are quantally resolved. On the other
hand, quasi-resonant ladders of states may be formed, only if
the resonant transitions are not so broad as to involve off-
ladder states. That means that the classical chain of islands
should not be too wide, because its width is determined by
the same parameter v which yields the hopping amplitude
between nearly resonant states.

In this section we consider the case when a single, not too
wide resonance dominates all the others, so that each meta-
stable state may be assumed to sit on one of the ladders
which are associated with that resonance. Decay rates �m are
not affixed to unperturbed tori, but to eigenstates �Em� of a
ladder Hamiltonian. For v=0 these correspond to quantized
tori in the quasi-resonant ladder, via �10�, and their labeling
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by m=0, . . . ,L may be chosen accordingly. For not quite
small v, however, the correspondence between metastable
states and unperturbed tori may be broken, due to avoided
crossings, and so labeling by the original quantum number
may no longer reflect how deep in the island an eigenstate is
located. We restrict the following discussion to decay “from
the center of the island,” meaning that we consider a meta-
stable state, which is mostly supported in the innermost part
of the island, and is labeled by m=0. For this state, �16�
reads

�0 �
v2�L+1�

�2D0
2L =

v2

�2e−2�0L; �0 = ln�D0� − ln�v� . �17�

For quite small v, explicit calculation is possible, using for
Ej their unperturbed �v=0� values given by �10�. This leads
to

�Ej − E0� 	 �2�r2j2 − 2nrsrj�/2M , �18�

and then �16� with �14� and �15� leads to

�0 � ln� �2

2Mv
� +

1

L
�
j=1

L

ln��r2j2 − 2nrsrj�� . �19�

to be used in �17�. In the average, �17� takes the form �cf.
�8��

�0 �
v2

�2e−�0A/�r�. �20�

This equation shows that the average dependence of �0 on
1/� is exponential, because the dependence of �0 on � is
semiclassically weak. In fact, v is a classical quantity, and in
the limit �→0 the average over levels Ej that enters Eq. �15�
turns into a purely classical quantity, given by the phase-
space average of ln�Hrs−E0� �cf. �11�� over the island. Ap-

proximating the sum in �19� by an integral, and denoting
Ars=2�Irs=2��nrs the area enclosed by the r :s resonant
unperturbed torus, and x=Ars /A,

�0 � − ln�8�2Mv
A2 � − 2 + 2x ln�2x� + �1 − 2x�ln��1 − 2x�� .

�21�

In formula �17� �with �19��, L is anyway a discrete variable,
which discontinuously jumps by 1 any time increase of 1 /�
grants accommodation of a new quasi-resonant torus in the
island �cf. �8��. This produces a stepwise dependence of �0
on 1/�, superimposed on the average exponential depen-
dence. This structure is smoothed in �20� with �21�.

FIG. 5. �Color online� �a� Phase portrait of

map �1� with negative sign, for k̃=2.5 and 2��
=1. The four-island chain is due to a 4:1 reso-
nance at I41	0.43, with v	7.27510−4 and
M 	3.866. �b� Minimal decay rate from the is-
land shown in �a�, calculated by different numeri-
cal �symbols� and theoretical �lines� methods.
Circles: truncated basis method. Pluses: long-
time decay of an initial coherent state in the cen-
ter of the island. Small squares: complex scaling
method. Solid line: formula �17�, with �19�.
Dotted-dashed line: continuum approximation
�20� and �21�.

FIG. 6. �Color online� Comparison between �17�, with �19�, and
the continuum formula �20� and �21�.
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E. Numerical results for resonance-assisted decay

Equations �17� and �20� �supplemented by �19� or �21��
are the main results of the theory of resonance assisted decay
and are tested against numerical results in this section. They
require specification of M ,v ,Irs as input parameters. In the
case of well-pronounced chains of resonant islands, the val-
ues of M, v, and Irs may be found by “measuring” areas in
the classical phase-space portrait, taking advantage of the
fact that a resonant chain is bounded in between the separa-
trices of a pendulum �11�. This method was introduced in
�10� and is reviewed in Appendix B for the reader’s conve-
nience.

For small v, unperturbed eigenvalues �10� may be used in
�15� for the purpose of calculating Dm, leading to �17� �with
�19��, but one has to beware of values of � that enforce
degeneracy of the unperturbed spectrum �10�. Inadvertent
use of the spectrum �10� in �15� in such cases leads to arti-
ficial divergence of �. In the actual spectrum to be used in
�15�, degeneracies are replaced by avoided crossings, which
may lead to local enhancement of resonance-assisted tunnel-
ing, as discussed in Appendix C and shown in Fig. 11.

A case with a single dominant resonance 4:1 is presented
in Fig. 5. Decay rates calculated from �17� with �10� and �19�
are shown in Fig. 5�b� for the innermost state in the island
which is shown in Fig. 5�a�. Also shown are results of di-
rectly calculating �’s, by methods described in Appendix A.
Formula �17�, with �19�, is seen to correctly reproduce the
actual �’s, in order of magnitude at least. The stepwise de-
pendence predicted in �10� and explained in the end of pre-
vious section is here remarkably evident. The continuum
�quasiclassical� approximation �20� and �21� is also shown in
the same figure. In Fig. 6 it is seen to better and better agree
with �17�, with �19�, at smaller and smaller values of �.

As remarked in Sec. III D, the presented theory, being
essentially perturbative, is expected to fail in the case of

large classical resonances. An example is presented in Fig. 7.
Finally in Fig. 8 we present a case with two resonant chains
of comparable size. Results are not well described by the
theory based on either resonance, and thus appear to contra-
dict a somewhat natural expectation, that each resonance
should contribute its own set of metastable states. The single-
ladder picture may not be adequate in such cases, which
therefore remain outside the present scope of the theory.

IV. DISCUSSION AND CONCLUSIONS

The decay rates of some metastable states related to phase
space islands were calculated and the required theoretical
framework was developed. The main results of the paper are
�4�, �16�, and �17�, where the decay rates of wave packets in
phase space islands were calculated for various conditions. If
the effective Planck’s constant is sufficiently large, so that
island chains cannot be resolved on its scale, standard WKB
theory was found to work well. As the effective Planck’s
constant is decreased, island chains are resolved and domi-
nate the decay by the mechanism of resonance assisted tun-
neling. Its signature here is the step structure of Fig. 5�b�.
The average slope of ln � �see �20�� as a function of 1/� is
−�0A /�r, with �0 given by �21�, and is independent of �. In
the WKB regime a different slope is found �see �4��. For
some values of the parameters, resonance assisted tunneling
can be further enhanced by a degeneracy between a semi-
classical state deep inside the island and one that is close to
the boundary. An interesting question is about possible ef-
fects of this kind, due to “vague tori” �24�, i.e., to classical
structures which quantally act as tori, in spite of lying out-
side an island. Indeed, observations in �15� have suggested a
possible role for cantori in enhancing QAMs at times.

The theory strongly relies on the dominance of one reso-
nant island chain. If the phase space area of the chain is not

FIG. 7. �Color online� Illustrating a case with
a very broad resonant chain. �a� Phase portrait of

map �1� with negative sign, for k̃=� and 2��
=0.5. The numerical values for the 3:1 resonance
are I31=0.13, v=1.910−3, M =1.52. �b� Mini-
mal decay rate from the island, vs 1/�. Circles:
numerical data �truncated basis�. Dotted, dashed,
and dash-dotted lines show decay rates for the
three lowest-lying states in the island, computed
from the theory of decay assisted by the large 3:1
resonance. The solid line shows the smallest of
these.
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small as is the case in Fig. 7 or if the tunneling is assisted by
two �or more� resonant island chains of approximately equal
strength, as is the case in Fig. 8, our theory requires modifi-
cation.

The theory is relevant for systems of experimental interest
but the steps of Fig. 5 were found for a regime where the
decay rate is too small to be experimentally accessible. Over-
coming this problem is a great theoretical and experimental
challenge.
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APPENDIX A: METASTABLE STATES

Our methods of computing decay rates � were �1� basis
truncation, �2� complex scaling, and �3� simulation of wave-
packet dynamics. In the cases investigated in this paper, the
most economical one, and thus the one of our prevalent use,
was �1�. The other two methods were used to cross-check
results of �1� in a number of cases. The observed agreement
between such completely independent computational
schemes demonstrates the existence of resonances �in the
sense of metastable states�.

1. Basis truncation

Let Û denote the unitary evolution operator that is ob-
tained by quantizing map �1�, as described in Sec. II B, and
let �n� �n�Z� be the eigenvectors of the angular momentum

operator Ĵ, such that 
� �n�= �2��−1/2 exp�in��. “Basis trunca-

tion” consists in replacing Û by Û�= P̂�ÛP̂�, where P̂�

=��n����n�
n�. This introduces an artificial dissipation, which
turns the quantum dynamics from unitary to subunitary. The

eigenvalues zj �j=1, . . . ,2�+1� of Û� lie inside the unit
circle, with positive decay rates � j =ln�1/ �zj�� /2. As � is in-
creased, most of them move towards the unit circle, but some
appear to stabilize at fixed locations inside the circle, because
they approximate actual, subunitary eigenvalues of the exact
��=
� nondissipative dynamics. The seeming contradiction

to unitarity of the limit dynamics of Û is solved by the ob-

servation that the eigenfunctions of Û�, which are associated
with such eigenvalues, tend to increase in the negative mo-
mentum direction, �Fig.10�, as expected of Gamov states,
and if this behavior is extrapolated to the limit, then they

cannot belong in the Hilbert space wherein Û acts unitarily.
In order to make room for such non-unimodular eigenvalues,

Û must be extended to a larger functional space. Complex
scaling, to be described in the next subsection, provides a
consistent method of doing that.

Simulations of wave packet dynamics, performed in the
total absence of any dissipation whatsoever, confirm this in-
terpretation of the stable subunitary eigenvalues �Fig. 9�. The
initial wave packet is a coherent state supported near the
center of the island. We use a fast Fourier transform �FFT�
algorithm, so the computed evolution is fully unitary, and
reliably reproduces the exact evolution over a long time,
thanks to the large dimension of the FFT. We compute the
decay in time of the probability in a momentum window
which contains the classical island. After an initial rapid de-

FIG. 8. �Color online� Illustrating a case with
two classical resonances of comparable size.

Here k̃=1.329 and 2��=0.5336. Circles in �b�
represent the minimal decay rates from the trun-
cated basis method. Lines in �b� represent the
theory of resonance assisted decay, using either
the 6:1 resonance �solid line� or the 7:1 resonance
�dashed line�. The former resonance has v=1.8
10−4, M =4.504, I61=0.46, and the latter has
v=3.110−4, M =2.626, I71=0.93.
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cay, due to the escape of the part of the distribution which
initially lies outside the island, the decay turns into a clean
exponential with rate �	5.66 �Fig. 10�. Among the eigen-
functions of the truncated basis evolution, which correspond
to stabilized eigenvalues, we select the one which has largest
overlap with the chosen initial state. We thus find that �i� the
decay rate � of this eigenfunction is 	�, and �ii� the Husimi
function of that part of the wavepacket, which has survived
in the chosen window until the end of the dynamical calcu-
lation, nearly reproduces the Husimi function of the eigen-
function �Fig. 9�. Numerical computation of long-time expo-
nential decay may be less easy than in the above particular
example. If an initial state is overlapped by several meta-
stable states with slightly different �, resolving them may
take quite a long computational time, and hence a huge basis,
because of accelerated motion outside the island.

2. Complex scaling

Scattering resonances may be sometimes computed by di-
agonalizing a non-Hermitian Hamiltonian, which is con-
structed by “complex coordinate” methods such as analytic
dilation and the like �25,26�. Despite the absence of scatter-
ing theory, a method of this sort was devised for the subuni-
tary eigenvalues considered in this paper, as follows. Any

function ���� over �0,2�� is at once a function �̃�z� of the
complex variable z running on the unit circle. Let B denote
the class of those functions ����, which can be analytically
continued to the whole complex plane, except possibly the
origin. For given 1���0 the scaling operator h� is defined

to act on the functions of this class as in �h������= �̃��ei��.
The crucial property of the operator Û, which makes the
present construction possible, is that of transforming func-

tions in class B in functions in the same class, and so the

operator U�h�Ûh�
−1 is a well-defined operator in B. This

operator trivially extends by continuity to an operator U�

�27�, which is defined on the whole of L2��0,2���. This ex-

tension formally amounts to defining Û also on a class of
functions, which are not square integrable. The new “func-
tions” thus acquired in the domain of the evolution operator
may be very singular objects; e.g., in the momentum repre-
sentation, they are allowed to exponentially diverge at infin-

ity. In the special case a� /�=n with n integer, Û� has the
form

Û� = �nein�̂e−ik+ cos��̂�ek− sin��̂�e−iĴ2/2�, k± =
1

2

k̃

�
�� ± �−1�

which restitutes Û for �=1. The eigenvalues of Û� as an L2

operator are at once eigenvalues of the “extended” Û, and

each of the latter eigenvalues is an eigenvalue of Û� for �
sufficiently distant from 1. The “complex scaling” method of
computing �, which is mentioned in the main text, consists

in diagonalization of Û�. At small � this method is compu-
tationally problematic, due to exponentially large elements in

the matrix of Û�.

APPENDIX B: INFERRING PARAMETERS OF A
CLASSICAL RESONANCE FROM PHASE PORTRAITS

Parameters Irs, M, and v of a classical r :s resonance
respectively specify the value of the unperturbed action
where the resonance is located, the inverse nonlinearity
1 /���Irs�, and the strength of the resonant harmonic pertur-
bation. These parameters are indispensable for the formalism

FIG. 9. �Color online� �a�,�b�,�c� Evolution of an initial coherent

state located at the center of the island of Fig. 5, for k̃=2.5, 2��
=1, �=0.25, numerically simulated by a FFT method with basis
size 217. �a�,�b�,�c� show contour plots of the Husimi functions at
times t=100, t=1000, t=16 000, respectively. �d� Husimi contour
plot of the eigenfunction of the truncated basis dynamics, which has
the largest overlap with the initial coherent state. The size of the
truncated basis is 4096.

FIG. 10. �Color online� �a� Decay in time of the probability in a
momentum window containing the island, for the same parameter
values as in Fig. 9, and for the same choice of the initial state. The
size of the basis used in the simulation is 218. The straight line has
slope 	−5.66. �b� Squared modulus of the truncated basis eigen-
function presented in Fig. 9�d�, in the momentum representation.
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described in Secs. III C and may be retrieved from the phase-
space portrait, using formulas taken from �12�. Here we re-
produce a sketchy derivation for the reader’s convenience.
Motion in an r :s resonant chain is approximately described
by a pendulum Hamiltonian �1�, which may be written in the
form �which is canonically equivalent to �11��:

Hrs�I,�� =
1

2M
�I − Irs�2 + 2v cos�r�� . �B1�

In this paper, I is the action variable of the WS-pendulum
Hamiltonian �2�. The separatrices of Hamiltonian �B1� are
the curves I=I±���=Irs±2�Mv(1−cos�r��), and so the
phase areas S± they enclose satisfy:

S+ + S− = 4�Irs,

S+ − S− = 2�
0

2�

d��I+��� − Irs� = 16�2Mv . �B2�

The monodromy matrix of the stable period-r orbit that is
responsible for the resonant chain is easily obtained by lin-
earizing the flow �B1� near the stable equilibrium point�s�.

Its trace is found to be M=2 cos�r�� where �=r�2v /M is
the angular frequency of the small pendulum oscillations.
This leads to

�2v/M = r−2 arccos�M/2� . �B3�

The phase-space areas S± and the monodromy matrix can be
numerically determined, and once their values are known
Eqs. �B2� and �B3� can be solved for Irs, M, and v.

APPENDIX C: AVOIDED CROSSINGS

An exact degeneracy arises in the unperturbed ladder
spectrum �10� whenever two quantized actions in the ladder
are symmetrically located with respect to the resonant action
Irs. This requires �n=0 or �n= ±r /2 in �10� and so, if �ni

+1/2�� is the smallest quantized action in the ladder, such
symmetric pairs exist if, and only if,

1

�
=

2ni + lr + 1

2Irs
and L��� � l , �C1�

for some integer l�1. In the above inequality, the length L
of the ladder depends on � as in �8�. In the case of Fig. 5,

FIG. 11. �Color online� �a� Decay rate from the first excited state in the island, vs. 1 /�, for the same parameter values as in Fig. 5. Dots:
numerical �truncated basis method�. Solid line: formula �16� with �15�, using the unperturbed ladder spectrum �10�. Squares: same formula,
using the perturbed spectrum of the tridiagonal matrix with �10� as diagonal elements. Dashed line: same formula, using the actual spectrum,
semiclassically reconstructed from the layout of tori in the island. �b� The eigenstate of the �truncated� evolution operator, corresponding to
the decay rate shown in �a� for values of 1 /�: 7, 8, 8.2, and 8.6 �from above down�, in the momentum J representation. Only a J interval of
roughly the size of the island is shown. �c� Decay rate � �circles� and real quasi-energy w �squares� vs. 1 /�, for the first �full symbols� and
the fifth �empty symbols� excited sstates.
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where ni=0 �the ground state�, �C1� is never satisfied for
1 /�	20. The data in Fig. 5 were computed using the spec-
trum �10�, and no significant difference could be found be-
tween them and data computed by using the actual spectrum,
semiclassically reconstructed from the layout of tori in the
island. In Fig. 11, where ni=1 �the “first excited state”�, �C1�
is satisfied for 1 /�=8.2,12.8,17.44, corresponding to l
=1,2 ,3. At such values of 1 /� the spectrum �10� �with the
appropriate �n� is degenerate and using it in formulas �15�
and �16� obviously causes � to diverge, as shown by the
narrow peaks in Fig. 11. Such artifacts disappear on inserting
the proper �perturbed� spectrum, obtained by diagonalizing
the ladder Hamiltonian with the diagonal elements given by
�10�, because for v�0 the spectrum is never degenerate.
Nevertheless avoided crossings take place at the values �C1�
of �, giving rise to local peaks in the dependence of � on �.

At the same values of 1 /� avoided crossings are observed
even between subunitary, stabilized eigenvalues of the trun-
cated evolution operators �see Appendix A�. This is shown in
Fig. 11�c�. The eigenvalues are written z=e−�/2−iw and it is
seen that, as 1 /� approaches a value 	8.2, a pair of complex
eigenvalues undergoes a close avoided crossing. The corre-
sponding states exhibit standard behavior at avoided cross-
ings. The distribution in momentum J of one of them is
shown in Fig. 11�b�. This state nominally corresponds to the
n=1 unperturbed state, and in fact in �b� �top� it looks similar
to the first excited state of a harmonic oscillator. The other
state nominally corresponds to the n=5 unperturbed state. At
the avoided crossing �3d inset from top in 11�b�� the former
state significantly expands over the island, because it is ba-
sically a superposition of two unperturbed states, which are
located symmetrically with respect to I41. This gives rise to a
local enhancement of the decay rate.

�1� A. J. Lichtenberg and A. A. Lieberman, Regular and Chaotic
Motion �Springer-Verlag, New York, 1992�.

�2� J. U. Nckel and A. D. Stone, Nature �London� 385, 45 �1997�;
C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nckel, A. D.
Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science 280, 1556
�1998�; H. E. Tureci, H. G. L. Schwefel, A. D. Stone, and E. E.
Narimanov, Opt. Express 10, 752 �2002�.

�3� W. K. Hensinger, H. Haffner, A. Browaeys, N. R. Heckenberg,
K. Helmerson, C. McKenzie, G. J. Milburn, W. D. Phillips, S.
L. Rolston, H. Rubinsztein-Dunlop, and B. Upcroft, Nature
�London� 412, 52 �2001�; D. A. Steck, W. H. Oskay, and M.
G. Raizen, Science 293, 274 �2001�.

�4� V. Averbukh, S. Osovski, and N. Moiseyev, Phys. Rev. Lett.
89, 253201 �2002�; S. Osovski and N. Moiseyev, Phys. Rev. A
72, 033603 �2005�.

�5� D. Turaev and V. Rom-Kedar, Nonlinearity 11, 575 �1998�; V.
Rom-Kedar and D. Turaev, Physica D 130, 187 �1999�.

�6� A. Kaplan, N. Friedman, M. Andersen, and N. Davidson, Phys.
Rev. Lett. 87, 274101 �2001�; M. F. Andersen, A. Kaplan, N.
Friedman, and N. Davidson, J. Phys. B 35, 2183 �2002�; A.
Kaplan, N. Friedman, M. F. Andersen, and N. Davidson,
Physica D 187, 136 �2004�.

�7� O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43
�1993�; S. Tomsovic and D. Ullmo, Phys. Rev. E 50, 145
�1994�; F. Leyvraz and D. Ullmo, J. Phys. A 29, 2529 �1996�;
E. Doron and S. D. Frischat, Phys. Rev. Lett. 75, 3661 �1995�;
S. D. Frischat and E. Doron, Phys. Rev. E 57, 1421 �1998�; J.
Zakrzewski, D. Delande, and A. Buchleitner, ibid. 57, 1458
�1998�.

�8� A. Iomin, S. Fishman, and G. M. Zaslavsky, Phys. Rev. E 65,
036215 �2002�; J. D. Hanson, E. Ott, and T. M. Antonsen,
Phys. Rev. A 29, 819 �1984�.

�9� S. Keshavamurthy, J. Chem. Phys. 119, 161 �2003�.
�10� O. Brodier, P. Schlagheck, and D. Ullmo, Ann. Phys. 300, 88

�2002�.
�11� V. A. Podolskiy and E. E. Narimanov, Phys. Rev. Lett. 91,

263601 �2003�.
�12� C. Eltschka and P. Schlagheck, Phys. Rev. Lett. 94, 014101

�2005�.
�13� A. Bäcker, R. Ketzmerick, and A. G. H. Monastra, Phys. Rev.

Lett. 94, 054102 �2005�.
�14� M. K. Oberthaler, R. M. Godun, M. B. d’Arcy, G. S. Summy,

and K. Burnett, Phys. Rev. Lett. 83, 4447 �1999�; R. M. Go-
dun, M. B. d’Arcy, M. K. Oberthaler, G. S. Summy, and K.
Burnett, Phys. Rev. A 62, 013411 �2000�.

�15� S. Fishman, I. Guarneri, and L. Rebuzzini, Phys. Rev. Lett. 89,
084101 �2002�; J. Stat. Phys. 110, 911 �2003�.

�16� M. B. d’Arcy, G. S. Summy, S. Fishman, and I. Guarneri,
Phys. Scr. 69, C25–31 �2004�.

�17� I. Guarneri, L. Rebuzzini, and S. Fishman, Nonlinearity 19,
1141 �2006�.

�18� M. Glück, A. R. Kolovsky, and H. J. Korsch, Phys. Rep. 366,
103 �2002�.

�19� M. Glück, A. R. Kolovsky, H. J. Korsch, and N. Moiseyev,
Eur. Phys. J. D 4, 239 �1998�.

�20� D. Boyanovsky, R. Wiley, and R. Holman, Nucl. Phys. B 376,
599 �1992�.

�21� L. S. Schulman, Techniques and Applications of Path Integra-
tion �Wiley-Interscience, New York, 1996�; K. Gottried and T.
M. Yan, Quantum Mechanics: Fundamentals �Springer, New
York, 2003�; A. Garg, Am. J. Phys. 68, 430 �2000�; E. Bogo-
molny, private communication.

�22� G. M. Zaslavsky, Phys. Rep. 80, 157 �1981�.
�23� D. J. Thouless, J. Phys. C 5, 77 �1972�; D. C. Herbert and R.

Jones, ibid. 4, 1145 �1971�.
�24� R. B. Shirts and W. P. Reinhardt, J. Chem. Phys. 77, 5204

�1982�.
�25� N. Moiseyev, Phys. Rep. 302, 811 �1998�.
�26� M. Reed and B. Simon, Methods of Modern Mathematical

Physics IV: Analysis of Operators �Academic, New York,
1978�.

�27� I. Guarneri, unpublished �2005�.
�28� N. Brenner and S. Fishman, Phys. Rev. Lett. 77, 3763 �1996�;

N. Brenner and S. Fishman, J. Phys. A 28, 5973 �1995�; C. de
Oliveira, I. Guarneri, and G. Casati, Europhys. Lett. 27, 187
�1994�.

SHEINMAN et al. PHYSICAL REVIEW A 73, 052110 �2006�

052110-12


