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ON THE SIMPLEST CENTRALIZER OF A LANGUAGE ∗

Paolo Massazza1 and Petri Salmela2

Abstract. Given a finite alphabet Σ and a language L ⊆ Σ+, the
centralizer of L is defined as the maximal language commuting with
it. We prove that if the primitive root of the smallest word of L (with
respect to a lexicographic order) is prefix distinguishable in L then the
centralizer of L is as simple as possible, that is, the submonoid L�.
This lets us obtain a simple proof of a known result concerning the
centralizer of nonperiodic three-word languages.
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1. Introduction

Language equations, that is, equations with languages as variables, have been
considered with particular interest since the work of Chomsky and Schützenberger
[4]. For example, in [2] special systems of equations (called left language equations)
have been studied in their relation with boolean automata and sequential networks.

The equation XL = LX (known as the commutation equation) has been deeply
investigated since 1971, when Conway raised a problem concerning the commu-
tation with rational languages [5]. More precisely, his question was about the
centralizer of a rational language, that is, the maximal solution of the equation
XL = LX : is it true that the centralizer of any rational language is rational?

Several interesting results concerning the commutation of languages have been
presented since then. In particular, in the case of codes, in [14] it has been shown
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that if a code L and a circular code X commute (see [1] for definitions), then
L = Xk for a suitable integer k. Moreover, for each prefix code L (no word is a
prefix of another) its centralizer is always ρ(L)�, where ρ(L) is the primitive root
of L. This shows that Conway’s Problem has a positive answer for rational prefix
codes.

Partial answers to Conway’s Problem have been given in the last years. In [3]
the commutation with a two-word language L has been studied, showing that the
centralizer is A+, where either A = L (if L consists of two noncommuting words)
or A = {t} and t is a primitive word (if L consists of two commuting words x = tr,
y = ts). Later on, a similar result has been given for three-word languages (see
[7, 9]).

Conway’s Problem has been solved for particular classes of codes. More pre-
cisely, in [8] it has been proved that the centralizer of any rational code is rational
and that the centralizer of any finite code is finitely generated.

More recently, a definitive and negative answer to the original question raised
by Conway has been found. In fact, a finite language with a centralizer which is
not recursively enumerable is shown in [10].

In this note we deal with the problem of identifying a suitable class of languages
for which the commutation equation XL = LX has a trivial maximal solution,
that is, the submonoid L�. As proved in [10], the centralizer of a very simple
language (like a finite language) can be very complex, therefore it is quite natural
to look for suitable conditions under which the centralizer is as simple as possible.

According to this aim, we present a sufficient condition under which the central-
izer of L is as simple as possible. More precisely, we prove that if the primitive root
of the smallest word of L (with respect to a lexicographic order) is not a prefix of
other words in L then the centralizer of L is L�, that is, the submonoid generated
by L. Moreover, from this result we can easily obtain some corollaries that let
us immediately prove that the centralizer of a nonperiodic three-word language
L ⊆ Σ+ is L� (see [7, 9]).

2. Preliminaries

Let Σ be a finite alphabet. A language L on Σ is a subset of the free monoid
generated by Σ, L ⊆ Σ�. Given a word w ∈ Σ� we denote its length by |w|. The
word of length 0 is the empty word ε. For two words x, w ∈ Σ�, we say that x is a
prefix of w if and only if w = xy for a suitable y ∈ Σ�. In this case we write x ≤ w.
If y �= ε we say that x is a proper prefix of w and write x < w. Analogously, a
word y is a suffix of w if and only if w = xy for a suitable word x. We use the
notation x = wy−1 to denote the operation of erasing a suffix y from w. This also
applies to languages by setting Lx−1 = {wx−1 |w ∈ L}.

Given a word w and an integer e, 0 ≤ e ≤ |w|, we denote by prefe(w) the prefix
of w having length e, that is, the string x ∈ Σe such that w = xy for a suitable
y ∈ Σ|w|−e. Similarly, we indicate by sufe(w) the suffix of w of lenght e.
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Two words x, y are said to be prefix incomparable if x �≤ y and y �≤ x. A word
w ∈ L is said prefix distinguishable in L if and only if for any y ∈ L \ {w}, w and y
are prefix incomparable. We point out that prefix distinguishable words are also
called left singular by some authors (see, for instance [9,14]). We recall here one of
the oldest results in combinatorics on words regarding the commutation of words
(see, for example [11]).

Theorem 2.1. Let u, v ∈ Σ�. The following properties are equivalent
(1) uv = vu;
(2) there exist t ∈ Σ� and r, s ∈ N such that u = tr, v = ts.

A word w is called primitive if w = ur implies u = w and r = 1. We say that u is
a root of w if there is r ∈ N such that ur = w. By Theorem 2.1, it is immediate
to prove that every word admits exactly one primitive root, that is, a root which
is primitive. Thus, a word w ∈ L is said root prefix distinguishable in L if its
primitive root ρ is prefix distinguishable in (L \ {w}) ∪ {ρ}. Note that every root
prefix distinguishable word in L is also prefix distinguishable in L. So, a simple
but useful result concerning prefix distinguishable words is given in the following
lemma.

Lemma 2.2. Let w ∈ L be prefix distinguishable in L. Then for each Y ⊆ Σ� the
condition wy ∈ LY implies y ∈ Y .

Proof. Let u be the prefix of wy which belongs to L. Note that if u < w or w < u
then w would not be prefix distinguishable in L. Thus, u = w and y ∈ Y . �

Given L ⊆ Σ�, we say that R is a root of L if there is e ∈ N such that L = Re.
A root which is not a proper power of another language is called minimal. Given a
language L, if there is only one minimal root R of L, we say that R is the primitive
root of L and we denote it as ρ(L). So, L is primitive if L = ρ(L).

We recall that prefix codes admit primitive root (since prefix codes form a free
semigroup, see [1, 13]), while Conjecture 2 in [14] (any code has a primitive root)
is still open.

We say that X ⊆ Σ� commutes with L if and only if XL = LX . Note that
if S and R commute with L then S ∪ R commutes with L as well. So, we define
the centralizer of L ⊆ Σ� as the largest subset of Σ� which commutes with L,
that is, the maximal solution of the equation XL = LX . We indicate by C(L)
the centralizer of L; note that if A commutes with L then A ⊆ C(L), that is,
C(L) =

⋃
Y |Y L=LY Y . In particular, since for any L we have L�L = LL�, the

submonoid generated by L is always contained in C(L). Moreover, if ε belongs to
L then C(L) is Σ�. Henceforth, we are interested in the centralizer of languages
which do not contain ε.

Given L ⊆ Σ�, we say that L is branching if we can find two words v, w ∈ L such
that pref1(v) �= pref1(w). Finally, L is said periodic if L ⊆ u� for some u ∈ Σ�. If
L ⊆ Σ+ is not branching then we have L = aL1 for suitable a ∈ Σ, L1 ⊆ Σ�. In
this case, we define the circular shift of L as the language L↪→ = L1a. We recall
here Theorem 2 in [6].
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Theorem 2.3. Let L ⊆ Σ+ be a nonperiodic language. Then there is a branching
language L̂ ⊆ Σ+ such that C(L) = L� if and only if C(L̂) = L̂�.

The following lemma illustrates the relation between the centralizer of a lan-
guage which is not branching and the centralizer of its circular shift. It can be
proved as shown in the proof of Theorem 2 in [6].

Lemma 2.4. Let L ⊆ Σ+ be nonperiodic and nonbranching, L = aL1. Then

C(L) = (aC(L↪→))a−1.

Let ≺ be a linear order on Σ. We can extend the relation ≺ in order to define a
lexicographic order on Σ�. The pure lexicographic order ≤lex is defined as follows:
given x, y ∈ Σ�, we write x ≤lex y if and only if either x ≤ y or there exist
α, u, v ∈ Σ� and σ, τ ∈ Σ such that x = ασu and y = ατv with σ ≺ τ . We write
x <lex y if x ≤lex y and x �= y. We denote by minlex(L) the smallest word of L
with respect to ≤lex, that is, the word x ∈ L such that x ≤lex y for all y ∈ L.

3. The equation XL = LX

Let L be a language with at least two words and such that u = minlex(L)
is root prefix distinguishable in L. Note that if u is primitive then it is root
prefix distinguishable in L if and only if it is prefix distinguishable in L. Thus,
the following theorem generalizes a result in [12] which states that C(L) = L� if
minlex(L) is primitive and prefix distinguishable in L.

Theorem 3.1. Let L ⊆ Σ+ be a language such that �L > 1 and u = minlex(L) is
root prefix distinguishable. Then C(L) = L�.

Proof. We show that if C(L) �= L� then C(L)L �= LC(L) since we can find a word
in C(L)L which has not prefixes in L.

Let y ∈ C(L) \ L�, d = |u| and e = |y|. Clearly, uy = y1α1 for suitable
y1 ∈ C(L), α1 ∈ L. Note that if y1 ∈ L� then uy ∈ LL� and so, by Lemma 2.2, y
would belong to L�. Then, it is immediate to see that for any n ≥ e + d there are
α1, α2, . . . , αn ∈ L such that

uny = un−1y1α1 = un−2y2α2α1 = . . . = ynαn . . . α2α1

with
• yn = umv ∈ C(L) \ L� for some 0 ≤ m ≤ n − 2;
• u = vw (v, w �= ε);
• z = w(vw)n−m−1y = αn · · ·α2α1 ∈ L�.

Now, consider the word ynu = umvu ∈ C(L)L = LC(L). By Lemma 2.2, we first
get um−1vu ∈ C(L) and then, after m steps,

ŷ = vum = v(vw)m ∈ C(L).
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Moreover, we have ŷu = α̂ỹ for suitable α̂ ∈ L and ỹ ∈ C(L), with u ≤lex α̂ and
α̂ ≤ v(vw)m+1. Note that v is a common prefix of u and α̂ since α̂ �< u. So, let
k = |w| and observe that

w ≤lex prefk(vw),

otherwise α̂ <lex u. By considering the previously defined word z ∈ L�, we have

prefk(vw) ≤lex prefk(z) = w

and then w = prefk(vw). This means that w is both a suffix and a prefix of u,
that is, vw = wx with x = sufd−k(vw).

Now, note that z can not have a prefix which is lexicographically smaller than
u = wx and so, since wv is a prefix of z (with |v| = |x|), we get x ≤lex v.
Moreover, by Lemma 2.2, from ŷu = v(vw)m+1 = v(wx)m+1 = α̂ỹ ∈ LC(L) we
obtain ỹ = x(wx)m ∈ C(L). Then, the word x(wx)m+1 ∈ C(L)L has a prefix in L
which is not smaller than v, that is, v ≤lex x. So, we have v = x and u = vw = wv.
Thus, by Theorem 2.1, we can find a primitive word ρ and p, q ∈ N such that

v = ρp, w = ρq, u = ρp+q.

Note that ρ is the primitive root of u since the primitive root of a word is unique.
Finally, we consider the word yn = ρ(p+q)m+p. By recalling that u is root prefix

distinguishable in L and �L > 1, for any β ∈ L \ {u} we have ρ �< β and we can
write the equalities

ynβ = uz1

z1β = uz2

...
zm−1β = uzm

with zm = ρpβm ∈ C(L). Therefore, the word zmβ = ρpβm+1 belongs to C(L)L
and for any γ ∈ L we have γ �≤ zmβ (since the word ρ is prefix distinguishable in
(L \ {ρp+q}) ∪ {ρ}). This is a contradiction since C(L)L = LC(L). �

An immediate consequence of the previous theorem is given by

Corollary 3.2. Let L ⊆ Σ+, �L > 1, be a language such that there is w ∈ L with

pref1(w) �= pref1(y)

for any y ∈ L \ {w}. Then C(L) = L�.

Proof. It is immediate to see that w is root prefix distinguishable in L. Then, by
choosing a suitable order on Σ such that pref1(w) = min(Σ), it turns out that w
is the smallest word of L. Then, the result follows from Theorem 3.1. �
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We point out that Corollary 3.2 leads to a simple proof of a known result about
the centralizer of a three-word language [9]. In fact we can state:

Corollary 3.3. Let L ⊆ Σ+ be a three-word language which is not periodic. Then

C(L) = L�.

Proof. If L is branching then, since �L = 3, there is v ∈ L such that pref1(v) �=
pref1(y) for any y ∈ L \ {v}. So, the result follows from Corollary 3.2. Otherwise,
we determine the branching language L̂ associated with L by Theorem 2.3. Since L̂
can be chosen such that �L̂ = �L = 3, we have C(L̂) = L̂� and then C(L) = L�. �

4. Conclusions and open problems

We conclude by observing that the conditions given in this paper are not nec-
essary. We first consider a trivial example.

Example 4.1. Let us consider the three-word code L = {a, aba, ababa} which does
not satisfy the conditions of Theorem 3.1 or Corollary 3.2. Nevertheless, Corol-
lary 3.3 states that its centralizer is {a, aba, ababa}�. In fact, L is not branching
and we can consider its circular shift, L↪→ = {a, baa, babaa}. Since L↪→ satis-
fies the conditions of Corollary 3.2, we get C(L↪→) = {a, baa, babaa}�. Then, by
Lemma 2.4, we have C(L) = a{a, baa, babaa}�a−1 = {a, aba, ababa}�.

A more interesting case consists of the following:

Example 4.2. Let L = {aibai, biabi | i > 0}. This is a primitive language which
is also a prefix code, so we have C(L) = L�. Note that Theorem 3.1 can not be
applied since minlex(L) is not defined (independently of the order ≺ on {a, b}, for
any fixed w ∈ L we can find y ∈ L with y <lex w). Observe that L is branching
and that circular shift can not be used.

In particular, note that circular shift can be successfully applied to all three-
word languages, while the same assertion is not true for four-word languages.

Example 4.3. Let L = {aaa, bbb, ab, ba}. L is a prefix code and primitive, so
C(L) = L�. Note that either minlex(L) = aaa or minlex(L) = bbb, depending on
whether a ≺ b or b ≺ a. In both cases minlex(L) is not root prefix distinguishable.
Moreover, circular shift can not be used (L is branching).

So, while the problem of characterizing the class of languages L with C(L) = L�

is still open, it is quite natural to look for other sufficient conditions, possibly
weaker than those we have presented here.

In particular, the language L = {aa, ab, ba, bb} shows that something more
than the existence of a root prefix distinguishable word is needed. In fact, ab is
root prefix distinguishable in L, but C(L) = ρ(L)� with ρ(L) = {a, b}. So, the
minimality with respect to a lexicographic order might be replaced with some
weaker condition.
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[3] C. Choffrut, J. Karhumäki and N. Ollinger, The commutation of finite sets: a challenging

problem. Theor. Comp. Sci. 273 (2002) 69–79.
[4] N. Chomsky and M.P. Schützenberger, The algebraic theory of context-free languages. Com-

puter Programming and Formal Systems, edited by P. Braffort and D. Hirschberg. North-
Holland, Amsterdam (1963) 118–161.

[5] J.H. Conway, Regular Algebra and Finite Machines. Chapman & Hall, London (1971).
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[9] J. Karhumäki, M. Latteux and I. Petre, Commutation with ternary sets of words. Theory
Comput. Syst. 38 (2005) 161–169.

[10] M. Kunc, The power of commuting with finite sets of words, in Proc. of STACS 2005 . Lect.
Notes Comput. Sci. 3404 (2005) 569–580.

[11] R.C. Lyndon and M.P. Schützenberger, The equation am = bncp in a free group. Michigan
Math. J. 9 (1962) 289–298.

[12] P. Massazza, On the equation XL = LX, in Proc. of WORDS 2005 , Publications du
Laboratoire de Combinatoire et d’Informatique Mathématique, Montréal 36 (2005) 315–322.
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