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Summary

 

We have studied the mechanisms underlying nonpatho-
logical age-related neuronal cell death. Fifty per cent of
neurons in the rat enteric nervous system are lost
between 12 and 18 months of age in 

 

ad libitum

 

 (AL) fed rats.
Caloric restriction (CR) protects almost entirely against
this neuron loss. Using the ROS-sensitive dyes, dihy-
drorhodamine (DHR) and 2-[6-(4′′′′

 

-hydroxy)phenoxy-
3H-xanthen-3-on-9-yl]benzoic acid (HPF) 

 

in vitro

 

, we
show that the onset of cell death is linked with elevated
intraneuronal levels of reactive oxygen species (ROS).
Treatment with the neurotrophic factors NT3 and GDNF
enhances neuronal antioxidant defence in CR rats at 12–
15 months and 24 months but not in adult or aged AL-fed
animals. To examine the link between elevated ROS and
neuronal cell death, we assessed apoptotic cell death
following 

 

in vitro

 

 treatment with the redox-cycling drug,
menadione. Menadione fails to increase apoptosis in
6-month neurons. However, in 12–15mAL fed rats, when
age-related cell death begins, menadione induces a 7- to
15-fold increase in the proportion of apoptotic neurons. CR
protects age-matched neurons against ROS-induced apop-
tosis. Treatment with neurotrophic factors, in particular
GDNF, rescues neurons from menadione-induced cell death,

but only in 12–15mCR animals. We hypothesize that CR
enhances antioxidant defence through neurotrophic
factor signalling, thereby reducing age-related increases
in neuronal ROS levels and in ROS-induced cell death.
Key words: aging; antioxidant defence; apoptosis; cell
death; dietary restriction; myenteric neurons; neurotrophic
factors; reactive oxygen species.

 

Introduction

 

Relatively little is known about the mechanisms which underlie

nonpathological age-related neurodegeneration. Neither the

nature nor extent of this phenomenon is well established.

Studies of mammalian central (Morrison & Hof, 1997; Turlejski

& Djavadian, 2002; Baquet 

 

et al

 

., 2004) and peripheral (Cowen

& Gavazzi, 1998; Cowen 

 

et al

 

., 2003) neurons demonstrate

that age-associated degenerative changes only occur in select

groups of neurons such as the cholinergic neurons of the basal

forebrain and the sympathetic neurons projecting to cerebral

blood vessels and pineal gland. Previous studies have shown

that around 50% of the neurons of the myenteric plexus in the

gut of rodents (Johnson 

 

et al

 

., 1998; Cowen 

 

et al

 

., 2000),

guinea pigs (Gabella, 1989) and humans (Porter 

 

et al

 

., 1996)

are lost during aging. While in rats neurons expressing choline

acetyl transferase are vulnerable while those expressing nitric

oxide synthase are protected (Cowen 

 

et al

 

., 2000), the reasons

for this selective vulnerability in different regions of the nervous

system are poorly understood.

Age is the biggest risk factor for several of the more common

neurodegenerative diseases, including Alzheimer, Parkinson

and motor neuron diseases. Damage by reactive oxygen species

(ROS) is implicated in nonpathological brain aging processes

(Poon 

 

et al

 

., 2004; Lau 

 

et al

 

., 2005) as well as in all of these

chronic disorders (Schapira, 1998; Jung 

 

et al

 

., 2001; Nunomura

 

et al

 

., 2001; Huang 

 

et al

 

., 2004). Although there is little concrete

evidence, the implication of these observations is that common

mechanisms involving ROS may underpin pathological as well

as nonpathological age-related neurodegeneration.

Neurons are considered particularly vulnerable to free radical

damage because of their large size, high level of metabolic activity

and relatively poor antioxidant defence (Sohal & Weindruch,

1996). Survival of adult and aged neurons appears to be in some

way related to the capacity to resist ROS-induced damage

(Finkel & Holbrook, 2000). Previous evidence of age-related

vulnerability of enteric neurons (Phillips 

 

et al

 

., 2003) does not

provide a link with ROS sensitivity. Calcium dyshomeostasis is

a key event in neuronal aging (Bu 

 

et al

 

., 2003) and in Alzheimer
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disease (LaFerla, 2002) which have been linked to altered

mitochondrial ROS generation in old age (Mattson & Liu, 2002).

The calcium-binding proteins, calretinin and calbindin, present

in many central and peripheral neurons including neurons of

the myenteric plexus (Abalo 

 

et al

 

., 2005), are thought to protect

neurons against calcium dyshomeostasis and may therefore

allow the identification of neurons that are selectively protected

against ROS-induced damage.

Caloric restriction (CR) extends lifespan in organisms as

diverse as yeasts, worms, flies and mammals by enhancing the

capacity for stress resistance (Sohal & Weindruch, 1996).

Furthermore, CR enhances plasticity in the aging brain (Mattson

 

et al

 

., 2002), increases expression of an anti-apoptotic repressor

in the cerebral cortex of aging rats (Shelke & Leeuwenburgh,

2003), and rescues neurons of the rat enteric nervous system

(ENS) from age-related cell death (Cowen 

 

et al

 

., 2000). We

hypothesize that the effects of diet on neuronal survival are

mediated by altered capacity to regulate ROS.

Neurotrophic factor signalling is crucial to neuronal survival

and differentiation during development (Miller & Kaplan, 2001).

A novel role for neurotrophins in regulating ROS has recently

been demonstrated in developing sympathetic neurons (Dugan

 

et al

 

., 1999), in PC12 cells (Mills 

 

et al

 

., 1998) and in an animal

model of Parkinson’s disease (Salinas 

 

et al

 

., 2003). Because CR

has been shown to influence neurotrophin-mediated plasticity

in the CNS (Prolla & Mattson, 2001; Nicoletti 

 

et al

 

., 2005), we

hypothesize that CR might enable neurons to resist age-related

cell death by enhancing neurotrophic factor-mediated antioxidant

defence.

Our aims were therefore (i) to confirm protection by dietary

restriction against age-related loss of myenteric neurons and to

determine whether neurons expressing calcium-binding proteins

were selectively protected against age-related cell death; (ii) to

find out if age- and diet-related alterations in intracellular ROS

levels are associated with neuronal cell death in the ENS; (iii) to

discover whether elevated ROS levels might induce apoptotic

cell death in enteric neurons; and (iv) to demonstrate a possible

role for neurotrophic factors in regulating antioxidant defence

and resistance to ROS-induced neuronal cell death.

 

Results

 

Effects of dietary restriction on age-related loss of 
myenteric neurons

 

Counts of PGP 9.5-stained neurons confirm previous data

(Cowen 

 

et al

 

., 2000) by showing an age-related loss of 51%

of neurons (

 

P <

 

 0.001) in 24mAL animals (Fig. 1A). CR animals

show a much smaller loss of neurons over 24 m (22%; 

 

P

 

 < 0.05)

indicating, like our previous data, substantial protection by

dietary restriction. Examination of the timescale of neuron loss

reveals that at 12 months, numbers of neurons are not signif-

icantly different from those in 6-month rats and there are no

differences between AL and CR groups (Fig. 1A). However, by

13 months there are 24% (

 

P <

 

 0.05) fewer neurons in the AL

Fig. 1 Total numbers of myenteric neurons. (A) Counts of PGP-
immunoreactive neurons. The histogram shows significant losses of neurons, 
commencing at 12–13 months of age in AL-fed animals and reaching a peak 
at 24 months (AL; 51%). There is a much smaller but statistically significant 
(P < 0.05) reduction seen in 24mCR samples, demonstrating substantial 
protection by CR against age-related cell death in myenteric neurons. 
(B) Counts of HuCD-immunoreactive neurons. The histogram shows loss of 
neurons in 17-month AL-fed, confirming that PGP 9.5 labelling gives a reliable 
estimate of age- and diet-related cell loss. However, total neuron numbers 
were significantly (P < 0.01) higher in the HuC/D-stained samples.
(C–F) Photomicrographs of 6-month (C,E) and 24-month AL (D,F) PGP-
immunostained whole-mounts (C,D) and toluidine blue-stained 1-µm resin 
sections (E,F). Neurons in myenteric ganglia (dotted lines) are indicated by 
large arrows. Note the large spaces in the ganglia from 24-month AL rats 
(small arrows) visible in D and F but absent in the 6-month samples (C,E), 
indicating where neuron cell loss has occurred. n numbers: A: 6 months 
(n = 15); 12mCR (n = 4); 12mAL (n = 4); 13mCR (n = 8); 13mAL (n = 12); 
24mCR (n = 15); 24mAL (n = 14); B: 6 months (n = 6); 17 months (n = 3). 
Scale bar = 50 µm.
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compared to CR groups and this number is significantly lower

than either of the 12 months groups (13mAL vs. 12mCR, 

 

P

 

 < 0.05;

13mAL vs. 12mAL, 

 

P

 

 < 0.01). As reported previously (Cowen 

 

et al

 

.,

2000), neuron loss is complete by 16–18 months (when cor-

rected for gut size) in AL-fed rats. Whilst these data show sim-

ilar levels of loss of neurons with HuC/D at 17mAL (

 

∼

 

50%) with

those shown in Cowen 

 

et al

 

. (2000), the PGP 9.5 data only show

a partial, but significant loss, at the 13mAL age group studied.

Counts are corrected for changes in gut size to ensure that alter-

ations are due to cell loss rather than redistribution of neurons.

However, our measurements reveal no significant effect of diet

or age on the overall dimensions of the small intestine (Table 1).

As a result of a recent study evaluating pan-neuronal markers

in the rat myenteric plexus (Phillips 

 

et al

 

., 2004), tissues were

taken from small groups of 3-month and 17mAL animals and

immunolabelled for HuC/D, which was shown to be one of the

most reliable pan-neuronal markers for rodent myenteric neu-

rons. Neuron counts made on HuC/D-labelled preparations

demonstrated significantly (

 

P <

 

 0.01) higher neuron numbers

compared to PGP 9.5, confirming previous reports that PGP 9.5

does not stain all neurons in the gut (Young 

 

et al

 

., 2003). HuC/D,

however, demonstrated a comparable loss of neurons (50%;

 

P

 

 < 0.01; Fig. 1B) in 17mAL fed animals to that shown previously

using PGP 9.5 at 16 and 24 months in AL-fed rats (Cowen 

 

et al

 

.,

2000). The 50% loss of neurons seen with HuC/D at 17 months

is similar to the extent of loss of PGP 9.5-positive neurons seen

at 24 months (Fig. 1A,B), supporting the view that neuron loss

in aging AL-fed rats is largely complete by 17–18 months.

Loss of immunolabelling may indicate reduced binding of the

antibodies rather than neuron loss. To examine this possibility,

we studied parallel samples from 24mAL and 6-month rats

following PGP staining of whole mounts and toluidine blue

staining of 1 

 

µ

 

m resin sections (Fig. 1C–F). Both methods reveal

clearly defined spaces surrounded by enteric glia in the ganglia

of 24mAL samples which are not present in 6-month samples.

Overall, these results confirm that age-related neuron loss has

indeed taken place and that dietary restriction protects mye-

nteric neurons against age-related loss.

 

Selective vulnerability in subpopulations of myenteric 
neurons

 

Calcium dyshomeostasis is a key event in neuronal aging

(Bu 

 

et al

 

., 2003). We therefore investigated whether neurons

containing the calcium-binding proteins, calretinin and calbindin,

were particularly protected compared to the general neuron

population in aging rats. Calretinin-positive neurons represented

a significant (25%) proportion of the total population of myenteric

neurons and exhibited similar small but nonsignificant losses at

17 months of age in preparations from both AL- or CR-fed

animals (Fig. 2A).

Calbindin-positive neurons formed a much smaller proportion

of the total (2.5%) (compare Fig. 2A,B). Numbers were reduced

by 62% (

 

P <

 

 0.01) in the 17mAL fed group indicating that these

neurons were selectively vulnerable during aging, while CR at

the same age demonstrated almost complete protection of

calbindin-positive neurons (Fig. 2B). These results suggest that

while the calcium-buffering capacity of calretinin may be a

factor in protecting these neurons against age-related calcium

dyshomeostasis and death, calbindin is not associated with a

similar protective effect. Dietary restriction is shown to be

strongly neuroprotective in the case of the calbindin-positive

population of myenteric neurons.

 

ROS levels in myenteric neurons

 

Initial comparisons revealed a visually obvious elevation of ROS

levels in 24-month compared to 6-month myenteric neurons

using the ROS-sensing dye, DHR (Fig. 3A,B). We therefore made

systematic comparisons of neuronal ROS levels between the dif-

ferent experimental groups. 

 

In vitro

 

 preparations of 6-month rat

myenteric neurons exhibit different rates of increase in DHR flu-

orescence during the period of incubation, which peaks around

2 h (data not shown). This timescale was therefore used in all

subsequent experiments. Comparison of ROS levels using DHR

fluorescence in preparations from 6-month and from 12- to

Table 1 Age- and diet-related changes in areal dimensions (cm2) of small 

intestine
 

 

6 months 148.1 ± 5.0

13mCR 144.8 ± 13.5

13mAL 128.7 ± 6.7

24mCR 134.2 ± 9.4

24mAL 158.4 ± 3.7

There are no statistically significant differences between any of these 
measurements (i.e. there is no significant change in gut dimensions with age 
or diet).

Fig. 2 Numbers of calretinin- (A) and calbindin- (B) 
immunoreactive myenteric neurons. Note the lack 
of significant change in calretinin + neurons 
between 6 and 17 months of age or with AL 
feeding which contrasts with the age-related loss 
of over 50% of calbindin + neurons in the 17mAL 
group (P < 0.01) which is fully rescued in 
age-matched CR animals. n numbers: A: 6 months 
(n = 4); 17mCR (n = 3); 17mAL (n = 4); B: 
6 months (n = 5); 17mCR (n = 3); 17mAL (n = 6).
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15-month CR rats shows increased levels of free radical gener-

ation with age (Fig. 3C,E). Samples from 12- to 15-month AL rats,

where neuron loss has begun (see Fig. 1), show a slightly

sharper rate of increase of ROS levels assessed after 1 h of incu-

bation compared to CR specimens of the same age (Fig. 3E,F),

suggesting that CR may partially protect neurons against diet-

induced elevation of free radical generation. The (nonsignificant)

increases in ROS after 2 h of incubation are summarized in Fig. 3D.

Comparison of DHR fluorescence levels in preparations from

24-month animals indicates a significant effect of age on fluo-

rescence levels compared to 6-month neurons after 1 h of

incubation [Fig. 3; comparing C (6 months; 1.58 

 

±

 

 0.169) and

G (24mCR; 2.22 

 

±

 

 0.066), and C (6 months) and H (24mAL;

2.24 

 

±

 

 0.148); (both 

 

P

 

 < 0.02)], suggesting that increasing age

correlates with higher levels of intrinsic neuronal ROS. There is

no significant difference between the extent or rate of increase

in free radical levels in 24mAL compared to 24mCR groups indicating

that the neuroprotective effect of dietary restriction is exhausted

by 24 months (the mean lifespan of Sprague Dawley rats).

DHR fluorescence generated by the oxidation of dihydrorhod-

amine to rhodamine 123 may be influenced by mitochondrial

membrane potential (Hempel 

 

et al

 

., 1999) as well as by other

age-associated variables such as ferric iron and cytochrome

 

c

 

. In order to confirm the effects of age and diet on neuronal ROS

levels, we assessed neuronal levels of fluorescence using the

ROS-sensing dye, HPF (2-[6-(4

 

′

 

-hydroxy)phenoxy-3H-xanthen-3-

on-9-yl]benzoic acid) (Setsukinai 

 

et al

 

., 2003), in myenteric

neurons from young and old AL-fed animals (Fig. 3D). HPF is

specifically activated by OH, derived principally from superoxide

(Setsukinai 

 

et al

 

., 2003; Ooe 

 

et al

 

. 2005). HPF fluorescence, like

Fig. 3 ROS generation in myenteric neurons. 
Photomicrographs of 6-month (A) and 24mAL (B) 
whole mount preparations of myenteric neurons 
showing ROS-induced DHR fluorescence 
generated following 2 h of incubation. Note the 
substantial increase in brightness of cytoplasmic 
fluorescence in the 24mAL preparation. (C–H) 
Graphs showing extent and timescale of free 
radical generation (GV = mean grey value of DHR 
fluorescence intensity) in enteric neurons, with and 
without treatment with the neurotrophic factors, 
NT3 and GDNF, from 6 months (C; n = 10), 
12–15mCR (E; n = 4) and AL (F; n = 4) and 24mCR 
(G; n = 4) and AL (H; n = 12) rats over 2 h of 
incubation. (D) Graph showing fluorescence 
intensity (mean GV) in 6 months, 12–15mCR and 
12–15mAL preparations following 2 h of 
incubation in DHR (as C) or in the OH-sensitive 
probe, HPF. Note the similar age-related increase 
in HPF fluorescence compared to that shown by 
DHR. Both groups, (n = 3).
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DHR, increases with incubation time, peaking after 2–3 h (data

not shown). HPF demonstrates an age-related increase in

neuronal ROS in the 12- to 15-month samples which is slightly,

but not significantly, greater in the AL group. These differences

are similar to those seen with DHR, confirming that DHR flu-

orescence provides a reliable measure of ROS levels in myenteric

neurons. Because HPF fluorescence is specifically induced by

superoxide-derived OH

 

•

 

 it is likely that mitochondrial ROS provide

the majority of the free radicals assessed in our experiments.

 

Neurotrophic factors in antioxidant defence

 

Because of evidence that neurotrophic factors contribute to

antioxidant defence in early postnatal neurons (Dugan 

 

et al

 

.,

1999), we tested the capacity of GDNF and NT3, with known

survival-promoting roles in myenteric neurons (Chalazonitis

 

et al

 

., 2001; Busciglio 

 

et al

 

., 2002), to reduce ROS levels in these

neurons from adult rats. Treatment of in vitro preparations of

enteric neurons from 6-month rats with 100 ng mL−1 of GDNF

or NT3 results in significantly lower levels of neuronal ROS

compared to untreated preparations after 2 h of incubation

(Fig. 3C; GDNF: P < 0.01; NT3: P < 0.05). In contrast, treatment

with NGF or IGF-1 [with known antioxidant effects in other

groups of neurons (Dugan et al., 1999) and cell types (Jallali

et al., 2005)], has no effect on ROS levels (data not shown).

Comparisons of the effects of neurotrophic factors on ROS

levels in 12- to 15-month animals (Fig. 3E,F) show that in CR

preparations, ROS are significantly reduced at the 2-h time point

after treatment with NT3 and GDNF (both, P < 0.05). In contrast,

neither factor has a significant effect on ROS levels in prepara-

tions from 12- to 15-month AL rats. Thus CR appears to enhance

neurotrophin-mediated antioxidant mechanisms around the

age at which cell loss occurs in vivo. In the 24mCR group, treatment

with neurotrophic factors suppresses ROS levels significantly

(Fig. 3G,H; GDNF: P < 0.001; NT3: P < 0.05) but not in the AL

preparations, resembling the effects seen at 12–15 months. It

is worth noting that these differential effects, like the onset of

neuron cell death, are already established at the relatively young

age of 12–15 months (i.e. well before the onset of senescence).

Our results therefore show that age enhances levels of ROS

generation, while age and diet, respectively, inhibit and enhance

neurotrophic factor-mediated antioxidant defence mechanisms,

in adult and aged neurons.

ROS-induced neuronal cell death

In order to discover whether ROS contribute to age- and diet-

induced neuronal cell death, we examined the effect of treat-

ment with menadione (a drug which accelerates mitochondrial

ROS generation by redox cycling) on the incidence of apoptotic

cell death in myenteric neurons. We chose to focus on the

period up to and including the early stages of age-related

neuron loss in the myenteric plexus (i.e. 12–15 months of age).

The increase in the TUNEL response to menadione was time-

dependent, reaching a maximum after 4 h of incubation (data

not shown). Menadione treatment for 4 h in vitro produced a

visually obvious increase in TUNEL-positive neurons in prepara-

tions from 12- to 15-month AL animals compared to those from

6-month animals (Fig. 4A,B). In addition, other cells including

smooth muscle, endothelial and glial cells can be seen to exhibit

significant vulnerability to ROS-induced apoptosis. Counts of TUNEL-

positive neurons and visual examination of nuclear morphology

reveal that after 4 h of incubation in culture medium without

menadione, sparse and unaltered numbers of apoptotic profiles

were present in all experimental groups (Fig. 4C). Treatment

with menadione induces a small but nonsignificant increase in

apoptotic profiles in 6 months preparations compared to untreated

controls (Fig. 4C). In contrast, the proportion of apoptotic

neurons after menadione treatment increases 10-fold (P < 0.001)

in the 12–15mAL group; a similar increase in apoptotic neurons

after menadione was seen in samples from 24mAL animals

(data not shown). Interestingly, CR protects 12- to 15-month

neurons from menadione-induced cell death, reducing the pro-

portion of apoptotic neurons significantly compared to the AL

group (Fig. 4C; P < 0.001). Menadione-induced apoptosis is

apparently higher in the 12–15mCR group compared to 6-month

samples, but the difference is not statistically significant. Examina-

tion of nuclear morphology revealed an increase of fragmented

and crenellated nuclei in both of the 12- to 15-month groups,

suggesting strongly that at least a proportion of these neurons

Fig. 4 ROS-induced apoptotic neuron cell death: TUNEL-stained cryosections 
of 6-month (A) and 12–15mAL (B) myenteric neurons following 4 h 
incubation with menadione. Toluidine blue stained neurons (small arrows, 
A and B) are healthy; neurons showing brown TUNEL-positive nuclei (large 
arrows, B only), some of which are fragmented or with crenellated outlines, 
are undergoing apoptosis. The histogram (C) shows the proportion of TUNEL-
positive neurons from the different experimental groups following treatment 
with menadione. Note the neuroprotective effect of CR after treatment with 
menadione at 12–15 months. Six months groups (n = 10); 12–15mCR groups 
(n = 6); 12–15mAL con (n = 4); 12–15mAL + men (n = 8).
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were dying apoptotically. Thus, age and ad libitum feeding

enhance vulnerability to ROS-induced death of myenteric neurons.

Next we wanted to find out whether menadione-induced

death of neurons could be ameliorated by in vitro treatment with

antioxidants and by neurotrophic factors. Preparations from

6-month and from 12- to 15-month AL and CR animals were

treated with menadione as before, following pretreatment

with the synthetic antioxidant carboxyfullerene also known as

C3 (Dugan et al., 1997) or with the neurotrophic factors GDNF

or NT3 (Fig. 5A–C). Fullerene compounds react avidly with free

radicals and are regarded as ‘radical sponges’. The trimalonic

acid derivative of fullerene, C3, is a synthetic water-soluble com-

pound that has been found to be an effective antioxidant both

in vivo and in vitro (Tsao et al., 2002). Preliminary experiments

using a ‘Live-Dead’ assay (Molecular Probes Inc., Eugene, OR,

USA) demonstrated improved imaging and sampling compared

to the TUNEL method and this was therefore used for these exper-

iments. The effects of menadione on cell death are qualitatively

similar using this assay compared with TUNEL staining in the

young and 12–15mAL groups. However, menadione induces a

greater extent of cell death as measured by this method com-

pared with TUNEL staining in the 12–15mCR group. We spec-

ulate that this is because the Live-Dead assay demonstrates

ethidium staining in compromised cells not yet committed to

apoptosis, i.e. still capable of being rescued (see below).

C3 reduces the extent of cell death very markedly in all groups

(Fig. 5). Interestingly, the rescue effect of C3 is greatest in the

12–15mCR group (96% and P < 0.001, compared to 80% and

P < 0.01 for 12mAL). GDNF pretreatment produced no significant

effect on cell death in young or in 12–15mAL preparations.

However, GDNF exerted significant protection (45%; P < 0.01)

in the 12–15mCR group. Pretreatment with NT3 gives small

but nonsignificant rescue from menadione-induced cell death

in all groups, but with no difference between 12 and 15mAL

and CR animals. Because of the greater rescue effects of C3

and GDNF in the 12–15mCR group, we speculate that the Live-

Dead assay demonstrates ethidium staining in compromised

cells not yet committed to apoptosis, i.e. still capable of being

rescued. The presence of small numbers of cells staining for

both calcein and ethidium supports this hypothesis. Our results

suggest that at the stage of life when neurons become vulnerable

to age-related cell death, caloric restriction enhances the

protective effect of neurotrophic factors against ROS-induced

cell death. The lack of protective effect of GDNF at the young

stage may indicate that the young enteric neurons already

obtain a maximal supply of the endogenous growth factor, or

have other ways of inducing maximal antioxidant defence.

Alternatively it is possible that the antioxidant defensive role of

GDNF increases during adult life. Ongoing studies are examining

these alternatives.

Discussion

In this study, the mechanisms underlying age-related loss and

cell death of rat myenteric neurons have been examined. At the

outset, we wished to establish more accurately the timescale

of neuron loss in order that examination of vulnerability to cell

death could be studied before cell death had occurred, and also

to consider the relation of age-related neuron cell loss to other

aspects of the aging process. Previously, neuron loss has been

shown to occur around 16 months of age (Cowen et al., 2000);

here we demonstrate that it develops rapidly between 12 and

13 months and seems to be complete by 17 months in AL-fed

rats as demonstrated by the HuC/D results. Although rats and

Fig. 5 Rescue by antioxidants and neurotrophic factors of ROS-induced cell 
death. Bar charts showing effects of menadione, with and without 
pretreatment with antioxidants (C3) and neurotrophic factors (GDNF, NT3), 
on death of myenteric neurons from 6-month (A), 12–15mCR (B) and 
12–15mAL (C) animals. Note that C3 reduces cell death at all ages very 
substantially, confirming that menadione induces cell death by raising 
intracellular ROS. NT3 has no significant effect on ROS levels in any of the 
experimental groups. In contrast, GDNF produces a significant (50%, 
P < 0.01) reduction of menadione induced cell death in 12–15mCR 
preparations, but not in age-matched AL preparations. All groups, (n = 4), 
except 6 months MEN + GDNF, and 12–15mCR MEN + C3, (n = 3).
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mice remain relatively healthy at 12 months of age, it is thought

that these rodents rarely live longer than 12 months in the wild

(Phelan & Austad, 1989). Selective pressures on neuropro-

tective mechanisms are therefore likely to be reduced or

nonexistent by this age, providing a possible explanation for

this apparently early and substantial neuron loss. Through the

use of alternative markers (PGP 9.5, HuC/D) and staining methods

(immunofluorescence, toluidine blue staining of resin-embedded

sections) we confirm that PGP 9.5 labelling provides an accurate

indication of age-related neuron loss. Resin-embedded sections

exhibited substantial ‘holes’ surrounded by enteric glial cells in

ganglia from AL-fed, aged rats. This arrangement resembles the

nodules of Nageotte seen in dorsal root ganglia following path-

ological neuron loss (Thomas et al., 1997).

Significant neuron loss is only seen in AL-fed animals at the

12- to 15-month age stage, confirming previous observations

that diet is a key coregulator of age-related neuron cell death;

however, a smaller but significant (P < 0.05) loss of neurons is seen

in CR animals at 24 months indicating the dietary neuroprotec-

tion is not complete. CR is known to increase the expression

of neuroprotective genes including those encoding protein

chaperones, neurotrophic factors (Prolla & Mattson, 2001),

mitochondrial gene expression (Nicoletti et al., 2005) and repres-

sors of apoptosis in the aging rat brain (Shelke & Leeuwenburgh,

2003). Our data confirm the protective effect of dietary restric-

tion against age-related neuron cell death. Furthermore, the

observation that cellular vulnerability to aging occurs relatively

early in life supports predictions based on the evolutionary theory

of aging (Kirkwood & Austad, 2000) that dietary restriction will

enhance investment in cellular maintenance and repair during

adult, reproductive life.

We examined the possibility that myenteric neurons express-

ing the calcium-binding proteins, calretinin and calbindin (Abalo

et al., 2005), might be particularly vulnerable to age-related

neurodegeneration as a result of calcium dyshomeostasis (Bu

et al., 2003), which may be linked to altered mitochondrial ROS

generation in old age (Mattson & Liu, 2002). Calretinin-positive

neurons form a far larger (25%) proportion of myenteric

neurons compared to calbindin (2.5%) but exhibited no age-

related loss. Calbindin-positive neurons, in contrast, exhibited

a substantial 50% loss which was fully rescued by CR. This is

an interesting addition to the literature on selective vulnerability

of subpopulations of neurons in the enteric nervous system

(Wade & Cowen, 2004), but does not further our understanding

of the contribution of calcium dyshomeostasis in this process,

nor does it tell us more about the phenotype of the large majority

of myenteric neurons which are vulnerable during aging.

Evidence is growing of an association between ROS and age-

related neurodegenerative disease (for review, see (Butterfield

& Lauderback, 2002; Poon et al., 2004). However, there are

few direct demonstrations of increased ROS levels in the non-

diseased aging nervous system, or of the protective effects of

CR against a possible age-related increase in ROS (Poon et al.,
2004). Indeed, in Drosophila a lack of correlation between

mitochondrial ROS and lifespan was recently demonstrated

(Miwa et al., 2004). Our data show a significant increase in ROS

levels in 12–15 months in both AL and CR groups compared

to 6-month myenteric neurons in vitro which is maintained in

24-month neurons. ROS levels were not markedly influenced

by diet although the rate of increase in ROS levels at 1 h of

incubation (following 20 min of loading with DHR, see Exper-

imental procedures) was reduced in 12–15mCR neurons com-

pared to the parallel AL group. ROS levels showed similar trends

in both 24-month groups indicating that even after 50% of

neurons had died in the AL group, the remainder continue to

exhibit elevated ROS levels compared to young neurons. This

suggests that while some neurons are more vulnerable than

others to age-related neurodegeneration, all are exposed to

the damaging effects of elevated ROS.

The free radical-sensing dyes have advantages and dis-

advantages (for review see Tarpey et al., 2004). An important

advantage of DHR for the present study is its capacity to provide

a clear, neuron-specific signal which allows us to separate the

confounding effects of changes in ROS in smooth muscle, enteric

glial and vascular endothelial cells, all of which contribute to

the ROS signal. These considerations rule out the use of more

widely accepted biochemical assays for ROS in our preparations.

Our laboratory has recently published further methodology for

the use of DHR in cell-specific ROS assays, including effects of

age and growth factor treatments, which support the view

that with appropriate controls this method can provide reliable

information on superoxide generation (Jallali et al., 2005). Here,

the possibility that the DHR signal is affected by alterations in

ROS from sources other than superoxide (e.g. reactive nitrogen

species) or by alterations in mitochondrial membrane potential

(Hempel et al., 1999) was examined using the recently

developed dye, HPF (Setsukinai et al., 2003; Ooe et al., 2005),

which reacts specifically with hydroxyl radicals. We confirmed

the principal DHR results (i.e. the effects of age and diet on ROS)

by showing a significant age-related increase of over 50% in

ROS levels in 12- to 15-month neurons which is partially reduced

by CR. Because HPF responds primarily to OH•, derived princi-

pally from superoxide, this experiment indicates that DHR in this

model is probably measuring a ROS signal predominantly orig-

inating in mitochondrial superoxide.

Neurotrophic factors have been recently shown to exert

antioxidant effects in developing sympathetic neurons (Dugan

et al., 1999); however, their role in the adult and aging nervous

system has not been investigated. We demonstrate that two of

the principal endogenously expressed neurotrophic factors in

the gut, GDNF and NT3, reduce ROS levels significantly in 6 months

myenteric neurons showing that neurotrophic factors have anti-

oxidant effects in adult myenteric neurons. This neuroprotective

role was abolished in older (12–15 months and 24 months)

neurons by AL feeding but retained with CR, showing that diet

influences the capacity of neurotrophic factors to affect anti-

oxidant defence in the adult nervous system. Interestingly, the

effects of both GDNF and NT3 are maximal in young and CR-fed

groups during the first hour of treatment and then plateau out

between 1 and 2 h. This result suggests that neurotrophic factors
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have a finite effect on ROS homeostasis, but does not indicate

whether they influence ROS generation by direct effects on mito-

chondrial function or through the up-regulation of antioxidants.

Further experiments are required to examine this question.

ROS are increasingly understood to be associated with

neurodegeneration, including neuron cell death, in a number

of pathological conditions (see Introduction). However, while

age is generally the strongest predictor of neurodegenerative

disease, there is little evidence that nonpathological aging is

accompanied by ROS-induced neuronal cell death. Recent data

(Cowen et al., 2000) demonstrated that rat myenteric neurons

are exceptionally vulnerable to cell death with over 50% of cells

dying in animals at a relatively early stage in the aging process

(16 m). Because cell death under these circumstances, even in

relatively short-lived animals, occurs over weeks and months it

is not possible to observe cell death directly in vivo or in ex vivo
preparations. Stimulating the mitochondrial electron transport

chain using the redox-cycling drug, menadione, causes oxidative

stress and, in some cells, apoptotic cell death (Laux & Nel, 2001;

Gerasimenko et al., 2002). We therefore exposed myenteric

neurons to menadione in vitro in order to examine their vul-

nerability to ROS-induced apoptotic cell death. TUNEL-positive

neurons increased significantly following menadione treatment

in 12- to 15-month and 24-month neurons from AL-fed animals

in comparison with neurons from 6-month animals. The pro-

portional increases in apoptotic neurons were 21% and 43%,

respectively, while in contrast only 3% of 6-month neurons

responded in the same way. Interestingly, CR very largely pro-

tected neurons against ROS-induced apoptotic cell death since

the difference between the proportions of apoptotic neurons

in 12mCR and 6-month was not statistically significant. In addi-

tion to the characteristic brown nuclear staining characteristic

of the TUNEL reaction, many dying neurons exhibited fragmented

and pyknotic nuclei, indicating that they were indeed under-

going apoptotic cell death. In addition, other cells including

smooth muscle, endothelial and glial cells exhibited widespread

vulnerability to ROS-induced apoptosis.

Stimulation of ROS formation from the mitochondrial

electron transport chain therefore provokes apoptotic cell death

in older adult and aged neurons. Furthermore, like the ROS

levels seen in vitro in these neurons, ROS-induced apoptotic

neuron cell death is sensitive to diet, being largely prevented

by CR at 12–15 months (Fig. 4 and above) as well as at 24 months

(data not shown). This is the first demonstration that, during

nonpathological aging, neurons become vulnerable to ROS-

induced apoptosis and that CR plays a key role in protecting

neurons against this form of stress-induced cell death.

Adult neurons become relatively independent of neurotrophic

factors for their survival in vitro, as has been demonstrated

by studies of adult sensory (Vogelbaum et al., 1998) and

sympathetic (Easton et al., 1997; Orike et al., 2001b) neurons.

NGF-independent survival of adult sympathetic neurons appears

to be the result of an intrinsic up-regulation of PI3-kinase

signalling (Orike et al., 2001a), which may be set by early life

exposure to varying levels of neurotrophic factors (Gatzinsky

et al., 2004) (T. Cowen & M. Campioni-Noack, unpublished

observations). However, this observation does not rule out the

possibility that ongoing neurotrophin signalling influences in an

unknown way the responses of adult and aging neurons to

oxidative stress, hence protecting them against ROS-induced cell

death. We therefore attempted to discover whether menadione-

induced death of neurons could be ameliorated by in vitro
treatment with antioxidants and by neurotrophic factors. The

synthetic antioxidant carboxyfullerene, C3, reduced the extent of

cell death very significantly in young and 12- to 15-month groups,

with greatest effect in the 12–15mCR group, indicating that

menadione-induced cell death was indeed the result of elevated

ROS. Pretreatment with GDNF resulted in significant protection

from menadione-induced cell death in the 12–15mCR group

only, confirming our hypothesis from the ROS experiments that

CR enhances antioxidant defence by neurotrophic factors. In

contrast, NT3 effected a small but nonsignificant rescue of 12–

15mCR neurons, despite the fact that it significantly depressed

ROS levels in similar samples. The lack of protective effect of

GDNF on menadione-induced cell death in young neurons,

combined with the significant effect of C3, may be explained

by the presence of optimal levels of intrinsic GDNF and saturated

neuronal responses in the young myenteric plexus. Further

studies of the relation between specific neurotrophic factors,

antioxidant enzyme activity and cell death pathways are under-

way in attempts to resolve these apparent anomalies.

In summary, our results confirm the selective loss of rat mye-

nteric neurons during aging and suggest a plausible mechanism

whereby age-related neuron cell death is induced by elevated

intraneuronal levels of ROS, which are accentuated by ad libitum
feeding. In contrast, dietary restriction protects against ROS-

induced neuronal cell death through mechanisms which

include enhancement of a novel, antioxidant defensive role of

neurotrophic factors.

Experimental procedures

Animals

All experiments were carried out on male Sprague Dawley rats

from a colony maintained at Royal Free and University College

Medical School (RFUCMS). All animals were reared up to

6 months of age with ad libitum (AL) access to BEEKAY Rat and

Mouse standard 1 diet (B&K Universal Ltd, Hull, UK), composed

of 19% crude protein, 5% oil, 4% fibre and 72% dry matter.

The caloric content is 16.16 mJ/kg and the rats consumed an

average of 50–60 g per day (i.e. 0.80–0.96 mJ per day). From

6 months of age, some animals were transferred to a calorie-

restricted diet (CR) of 25 g per day (0.40 mJ), whereas others

remained on the AL dietary regime. Numbers of samples used

in each experiment are included in the figure legends.

Animals between the ages of 6 and 24 months were killed

by carbon dioxide inhalation. Caloric restriction and all other con-

ditions were undertaken in compliance with UK Home Office

legislation under the Animals (Scientific Procedures) Act 1986.
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Tissue preparation

Immediately after respiration and heart beat ceased, the abdo-

minal cavity was opened and the small intestine removed in toto.

Dimensions of small intestine
After the animals were killed, gut contents were flushed out

with Hanks balanced salt solution (HBSS; pH 7.4). The gut was

then inflated with HBSS to a pressure at which the gut began

to curl (Johnson et al., 1998) and placed on a sheet of trans-

parent plastic. Marks showing length and diameter were made

at several points along the gut and transferred to graph paper

allowing the total area of gut wall to be calculated.

Numbers of neurons
Ileum was removed from AL and CR rats at 6, 12, 13, 15 and

24 months of age, inflated with HBSS, fixed in 4% paraformal-

dehyde for 2 h, washed in PBS, and treated overnight with PBS

+ 20% sucrose. Strip preparations of the muscularis externa

containing the myenteric plexus of neurons were dissected off,

opened and sections taken from 10 to 20 cm of distal ileum.

Samples were processed for immunocytochemistry using PGP

9.5 (UltraClone, Isle of Wight, UK), HuC/D (Molecular Probes) and

calretinin (Swant Antibodies, Bellinzona, Switzerland) polyclonal

antibodies and a monoclonal antibody against calbindin (Swant),

with appropriate Alexafluor (Molecular Probes) secondary anti-

bodies. PGP 9.5 and HuC/D are established as pan-neuronal

markers for rodent myenteric neurons (Johnson et al., 1998;

Phillips et al., 2004). Neurons were counted using a fluores-

cence microscope, expressed as numbers of neurons per mm2

and corrected for any age- or diet-related changes in size of the

gut wall. All procedures have been described previously in detail

(Johnson et al., 1998). To confirm that loss of PGP-immunoreactive

neuron numbers coincided with neuron loss, some specimens

were processed for resin embedding. One-micrometre sections

were cut on an ultramicrotome, stained for toluidine blue and

examined by light microscopy using a ×40 objective.

ROS levels in neurons

An in vitro assay of ROS levels in myenteric neurons has been

developed in our laboratory using the fluorescent probe, di-

hydrorhodamine (DHR; Molecular Probes) (Soubeyre et al., 2001;

Jallali et al., 2005). Comparisons of DHR with another ROS-

sensitive probe, dichlorofluorescein diacetate (DCF-DA) (Hempel

et al., 1999), demonstrated that the latter was not retained

adequately in cells (Jallali et al., 2005). It should be borne in mind

that these preparations contain many different cell types (muscle,

connective tissue cells, endothelium) as well as neurons, hence

more conventional biochemical assays for ROS are inappropriate.

Strip preparations of the myenteric plexus were prepared as

before and transferred to F14 culture medium in 12-well culture

plates maintained at 37 °C in a CO2 incubator. Samples were

treated with 10 µM DHR for 20 min then maintained under the

same conditions for a further 1–4 h. Graphs show the timescale

starting from the point of incubation of the tissues in DHR

(Fig. 3C–H). The first measurement was taken at 20 min when

DHR loading was complete, termed time zero. Eighty- and 140-

min time points indicate 1 and 2 h of incubation post-probe

loading, respectively. Preliminary experiments showed that

responses peaked at 2 h (data not shown). To ensure that the

changes in fluorescence signal obtained using DHR were not

confounded by alterations in mitochondrial membrane poten-

tial, ferric iron or other age-associated variables (Hempel et al.,
1999), comparisons were made between 6-month and 24-month

AL preparations using the novel ROS-sensing dye, HPF (10 µM;

Alexis Biochemicals, Nottingham, UK) (Setsukinai et al., 2003),

in samples pre-incubated for 20–30 min (as for DHR) then main-

tained for up to 3 h in F14 medium containing HPF following

preliminary experiments showing that fluorescence was maximal

at 2–3 h (data not shown).

Free radical regulation
In order to examine the role of neurotrophic factors in reducing

free radical levels in enteric neurons from animals of different

ages and subjected to different dietary regimes, duplicate samples

were pretreated for 2 h with those neurotrophic factors with

established roles in the developing and adult ENS (Chalazonitis

et al., 2001; Busciglio et al., 2002), namely NT3, GDNF and IGF-1

at 100 ng mL−1. NGF was used at the same concentration as a

control since it has no known role in the adult ENS. ROS-sensing

dyes were added for the last 20–30 min of the pre-incubation.

Imaging and image analysis
At 0, 1 and 2 h after pre-incubations, samples were removed,

mounted in antifade mountant (Citifluor, UK) and imaged using

confocal microscopy. Single 2-µm optical slices were obtained

at a constant depth within the myenteric ganglia under strictly

standardized conditions. Laser current was monitored and

neutral density, aperture, black level, Kalman filtering and all other

settings were maintained constant. A minimum of six images

of non-overlapping ganglia containing a total of at least 50

neurons from each sample were stored and subjected to

image analysis using a Zeiss Kontron image analysis system

(KS400 V2/3, Carl Zeiss Ltd, Welwyn Garden City, UK). Nucleated

profiles of neurons were selected and the neuronal perimeter

traced interactively and filled to generate a mask. The masks of

all traced neurons within a ganglion were then used to measure

mean grey value (intensity) (GV/µm2) and integrated grey value

per cell (GV/cell), as well as cell size.

Apoptotic neuronal cell death

Preparations similar to those used previously were treated with

the redox-cycling drug, menadione (50 µM) (Iyanagi, 1990), for 4 h.

After treatment, samples were fixed in 4% paraformaldehyde

for 2 h, washed in PBS, followed by overnight treatment

with 20% sucrose in PBS, then frozen in cryoprotectant and

cryosectioned at 7 µm. TUNEL staining of the sections was

carried out using a kit (NeuroTACS II, TA900, R&D Systems, UK)
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to demonstrate apoptotic cell profiles. Numbers of apoptotic

neurons were scored on at least three sections per sample using

a light microscope and ×40 objective. Brown-stained neuronal

nuclei, often exhibiting fragmentation, were scored as apoptotic,

compared with blue-stained oval nuclei which were scored

as normal. Visual analysis of neuronal nuclear morphology was

carried out in parallel. Apoptotic neuron numbers were

expressed as a percentage of normal neuron numbers.

To ensure that TUNEL staining provided an accurate indica-

tion of cell death, and because of the relatively limited sampling

in cryosections of myenteric ganglia, similar preparations, but

without fixation, were examined directly in the confocal micro-

scope after treatment for 20 min using the Live-Dead assay

following manufacturer’s instructions (Molecular Probes).

Neurons were distinguished from glial cells by clear differences

of size and shape. Green, calcein-stained live neurons and red,

ethidium-stained nuclei of dead neurons were counted in the

same preparations and numbers of dead cells were expressed

as a proportion of the total (live + dead).

Protection by neurotrophic factors against 
menadione-induced cell death

Because the Live-Dead assay gave better sampling and as a

result more reliable quantification compared to TUNEL staining,

it was used to study the protective effects of neurotrophic factors

on menadione-induced cell death. Similar preparations to those

used previously were exposed to GDNF and NT3 (100 ng mL−1,

as before) and then to menadione (50 µM, as before). After 4 h,

cells were treated with the reagents of the Live-Dead assay, imaged

and the proportion of dead cells counted, as previously described.

Data analysis

Mean, standard deviations and standard errors of mean were

calculated using MS Excel. Statistical analysis of variance was

carried out using two-way analysis of variance (ANOVA) followed

by post-hoc LSD or Bonnferoni tests of significant differences

between data pairs with P < 0.05 assigned as statistically

significant (Unistat or Graphpad software).
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